Bioconversion of a Glycerol- and Methanol-Rich Residue from Biodiesel Industry into 1,3-Propanediol: The Role of Magnesium
Abstract
1. Introduction
2. Materials and Methods
2.1. Residue and Characterization Methods
2.2. Microorganism and Inoculum
2.3. RAPTR Pretreatment Optimization Method
2.4. Optimization of Glycerol and MgCl2 Concentration in the Culture Medium
2.5. Pretreated RAPTR Fermentation
2.6. Analytical Methods
2.7. Statistical Validation
3. Results and Discussion
3.1. Residue (RAPTR) Composition
3.2. RAPTR Pretreatment Optimization
3.3. Optimization of Glycerol and MgCl2 Concentrations in Culture Medium to Promote Glycerol Consumption
3.4. Fermentation of Pretreated Glycerol-Rich RAPTR Supplemented with MgCl2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quah, R.V.; Tan, Y.H.; Mubarak, N.M.; Khalid, M.; Abdullah, E.C.; Nolasco-Hipolito, C. An overview of biodiesel production using recyclable biomass and non-biomass derived magnetic catalysts. J. Environ. Chem. Eng. 2019, 7, 103219. [Google Scholar] [CrossRef]
- OECD-FAO Agricultural Outlook 2022–2031. 2022. Available online: https://www.oecd.org/en/publications/oecd-fao-agricultural-outlook-2022-2031_f1b0b29c-en.html (accessed on 29 April 2025).
- Gupta, P.; Sahoo, P.C.; Sandipam, S.; Gupta, R.P.; Kumar, M. Fermentation of biodiesel-derived crude glycerol to 1,3-propanediol with bio-wastes as support matrices: Polynomial prediction model. Enzym. Microb. Technol. 2023, 170, 110292. [Google Scholar] [CrossRef] [PubMed]
- Crosse, A.J.; Brady, D.; Zhou, N.; Rumbold, K. Biodiesel’s trash is a biorefineries’ treasure: The use of “dirty” glycerol as an industrial fermentation substrate. World J. Microbiol. Biotechnol. 2020, 36, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Fatimah, I.; Nugraha, J.; Sagadevan, S.; Kamari, A.; Oh, W.-C. Process Intensification of Biodiesel Production by Optimization Using Box-Behnken Design: A Review. Chem. Eng. Process.—Process Intensif. 2024, 208, 110110. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, Y.; Zhou, W.; Zhou, W.; Gong, Z. Co-valorization of crude glycerol and low-cost substrates via oleaginous yeasts to micro-biodiesel: Status and outlook. Renew. Sustain. Energy Rev. 2023, 180, 113303. [Google Scholar] [CrossRef]
- Gnanaprakasam, A.; Sivakumar, V.M.; Surendhar, A.; Thirumarimurugan, M.; Kannadasan, T. Recent Strategy of Biodiesel Production from Waste Cooking Oil and Process Influencing Parameters: A Review. J. Energy 2013, 2013, 1–10. [Google Scholar] [CrossRef]
- Knothe, G.; Van Gerpen, J.; Krahl, J.; Ramos, L.P. Manual de Biodiesel, 1st ed.; Blucher: São Paulo, Brazil, 2006. [Google Scholar]
- Attarbachi, T.; Kingsley, M.D.; Spallina, V. New trends on crude glycerol purification: A review. Fuel 2023, 340, 127485. [Google Scholar] [CrossRef]
- Nomanbhay, S.; Hussein, R.; Ong, M.Y. Sustainability of biodiesel production in Malaysia by production of bio-oil from crude glycerol using microwave pyrolysis: A review. Green Chem. Lett. Rev. 2018, 11, 135–157. [Google Scholar] [CrossRef]
- Tey, K.Y.; Tan, J.P.; Yeap, S.K.; He, N.; Bukhari, N.A.; Hui, Y.W.; Luthfi, A.A.I.; Manaf, S.F.A. Current analysis on 1,3-propanediol production from glycerol via pure wild strain fermentation. J. Environ. Chem. Eng. 2023, 11, 110998. [Google Scholar] [CrossRef]
- Rodrigues, C.V.; Santana, K.O.; Nespeca, M.G.; de Oliveira, J.E.; Maintinguer, S.I. Crude glycerol by transesterification process from used cooking oils: Characterization and potentialities on hydrogen bioproduction. Int. J. Hydrogen Energy 2016, 41, 14641–14651. [Google Scholar] [CrossRef]
- Liu, Y.; Zhong, B.; Lawal, A. Recovery and utilization of crude glycerol, a biodiesel byproduct. RSC Adv. 2022, 12, 27997–28008. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Kumar, M.; Gupta, R.P.; Puri, S.K.; Ramakumar, S.S.V. Fermentative reforming of crude glycerol to 1,3-propanediol using Clostridium butyricum strain L4. Chemosphere 2022, 292, 133426. [Google Scholar] [CrossRef] [PubMed]
- Wischral, D.; Zhang, J.; Cheng, C.; Lin, M.; De Souza, L.M.G.; Pessoa, F.L.P.; Pereira, N.; Yang, S.T. Production of 1,3-propanediol by Clostridium beijerinckii DSM 791 from crude glycerol and corn steep liquor: Process optimization and metabolic engineering. Bioresour. Technol. 2016, 212, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.V.; Santana, K.O.; Nespeca, M.G.; Rodrigues, A.V.; Pires, L.O.; Maintinguer, S.I. Energy valorization of crude glycerol and sanitary sewage in hydrogen generation by biological processes. Int. J. Hydrogen Energy 2020, 45, 11943–11953. [Google Scholar] [CrossRef]
- da Silva Ruy, A.D.; de Brito Alves, R.M.; Hewer, T.L.R.; de Aguiar Pontes, D.; Teixeira, L.S.G.; Pontes, L.A.M. Catalysts for glycerol hydrogenolysis to 1,3-propanediol: A review of chemical routes and market. Catal. Today 2021, 381, 243–253. [Google Scholar] [CrossRef]
- Khalil, M.E.; Jain, A.; Das, E.; Yang, K.L.; Rajagopalan, G. A robust and efficient bioprocess of hydrogen production from crude glycerol by Clostridium beijerinckii G117. Int. J. Hydrogen Energy 2023, 48, 7604–7620. [Google Scholar] [CrossRef]
- Altafini, R.D.M.; Martins, T.M.T.; Bruni, A.T.; Reginatto, V. Upgraded medium composition highlights the relevance of iron sulfate for 1,3-propanediol production by a Clostridium beijerinckii strain. Biocatal. Agric. Biotechnol. 2022, 43, 102388. [Google Scholar] [CrossRef]
- Borgnia, M.J.; Agre, P. Reconstitution and functional comparison of purified GlpF and AqpZ, the glycerol and water channels from Escherichia coli. Proc. Natl. Acad. Sci. USA 2001, 98, 2888–2893. [Google Scholar] [CrossRef]
- Stroud, R.M.; Nollert, P.; Miercke, L. The glycerol facilitator GlpF, its aquaporin family of channels, and their selectivity. Adv. Protein Chem. 2003, 63, 291–316. [Google Scholar] [CrossRef]
- Fonseca, B.C.; Guazzaroni, M.E.; Reginatto, V. Fermentative production of H2 from different concentrations of galactose by the new isolate Clostridium beijerinckii Br21. Int. J. Hydrogen Energy 2016, 41, 21109–21120. [Google Scholar] [CrossRef]
- Fonseca, B.C.; Riaño-Pachón, D.M.; Guazzaroni, M.E.; Reginatto, V. Genome sequence of the H2-producing Clostridium beijerinckii strain Br21 isolated from a sugarcane vinasse treatment plant. Genet. Mol. Biol. 2019, 42, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Biebl, H.; Marten, S.; Hippe, H.; Deckwer, W.D. Glycerol conversion to 1,3-propanediol by newly isolated clostridia. Appl. Microbiol. Biotechnol. 1992, 36, 592–597. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water & Wastewater, 21st ed.; APHA: Washington, DC, USA, 2005. [Google Scholar]
- Egoburo, D.E.; Peña, R.D.; Kolender, A.; Pettinari, M.J. Optimization and Validation of a GC–FID Method for Quantitative Determination of 1,3-Propanediol in Bacterial Culture Aqueous Supernatants Containing Glycerol. Chromatographia 2017, 80, 1121–1127. [Google Scholar] [CrossRef]
- TIBCO Statistica, version 14.0.1; TIBCO Software, Inc.: Palo Alto, CA, USA, 2023.
- Nazato, C.; Romero, A.D.C.; Abdalla, A.L. Determination of methanol residues in crude glycerol for animal feed by gas chromatography. Sci. Agric. 2019, 76, 527–531. [Google Scholar] [CrossRef]
- Koutinas, A.A.; Vlysidis, A.; Pleissner, D.; Kopsahelis, N.; Garcia, I.L.; Kookos, I.K.; Papanikolaou, S.; Kwan, T.H.; Lin, C.S.K. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem. Soc. Rev. 2014, 43, 2587. [Google Scholar] [CrossRef]
- Veljković, V.B.; Stamenković, O.S.; Tasić, M.B. The wastewater treatment in the biodiesel production with alkali-catalyzed transesterification. Renew. Sustain. Energy Rev. 2014, 32, 40–60. [Google Scholar] [CrossRef]
- Phukingngam, D.; Chavalparit, O.; Somchai, D.; Ongwandee, M. Anaerobic baffled reactor treatment of biodiesel-processing wastewater with high strength of methanol and glycerol: Reactor performance and biogas production. Chem. Pap. 2011, 65, 644–651. [Google Scholar] [CrossRef]
- Bortolucci, J.; Guazzaroni, M.-E.; Schoch, T.; Dürre, P.; Reginatto, V. Enhancing 1,3-Propanediol Productivity in the Non-Model Chassis Clostridium beijerinckii through Genetic Manipulation. Microorganisms 2023, 11, 1855. [Google Scholar] [CrossRef]
- Mermejo, B.D.C.; Bortolucci, J.; de Andrade, A.R.; Reginatto, V. The Non-solventogenic Clostridium beijerinckii Br21 Produces 1,3-Propanediol From Glycerol With Butyrate as the Main By-Product. Front. Sustain. Food Syst. 2022, 6, 848022. [Google Scholar] [CrossRef]
- Ayoub, M.; Abdullah, A.Z. Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew. Sustain. Energy Rev. 2012, 16, 2671–2686. [Google Scholar] [CrossRef]
- Maquirriain, M.A.; Tonutti, L.G.; Querini, C.A.; Pisarello, M.L. Crude glycerine characterization: Analysis of free fatty acids, fatty acid methyl esters, and acylglycerides. Biomass Convers. Biorefin. 2020, 12, 4889–4899. [Google Scholar] [CrossRef]
- Raman, A.A.A.; Tan, H.W.; Buthiyappan, A. Two-Step Purification of Glycerol as a Value Added by Product From the Biodiesel Production Process. Front. Chem. 2019, 7, 774. [Google Scholar] [CrossRef]
- Dyrda, G.; Boniewska-Bernacka, E.; Man, D.; Barchiewicz, K.; Słota, R. The effect of organic solvents on selected microorganisms and model liposome membrane. Mol. Biol. Rep. 2019, 46, 3225–3232. [Google Scholar] [CrossRef]
- Kabelitz, N.; Santos, P.M.; Heipieper, H.J. Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus. FEMS Microbiol. Lett. 2003, 220, 223–227. [Google Scholar] [CrossRef]
- Bortolucci, J.; Zani, A.C.B.; de Gouvêa, P.F.; Dinamarco, T.M.; Reginatto, V. A non-solventogenic Clostridium beijerinckii strain lacking acetoacetate decarboxylase assimilates acetate and accumulates butyrate. Biomass Bioenergy 2023, 172, 106780. [Google Scholar] [CrossRef]
- Nelson, D.L.; Cox, M.M. Príncípios de Bioqímica de Lehninger, 6th ed.; Artmed: Porto Alegre, RS, Brazil, 2014. [Google Scholar]
- Zhang, B.; Zhang, Y.; Wang, Z.; Zheng, Y. The Role of Mg2+ Cofactor in the Guanine Nucleotide Exchange and GTP Hydrolysis Reactions of Rho Family GTP-binding Proteins. J. Biol. Chem. 2000, 275, 25299–25307. [Google Scholar] [CrossRef] [PubMed]
- Trofimova, Y.; Walker, G.; Rapoport, A. Anhydrobiosis in yeast: Influence of calcium and magnesium ions on yeast resistance to dehydration-rehydration. FEMS Microbiol. Lett. 2010, 308, 55–61. [Google Scholar] [CrossRef]
- Fonseca, B.C.; Schmidell, W.; Reginatto, V. Impact of glucose concentration on productivity and yield of hydrogen production by the new isolate Clostridium beijerinckii Br21. Can. J. Chem. Eng. 2019, 97, 1092–1099. [Google Scholar] [CrossRef]
- Birch, R.M.; Walker, G.M. Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzym. Microb. Technol. 2000, 26, 678–687. [Google Scholar] [CrossRef]
Component | Unit | Value |
---|---|---|
Glycerol | g L−1 | 67.9 ± 0.2 |
g C L−1 | 26.5 ± 0.1 | |
% m m−1 | 6.6 ± 0.02 | |
Methanol | g L−1 | 294.3 ± 6.6 |
C L−1 | 110.2 ± 2.5 | |
% m m−1 | 28.4 ± 6.4 | |
TOC | g L−1 | 187.6 ± 1.8 |
Total solids | g L−1 | 140.4 ± 2.6 |
Total fixed solids | g L−1 | 99.0 ± 0.8 |
Total volatile solids | g L−1 | 41.4 ± 2.72 |
pH | - | 1.3 |
Conditions | Pretreatment Condition | Residue Volume Reduction (%) | Methanol (g L−1) | Glycerol (g L−1) | |
---|---|---|---|---|---|
Time (min) | Temperature (°C) | ||||
1 | 15.0 (−1) | 45.0 (−1) | 1 | 291.0 | 67.5 |
2 | 15.0 (−1) | 65.0 (+1) | 31 | 128.8 | 93.3 |
3 | 45.0 (+1) | 45.0 (−1) | 1 | 295.2 | 72.5 |
4 | 45.0 (+1) | 65.0 (+1) | 67 | 93.5 | 197.9 |
5 | 8.8 (−1.41) | 55.0 (0) | 5 | 277.8 | 74.6 |
6 | 51.2 (+1.41) | 55.0 (0) | 27 | 137.0 | 93.0 |
7 | 30.0 (0) | 40.9 (−1.41) | 1 | 295.7 | 66.4 |
8 | 30.0 (0) | 69.1 (+1.41) | 70 | 92.7 | 227.0 |
9 | 30.0 (0) | 55.0 (0) | 20 | 183.3 | 88.8 |
10 | 30.0 (0) | 55.0 (0) | 15 | 205.8 | 78.8 |
11 | 30.0 (0) | 55.0 (0) | 14 | 217.8 | 80.1 |
Residue | - | - | - | 294.3 ± 6.6 | 67.9 ± 0.2 |
Factors | Significance | Sum of Squares | Degrees of Freedom | Mean Square | F | p |
---|---|---|---|---|---|---|
Linear Time | Significant | 563.014 | 1 | 563.014 | 1126.029 | 0.018966 |
Linear Temperature | Significant | 4684.188 | 1 | 4684.188 | 9368.375 | 0.006577 |
Quadratic Temperature | Significant | 568.029 | 1 | 568.029 | 1136.057 | 0.018882 |
Interaction 1 L and 2 L | Significant | 324.000 | 1 | 324.000 | 648.000 | 0.024996 |
Lack of Fit | Not significant | 5.869 | 4 | 1.467 | 2.935 | 0.409269 |
Pure Error | 0.500 | 1 | 0.500 | |||
Total | 6145.600 | 9 |
Factors | Significance | Sum of Squares | Degrees of Freedom | Mean Square | F | p |
---|---|---|---|---|---|---|
Linear Time | Significant | 6625.23 | 1 | 6625.23 | 92.0171 | 0.066127 |
Linear Temperature | Significant | 52,972.74 | 1 | 52972.74 | 735.7325 | 0.023460 |
Lack of Fit | Not significant | 5005.25 | 6 | 834.21 | 11.5862 | 0.221180 |
Pure Error | 72.00 | 1 | 72.00 | |||
Total | 64,675.22 | 9 |
Conditions | Conditions | OD | Final pH | Butyric Acid (g L−1) | 1,3-PDO (g L−1) | Consumed Glycerol (g L−1) | |
---|---|---|---|---|---|---|---|
Glycerol (g L−1) | MgCl2 (g L−1) | ||||||
1 | 10 (−1) | 0.2 (−1) | 1.89 ± 0.11 | 5.93 ± 0.04 | 0.80 ± 0.12 | 1.77 ± 0.16 | 3.73 ± 0.20 |
2 | 10 (−1) | 0.6 (+1) | 1.76 ± 0.11 | 5.47 ± 0.09 | 1.07 ± 0.04 | 3.18 ± 0.13 | 6.44 ± 0.58 |
3 | 40 (+1) | 0.2 (−1) | 1.75 ± 0.07 | 5.35 ± 0.09 | 0.96 ± 0.08 | 2.67 ± 0.09 | 5.10 ± 0.24 |
4 | 40 (+1) | 0.6 (+1) | 2.42 ± 0.19 | 5.11 ± 0.04 | 1.28 ± 0.05 | 2.49 ± 0.06 | 4.30 ± 0.20 |
5 | 3.79 (−1.41) | 0.4 (0) | 0.73 ± 0.20 | 5.52 ± 0.08 | 0.47 ± 0.02 | 0.85 ± 0.12 | 2.79 ± 0.14 |
6 | 46.21 (+1.41) | 0.4 (0) | 1.61 ± 0.06 | 5.17 ± 0.09 | 1.12 ± 0.09 | 2.13 ± 0.18 | 3.86 ± 0.76 |
7 | 25 (0) | 0.12 (−1.41) | 1.05 ± 0.09 | 6.56 ± 0.08 | 1.02 ± 0.10 | 2.05 ± 0.02 | 7.17 ± 0.21 |
8 | 25 (0) | 0.68 (+1.41) | 1.29 ± 0.11 | 5.64 ± 0.04 | 1.05 ± 0.03 | 2.20 ± 0.10 | 6.03 ± 0.34 |
9 | 25 (0) | 0.4 (0) | 1.52 ± 0.08 | 5.22 ± 0.07 | 1.01 ± 0.07 | 2.18 ± 0.06 | 7.53 ± 0.37 |
10 | 25 (0) | 0.4 (0) | 1.78 ± 0.06 | 5.25 ± 0.09 | 1.10 ± 0.04 | 2.71 ± 0.18 | 8.52 ± 0.20 |
Factors | Significance | Sum of Squares | Degrees of Freedom | Mean Square | F | p |
---|---|---|---|---|---|---|
Linear glycerol | Significant | 3.1 | 1 | 3.1 | 15.3 | 0.001 |
Quadratic glycerol | Significant | 57.6 | 1 | 57.6 | 279.7 | 0.000 |
Linear MgCl2 | Significant | 2.1 | 1 | 2.1 | 10.3 | 0.005 |
Quadratic MgCl2 | Significant | 5.5 | 1 | 5.5 | 26.8 | 0.000 |
Interaction 1 L by 2 L | Significant | 7.4 | 1 | 7.4 | 36.1 | 0.000 |
Lack of fit | Not significant | 0.3 | 3 | 0.1 | 0.4 | 0.725 |
Pure error | 3.3 | 16 | 0.2 | |||
Total | 73.0 | 24 |
Basal Medium (ALTAFINI et al. (2022) [19]) | Optimal Medium (This Work) | |
---|---|---|
Lag phase (h) | 4 | 22 |
Maximal OD at 600 nm | 1.61 ± 0.06 | 2.40 ± 0.20 |
Total glycerol consumption (g L−1) | 7.2 ± 0.6 | 8.25 ± 0.43 |
Maximal glycerol consumption rate (g L−1 h−1) | 0.86 ± 0.02 | 1.80 ± 0.01 |
1,3-PDO (g L−1) | 4.01 ± 0.01 | 3.54 ± 0.20 |
Maximal 1,3-PDO production rate (g L−1 h−1) | 0.91 ± 0.01 | 0.96 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altafini, R.d.M.; Fachin, G.M.; Reginatto, V. Bioconversion of a Glycerol- and Methanol-Rich Residue from Biodiesel Industry into 1,3-Propanediol: The Role of Magnesium. Fermentation 2025, 11, 370. https://doi.org/10.3390/fermentation11070370
Altafini RdM, Fachin GM, Reginatto V. Bioconversion of a Glycerol- and Methanol-Rich Residue from Biodiesel Industry into 1,3-Propanediol: The Role of Magnesium. Fermentation. 2025; 11(7):370. https://doi.org/10.3390/fermentation11070370
Chicago/Turabian StyleAltafini, Rafael de Moraes, Giovana Masson Fachin, and Valeria Reginatto. 2025. "Bioconversion of a Glycerol- and Methanol-Rich Residue from Biodiesel Industry into 1,3-Propanediol: The Role of Magnesium" Fermentation 11, no. 7: 370. https://doi.org/10.3390/fermentation11070370
APA StyleAltafini, R. d. M., Fachin, G. M., & Reginatto, V. (2025). Bioconversion of a Glycerol- and Methanol-Rich Residue from Biodiesel Industry into 1,3-Propanediol: The Role of Magnesium. Fermentation, 11(7), 370. https://doi.org/10.3390/fermentation11070370