Neuroprotective Properties of Fermented Malted Rice Obtained Under Different Processing Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Raw Materials
2.3. Fermented Product Production and Characterization
2.3.1. Microbiological Analysis
2.3.2. Peptide Analysis by FPLC and HPLC
2.3.3. Phenolic Acids
2.3.4. Determination of γ-Aminobutyric Acid (GABA)
2.4. Neuroprotective Properties of Fermented Products
2.5. Bioaccessibility of Bioactive Compounds from Fermented Products
2.6. Statistical Analysis
3. Results and Discussions
3.1. Characterization of Fermented Products and Bioactive Compounds (GABA and Phenolic Acid Contents)
3.2. Neuroprotective Properties of Fermented Products
3.3. Neuroprotective Properties of Fermented Products After Gastrointestinal Digestion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FR | Fermented malted rice |
FMR | Fermented mashed malted rice |
LAB | Lactic acid bacteria |
GABA | γ-aminobutyric acid |
CFU | Colony-forming units |
AChE | Acetylcholinesterase |
TYR | Tyrosinase |
POP | Prolyl oligopeptidase |
R | Malted rice flour |
MR | Mashed malted rice flour |
DH | Degree of protein hydrolysis |
FR-D | Dialysates of FR |
FMR-D | Dialysates of FMR |
References
- Abdul Hakim, B.N.; Xuan, N.J.; Oslan, S.N.H. A Comprehensive Review of Bioactive Compounds from Lactic Acid Bacteria: Potential Functions as Functional Food in Dietetics and the Food Industry. Foods 2023, 12, 2850. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Chen, Z.; Shao, J.; Wang, C.; Zhan, C. Effect of Fermentation on the Peptide Content, Phenolics and Antioxidant Activity of Defatted Wheat Germ. Food Biosci. 2017, 20, 141–148. [Google Scholar] [CrossRef]
- Porras-García, E.; Fernández-Espada Calderón, I.; Gavala-González, J.; Fernández-García, J.C. Potential Neuroprotective Effects of Fermented Foods and Beverages in Old Age: A Systematic Review. Front. Nutr. 2023, 10, 1170841. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-H.; Yin, X.; He, H.; Lu, L.W.; Wang, M.; Liu, B.; Cheng, K.-W. Potential Neuroprotective Benefits of Plant-Based Fermented Foods in Alzheimer’s Disease: An Update on Preclinical Evidence. Food Funct. 2024, 15, 3920–3938. [Google Scholar] [CrossRef]
- Castro-Salomón, M.; Beltrán-Barrientos, L.M.; González-Córdova, A.F.; Hernández-Mendoza, A.; Torres-Llanez, M.J.; Vallejo-Cordoba, B. Screening of Fermented Milks with Lactococcus and Lactobacillus Strains Isolated from Artisanal Mexican Cheeses by the Evaluation of the in Vitro Inhibition of Enzymes Associated to Neurodegeneration. Int. J. Food Sci. Technol. 2024, 12, 9310–9325. [Google Scholar] [CrossRef]
- Asen, N.D.; Aluko, R.E. Acetylcholinesterase and Butyrylcholinesterase Inhibitory Activities of Antioxidant Peptides Obtained from Enzymatic Pea Protein Hydrolysates and Their Ultrafiltration Peptide Fractions. J Food Biochem. 2022, 46, e14289. [Google Scholar] [CrossRef]
- Aquino, M.E.; Drago, S.R.; Schierloh, L.P.; Cian, R.E. Identification of Bioaccessible Glycosylated Neuroprotective Peptides from Brewer’s Spent Yeast Mannoproteins by in Vitro and in Silico Studies. Food Res. Int. 2025, 209, 116188. [Google Scholar] [CrossRef]
- Iannitelli, A.F.; Hassenein, L.; Mulvey, B.; Blankenship, H.E.; Liles, L.C.; Sharpe, A.L.; Pare, J.-F.; Segal, A.; Sloan, S.A.; Martinowich, K.; et al. Tyrosinase-Induced Neuromelanin Accumulation Triggers Rapid Dysregulation and Degeneration of the Mouse Locus Coeruleus. bioRxiv 2024. [Google Scholar] [CrossRef]
- Nagatsu, T.; Nakashima, A.; Watanabe, H.; Ito, S.; Wakamatsu, K. Neuromelanin in Parkinson’s Disease: Tyrosine Hydroxylase and Tyrosinase. Int. J. Mol. Sci. 2022, 23, 4176. [Google Scholar] [CrossRef] [PubMed]
- Taraszkiewicz, A.; Sinkiewicz, I.; Sommer, A.; Staroszczyk, H. The Biological Role of Prolyl Oligopeptidase and the Procognitive Potential of Its Peptidic Inhibitors from Food Proteins. Crit. Rev. Food Sci. Nutr. 2024, 64, 6567–6580. [Google Scholar] [CrossRef]
- Shen, L.; Yang, Y.; Liu, X.; Zhao, H.; Zhang, Y.; Shen, L.; Zhu, L.; Hu, J.; Ren, D.; Zhang, Q.; et al. Strategies to Improve γ-Aminobutyric Acid Biosynthesis in Rice via Optimal Conditions. Plants 2025, 14, 1290. [Google Scholar] [CrossRef]
- Sun, Y.; Mehmood, A.; Battino, M.; Xiao, J.; Chen, X. Enrichment of Gamma-Aminobutyric Acid in Foods: From Conventional Methods to Innovative Technologies. Food Res. Int. 2022, 162, 111801. [Google Scholar] [CrossRef]
- Cian, R.E.; Garzón, A.G.; Albarracín, M.; Drago, S.R. Production of Neuroprotective Compounds from Barley (Hordeum vulgare L.) Germinated under Different Conditions during the Malting Process. Int. J. Food Sci. Technol. 2025, 60, vvae033. [Google Scholar] [CrossRef]
- Pino, A.; Nicosia, F.D.; Agolino, G.; Timpanaro, N.; Barbagallo, I.; Ronsisvalle, S.; Caggia, C.; Randazzo, C.L. Formulation of Germinated Brown Rice Fermented Products Functionalized by Probiotics. Innov. Food Sci. Emerg. Technol. 2022, 80, 103076. [Google Scholar] [CrossRef]
- Drago, S.; Garzon, A. Formulaciones Alimenticias a Base de Sorgo Fermentado y Su Proceso de Elaboración. Master’s Thesis, Autonomous University of the State of Hidalgo, Pachuca, Mexico, 2023. [Google Scholar]
- Nielsen, P.M.; Petersen, D.; Dambmann, C. Improved Method for Determining Food Protein Degree of Hydrolysis. J. Food Sci. 2001, 66, 642–646. [Google Scholar] [CrossRef]
- ISO 7889/IDF 117A; Milk and Milk Products—Enumeration of Lactic Acid Bacteria—Colony-Count Technique at 30 °C. International Organization for Standardization/International Dairy Federation: Geneva, Switzerland, 1988.
- FIL/IDF 73A; Milk and Milk Products—Enumeration of Microorganisms—Colony-Count Technique at 30 °C. International Dairy Federation: Geneva, Switzerland, 1985.
- FIL/IDF 94B; Milk and Milk Products—Enumeration of Coliforms—Colony-Count Technique at 30 °C. International Organization for Standardization/International Dairy Federation: Geneva, Switzerland, 1990.
- Garzón, A.G.; Van de Velde, F.; Drago, S.R. Gastrointestinal and Colonic in Vitro Bioaccessibility of γ-Aminobutiric Acid (GABA) and Phenolic Compounds from Novel Fermented Sorghum Food. LWT 2020, 130, 109664. [Google Scholar] [CrossRef]
- Spontón, P.G.; Spinelli, R.; Drago, S.R.; Tonarelli, G.G.; Simonetta, A.C. Acetylcholinesterase-Inhibitor Hydrolysates Obtained from “in Vitro” Enzymatic Hydrolysis of Mannoproteins Extracted from Different Strains of Yeasts. Int. J. Food Sci. Technol. 2016, 51, 300–308. [Google Scholar] [CrossRef]
- Oyama, T.; Takahashi, S.; Yoshimori, A.; Yamamoto, T.; Sato, A.; Kamiya, T.; Abe, H.; Abe, T.; Tanuma, S.I. Discovery of a New Type of Scaffold for the Creation of Novel Tyrosinase Inhibitors. Bioorg. Med. Chem. 2016, 24, 4509–4515. [Google Scholar] [CrossRef] [PubMed]
- Chanajon, P.; Noisa, P.; Yongsawatdigul, J. Prolyl Oligopeptidase Inhibition and Cellular Antioxidant Activities of a Corn Gluten Meal Hydrolysate. Cereal Chem. 2022, 99, 1183–1195. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- De Mendonça Brandão, H.C.A.D.N.T.; De Mendonça Brandão, W.A.P.L.N.T.; De Mendonça, S.N.T.G.; Felsner, M.L. Probiotic Fermented Rice Extract Beverage: An Alternative Food for Lactose Intolerants and People Allergic to Bovine Milk and Soy Protein. Braz. J. Food Technol. 2021, 24, e2020119. [Google Scholar] [CrossRef]
- Ayed, L.; M’hir, S.; Nuzzolese, D.; Di Cagno, R.; Filannino, P. Harnessing the Health and Techno-Functional Potential of Lactic Acid Bacteria: A Comprehensive Review. Foods 2024, 13, 1538. [Google Scholar] [CrossRef] [PubMed]
- Garzón, A.G.; Veras, F.F.; Brandelli, A.; Drago, S.R. Bio-Functional and Prebiotics Properties of Products Based on Whole Grain Sorghum Fermented with Lactic Acid Bacteria. J. Sci. Food Agric. 2024, 104, 2971–2979. [Google Scholar] [CrossRef]
- Rollán, G.C. Fermentación Láctica de Cereales y Granos Ancestrales Andinos. In Alimentos Fermentados: Microbiología, Nutrición, Salud y Cultura; Ferrari, A., Vinderola, G., Weill, R., Eds.; Instituto Danone: Buenos Aires, Argentina, 2020. [Google Scholar]
- Duka, F.S.; Rahman, A.N.F. Germinated Rice: An Overview of Gaba, Phenolic Components and Antioxidant Activity. In Proceedings of the IOP Conference Series: Earth and Environmental Science; Institute of Physics: Philadelphia, PA, USA, 2023; Volume 1230. [Google Scholar]
- Sahab, N.R.M.; Subroto, E.; Balia, R.L.; Utama, G.L. γ-Aminobutyric Acid Found in Fermented Foods and Beverages: Current Trends. Heliyon 2020, 6, e05526. [Google Scholar] [CrossRef]
- Horvat, D.; Šimić, G.; Drezner, G.; Lalić, A.; Ledenčan, T.; Tucak, M.; Plavšić, H.; Andrić, L.; Zdunić, Z. Phenolic Acid Profiles and Antioxidant Activity of Major Cereal Crops. Antioxidants 2020, 9, 527. [Google Scholar] [CrossRef]
- Li, S.; Xu, H.; Sui, Y.; Mei, X.; Shi, J.; Cai, S.; Xiong, T.; Carrillo, C.; Castagnini, J.M.; Zhu, Z.; et al. Comparing the LC-MS Phenolic Acids Profiles of Seven Different Varieties of Brown Rice (Oryza sativa L.). Foods 2022, 11, 1552. [Google Scholar] [CrossRef]
- Abdi, R.; Joye, I.J. Prebiotic Potential of Cereal Components. Foods 2021, 10, 2338. [Google Scholar] [CrossRef]
- Polia, F.; Pastor-Belda, M.; Martínez-Blázquez, A.; Horcajada, M.N.; Tomás-Barberán, F.A.; García-Villalba, R. Technological and Biotechnological Processes to Enhance the Bioavailability of Dietary (Poly)Phenols in Humans. J. Agric. Food Chem. 2022, 70, 2092–2107. [Google Scholar] [CrossRef]
- Xu, C.C.; Wang, B.; Pu, Y.Q.; Tao, J.S.; Zhang, T. Advances in Extraction and Analysis of Phenolic Compounds from Plant Materials. Chin. J. Nat. Med. 2017, 15, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Şahin, S.; Şamli, R. Optimization of Olive Leaf Extract Obtained by Ultrasound-Assisted Extraction with Response Surface Methodology. Ultrason. Sonochemistry 2013, 20, 595–602. [Google Scholar] [CrossRef]
- Garzón, A.G.; Albarracín, M.; Drago, S.R. Bioactive Properties of Sorghum-Based Beverages from Whole or Refined Grains. Recent Prog. Nutr. 2023, 3, 1–15. [Google Scholar] [CrossRef]
- Oluwole, O.; Fernando, W.B.; Lumanlan, J.; Ademuyiwa, O.; Jayasena, V. Role of Phenolic Acid, Tannins, Stilbenes, Lignans and Flavonoids in Human Health—A Review. Int. J. Food Sci. Technol. 2022, 57, 6326–6335. [Google Scholar] [CrossRef]
- Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A Comprehensive Review on Tyrosinase Inhibitors. J. Enzyme Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef] [PubMed]
- Putri, S.A.; Maharani, R.; Maksum, I.P.; Siahaan, T.J. Peptide Design for Enhanced Anti-Melanogenesis: Optimizing Molecular Weight, Polarity, and Cyclization. Drug Des. Dev. Ther. 2025, 19, 645–670. [Google Scholar] [CrossRef] [PubMed]
- Bondžić, A.M.; Lazarević-Pašti, T.D.; Leskovac, A.R.; Petrović, S.; Čolović, M.B.; Parac-Vogt, T.N.; Janjić, G.V. A New Acetylcholinesterase Allosteric Site Responsible for Binding Voluminous Negatively Charged Molecules—The Role in the Mechanism of AChE Inhibition. Eur. J. Pharm. Sci. 2020, 151, 105376. [Google Scholar] [CrossRef]
- Fernández-Tomé, S.; Hernández-Ledesma, B. Gastrointestinal Digestion of Food Proteins under the Effects of Released Bioactive Peptides on Digestive Health. Mol. Nutr. Food Res. 2020, 64, 2000401. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.S.; Pereira, J.O.; Ferreira, C.; Faustino, M.; Durão, J.; Pintado, M.E.; Carvalho, A.P. Peptide-Rich Extracts from Spent Yeast Waste Streams as a Source of Bioactive Compounds for the Nutraceutical Market. Innov. Food Sci. Emerg. Technol. 2022, 81, 103148. [Google Scholar] [CrossRef]
- Tavan, M.; Hanachi, P.; de la Luz Cádiz-Gurrea, M.; Segura Carretero, A.; Mirjalili, M.H. Natural Phenolic Compounds with Neuroprotective Effects. Neurochem. Res. 2024, 49, 306–326. [Google Scholar] [CrossRef]
Microorganisms (Log CFU/mL) | Before Fermentation | After Fermentation | Cold Storage (14 Days) | |||
---|---|---|---|---|---|---|
FR | FMR | FR | FMR | FR | FMR | |
S. thermophilus L. delbrueckii subsp. bulgaricus | 7.6 ± 0.1 a | 8.0 ± 0.2 b | 8.2 ± 0.2 b | 8.0 ± 0.2 b | 7.3 ± 0.2 a | 7.4 ± 0.1 a |
4.1 ± 0.1 b | 4.2 ± 0.2 b | 3.2 ± 0.1 a | 3.3 ± 0.2 a | 3.2 ± 0.2 a | 3.5 ± 0.1 a | |
Molds and yeasts | <1 * | <1 * | <1 * | <1 * | 1 | 1 |
Total coliforms | <1 * | <1 * | <1 * | <1 * | <1 * | <1 * |
Phenolic Acid | Product | Free mg 100 g dw−1 | Bound mg 100 g dw−1 | Total mg 100 g dw−1 |
---|---|---|---|---|
Chlorogenic acid | R | 0.17 ± 0.01 b | - | 0.17 ± 0.01 b |
FR | 0.22 ± 0.05 b | - | 0.22 ± 0.05 b | |
FMR | 0.05 ± 0.02 a | - | 0.05 ± 0.02 a | |
Caffeic acid | R | 0.05 ± 0.01 b | 0.58 ± 0.09 b | 0.63 ± 0.08 b |
FR | 0.01 ± 0.00 a | 0.03 ± 0.00 a | 0.04 ± 0.00 a | |
FMR | - | 0.06 ± 0.00 a | 0.06 ± 0.00 a | |
p-Coumaric acid | R | 0.08 ± 0.01 a | 6.74 ± 0.83 a | 6.82 ± 0.82 a |
FR | 0.17 ± 0.12 a | 8.47 ± 0.05 b | 8.76 ± 0.17 b | |
FMR | 0.01 ± 0.00 a | 11.38 ± 0.07 c | 11.39 ± 0.07 c | |
Ferulic acid | R | 0.80 ± 0.08 b | 17.57 ± 1.03 a | 19.66 ± 2.77 a |
FR | 0.80 ± 0.17 b | 21.61 ± 0.61 b | 22.41 ± 0.78 a | |
FMR | 0.09 ± 0.02 a | 22.47 ± 0.07 b | 22.56 ± 0.07 a | |
p-Sinapic acid | R | 0.09 ± 0.02 b | 0.71 ± 0.03 a | 0.79 ± 0.05 a |
FR | 0.02 ± 0.00 a | 0.85 ± 0.06 c | 0.87 ± 0.06 a | |
FMR | 0.04 ± 0.01 ab | 0.79 ± 0.01 b | 0.83 ± 0.01 a | |
Total | R | 1.18 ± 0.09 b | 25.61 ± 1.97 a | 26.79 ± 1.88 a |
FR | 1.23 ± 0.35 b | 30.92 ± 0.72 b | 32.15 ± 1.06 b | |
FRM | 0.18 ± 0.05 a | 34.64 ± 0.36 b | 34.82 ± 0.31 b |
Peptide Concentration (mmol L−1) | Kmapp (mmol L−1) | Vmaxapp (mmol min−1 L−1) | |
---|---|---|---|
TYR | 0 | 0.122 ± 0.02 a | 3.98 ± 0.16 a |
TYR + FR0.6 | 0.5 | 0.324 ± 0.01 c | 3.84 ± 0.10 a |
TYR + FMR0.6 | 0.5 | 0.256 ± 0.00 b | 3.87 ± 0.14 a |
AChE | 0 | 1.305 ± 0.07 a | 497.8 ± 14.9 c |
AChE + FR0.6 | 0.5 | 1.270 ± 0.07 a | 129.6 ± 2.61 a |
AChE + FMR0.6 | 0.5 | 1.238 ± 0.06 a | 173.7 ± 4.31 b |
Phenolic Acid | Product | Free (mg 100 g dw−1) | IB (%) |
---|---|---|---|
p-Coumaric | FR | 0.01 ± 0.00 a | 0.10 ± 0.03 a |
FMR | 0.01 ± 0.00 a | 0.09 ± 0.01 a | |
Ferulic acid | FR | 0.23 ± 0.03 a | 1.03 ± 0.16 a |
FMR | 0.24 ± 0.01 a | 1.07 ± 0.04 a | |
p-Sinapic acid | FR | 0.05 ± 0.01 a | 6.03 ± 1.47 a |
FMR | 0.07 ± 0.01 a | 8.02 ± 1.20 a | |
Total | FR | 0.29 ± 0.04 a | 0.90 ± 0.13 a |
FMR | 0.32 ± 0.02 a | 0.91 ± 0.01 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albarracín, M.; Van de Velde, F.; Cian, R.E.; Drago, S.R. Neuroprotective Properties of Fermented Malted Rice Obtained Under Different Processing Conditions. Fermentation 2025, 11, 459. https://doi.org/10.3390/fermentation11080459
Albarracín M, Van de Velde F, Cian RE, Drago SR. Neuroprotective Properties of Fermented Malted Rice Obtained Under Different Processing Conditions. Fermentation. 2025; 11(8):459. https://doi.org/10.3390/fermentation11080459
Chicago/Turabian StyleAlbarracín, Micaela, Franco Van de Velde, Raúl E. Cian, and Silvina R. Drago. 2025. "Neuroprotective Properties of Fermented Malted Rice Obtained Under Different Processing Conditions" Fermentation 11, no. 8: 459. https://doi.org/10.3390/fermentation11080459
APA StyleAlbarracín, M., Van de Velde, F., Cian, R. E., & Drago, S. R. (2025). Neuroprotective Properties of Fermented Malted Rice Obtained Under Different Processing Conditions. Fermentation, 11(8), 459. https://doi.org/10.3390/fermentation11080459