Antioxidant Capacity, Phenolic and Organoleptic Profiles of Beers Maturated with Bilberries
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Beer Production
2.3. Beer Analysis
2.3.1. Sample Preparation
Beer Preparation
Bilberry Preparation
2.3.2. HPLC Analysis of Phenolic Compounds
2.3.3. Determination of Total Phenolic Compounds (TPCs) Using Folin–Ciocalteu Reagent (FCR)
2.3.4. Assessment of Antioxidant Capacity (AOC) in Beers
- DPPH (2,2′-Diphenyl-1-picrylhydrazyl) Radical Scavenging Activity
- FRAP (Ferric Reducing Ability of Plasma) Method
- ABTS (2,2′-Azinobis-(3-ethylbenzothiazoline-6-sulfonate)) Radical Cation Scavenging Activity
- CUPRAC (Cupric Reducing Antioxidant Capacity) Method
2.3.5. Sensory Evaluation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Profile of the Beers
3.1.1. Total Phenolic Compounds
3.1.2. Phenolic Acids
Control Beers
Bilberries
Beers with Bilberries
3.1.3. Flavonoids
Control Beers
Bilberries
Beers with Bilberries
3.2. Antioxidant Capacity of Beers
3.3. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nardini, M.; Garaguso, I. Characterization of bioactive compounds and antioxidant activity of fruit beers. Food Chem. 2020, 305, 125437. [Google Scholar] [CrossRef] [PubMed]
- Ducruet, J.; Rébénaque, P.; Diserens, S.; Kosińska-Cagnazzo, A.; Héritier, I.; Andlauer, W. Amber ale beer enriched with goji berries–The effect on bioactive compound content and sensorial properties. Food Chem. 2017, 226, 109–118. [Google Scholar] [CrossRef]
- Kawa-Rygielska, J.; Adamenko, K.; Kucharska, A.Z.; Prorok, P.; Piórecki, N. Physicochemical and antioxidative properties of Cornelian cherry beer. Food Chem. 2019, 281, 147–153. [Google Scholar] [CrossRef]
- Mileva, S.; Tomova, I.; Marinova, G. Beer with higher antioxidant capacity by adding fruits. Part II—Beer with added whineberry (Vaccinium myrtillus). Food Proc. Ind. Mag. 2018, 9, 29–35. [Google Scholar]
- Yang, Q.; Tu, J.; Chen, M.; Gong, X. Discrimination of fruit beer based on fingerprints by static headspace—Gas chromatography—Ion mobility spectrometry. J. Am. Soc. Brew. Chem. 2021, 80, 298–304. [Google Scholar] [CrossRef]
- Iannone, M.; Ovidi, E.; Vitalini, S.; Laghezza Masci, V.; Marianelli, A.; Iriti, M.; Tiezzi, A.; Garzoli, S. From Hops to Craft Beers: Production Process, VOCs Profile Characterization, Total Polyphenol and Flavonoid Content Determination and Antioxidant Activity Evaluation. Processes 2022, 10, 517. [Google Scholar] [CrossRef]
- Wannenmacher, J.; Gastl, M.; Becker, T. Phenolic substances in beer: Structural diversity, reactive potential and relevance for brewing process and beer quality. Compr. Rev. Food Sci. Food Saf. 2018, 17, 953–988. [Google Scholar] [CrossRef]
- Nardini, M.; Ghiselli, A. Determination of free and bound phenolic acids in beer. Food Chem. 2004, 84, 137–143. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, W.; Jain, L.; Zhao, M. Phenolic profiles and antioxidant activities of commercial beers. Food Chem. 2010, 119, 1150–1158. [Google Scholar] [CrossRef]
- Mitić, S.S.; Paunović, D.P.; Pavlović, A.N.; Tošić, S.B.; Stojković, M.B.; Mitić, M.N. Phenolic Profiles and Total Antioxidant Capacity of Marketed Beers in Serbia. Int. J. Food Prop. 2014, 17, 908–922. [Google Scholar] [CrossRef]
- Moura-Nunes, N.; Brito, T.C.; Dias da Fonesa, N.; Fernandes de Aguiar, P.; Monteiro, M.; Perrone, D.; Torres, A.G. Phenolic compounds of Brazilian beers from different types and styles and application of chemometrics for modeling antioxidant capacity. Food Chem. 2016, 199, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Zhang, J.; Wang, H.; Xu, J.; He, J.; Liu, L.; Kang, J. Phenolic acid profiling, antioxidant, and anti-inflammatory activities, and miRNA regulation in the polyphenols of 16 blueberry samples from China. Molecules 2017, 22, 312. [Google Scholar] [CrossRef]
- Tafulo, P.A.R.; Queirós, R.B.; Delerue-Matos, C.M.; Sale, M.G.F. Control and comparison of the antioxidant capacity of beers. Food Res. Int. 2010, 43, 1702–1709. [Google Scholar] [CrossRef]
- Socha, R.; Pająk, P.; Fortuna, T.; Buska, K. Antioxidant activity and the most abundant phenolics in commercial dark beers. Int. J. Food Prop. 2017, 20 (Suppl. S1), S595–S609. [Google Scholar] [CrossRef]
- Može, Š.; Polak, T.; Gašperlin, L.; Koron, D.; Vanzo, A.; Ulrih, N.P.; Abram, V. Phenolics in Slovenian bilberries (Vaccinium myrtillus L.) and blueberries (Vaccinium corymbosum L.). J. Agric. Food Chem. 2011, 59, 6998–7004. [Google Scholar] [CrossRef] [PubMed]
- Diaconeasa, Z.; Florica, R.; Rugină, D.; Lucian, C.; Socaciu, C. HPLC/PDA-ESI/MS Identification of phenolic acids, flavonol glycosides and antioxidant potential in blueberry, blackberry, raspberries and cranberries. J. Food Nutr. Res. 2014, 2, 781–785. [Google Scholar] [CrossRef]
- Georgieva, R.; Nedyalkov, P.; Shopska, V.; Kaneva, M. Effect of blueberries addition during beer maturation on yeast metabolism. Food Sci. Appl. Biotechnol. 2021, 4, 105–110. [Google Scholar] [CrossRef]
- Nedyalkov, P.; Bakardzhiyski, I.; Dinkova, R.; Shopska, V.; Kaneva, M. Influence of the time of bilberry (Vaccinium myrtillus L.) addition on the phenolic and protein profile of beer. Acta Sci. Pol. Technol. Aliment. 2022, 21, 5–15. [Google Scholar] [CrossRef]
- Nedyalkov, P.; Bakardzhiyski, I.; Kaneva, M. Changes in the protein profile of beers with bilberry. Food Sci. Appl. Biotechnol. 2023, 6, 67–76. [Google Scholar] [CrossRef]
- Nedyalkov, P.; Bakardzhiyski, I.; Shikov, V.; Kaneva, M.; Shopska, V. Possibilities for Utilization of Cherry Products (Juice and Pomace) in Beer Production. Beverages 2023, 9, 95. [Google Scholar] [CrossRef]
- Shopska, V.; Nedyalkov, P.; Shikov, V.; Kaneva, M. Effect of cherry products addition on beer fermentation. BIO Web Conf. 2024, 102, 01016. [Google Scholar] [CrossRef]
- Denev, P.; Ciz, M.; Ambrozova, G.; Lojek, A.; Yanakieva, I.; Kratchanova, M. Solid-phase extraction of berries’ anthocyanins and evaluation of their antioxidative properties. Food Chem. 2010, 123, 1055–1061. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, E.; Abu Salim, K.; Lim, L.B. Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (Airy Shaw) from Brunei Darussalam. J. King Saud Univ. Sci. 2015, 27, 224–232. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E.; Erçağ, E. The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int. J. Food Sci. Nutr. 2006, 57, 292–304. [Google Scholar] [CrossRef]
- Analytica—EBC. Section 13: Sensory Analysis; Fachverlag Hans Carl: Nürnberg, Germany, 2018. [Google Scholar]
- Donchev, D.; Dilcheva, M.; Kinova, V. Statistics—Practical Guide; Autospectrum: Plovdiv, Bulgaria, 2007. [Google Scholar]
- Lentz, M. The Impact of Simple Phenolic Compounds on Beer Aroma and Flavor. Fermentation 2018, 4, 20. [Google Scholar] [CrossRef]
- Kunze, W. Technology of Brewing and Malting, 3rd ed.; VLB: Berlin, Germany, 2002; ISBN 3-921690-49-8. [Google Scholar]
- Zhao, H.; Sun-Waterhouse, D. Interactions between proteins and polyphenols in beer. In Encyclopedia of Food Chemistry; Melton, L., F. Shahidi, F., Varelis, P., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 550–553. [Google Scholar] [CrossRef]
- Zou, T.B.; He, T.P.; Li, H.B.; Tang, H.W.; Xia, E.Q. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Fukumoto, L.R.; Mazza, G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000, 48, 3597–3604. [Google Scholar] [CrossRef] [PubMed]
- Zapataa, P.J.; Martínez-Espláa, A.; Gironés-Vilaplanaa, A.; Santos-Laxa, D.; Noguera-Artiagab, L.; Ángel, A. Carbonell-Barrachinab, Á.A. Phenolic, volatile, and sensory profiles of beer enriched by macerating quince fruits. LWT—Food Sci. Technol. 2019, 103, 139–146. [Google Scholar] [CrossRef]
Total Phenolic Compounds | |
---|---|
Bilberries, mg GAE/100 g | 365 ± 9 a |
Control Beers, mg GAE/L | |
Original extract 12 °P | 502 ± 4 b |
Original extract 14 °P | 491 ± 9 b |
Original extract 16 °P | 481 ± 12 b |
Beers with bilberries, mg GAE/L | |
Original extract 12 °P | 893 ± 13 c |
Original extract 14 °P | 957 ± 32 d |
Original extract 16 °P | 939 ± 7 d |
Compounds | Bilberries, mg/100 g | Original Extract 12 °P | Original Extract 14 °P | Original Extract 16 °P | |||
---|---|---|---|---|---|---|---|
Control Beer Sample, mg/dm3 | Beer Sample with Bilberries, mg/dm3 | Control Beer Sample, mg/dm3 | Beer Sample with Bilberries, mg/dm3 | Control Beer Sample, mg/dm3 | Beer Sample with Bilberries, mg/dm3 | ||
Phenolic acids | |||||||
Chlorogenic | 57.39 ± 1.73 | 19.04 ± 0.54 b | 130.98 ± 2.03 c | 13.51 ± 0.38 d | 116.86 ± 0.54 e | 34.12 ± 0.22 f | 143.84 ± 0.81 g |
Neochlorogenic | NSP | 48.96 ± 0.35 a | 77.02 ± 1.85 b | 41.89 ± 0.01 c | 65.28 ± 0.37 d | 26.32 ± 0.51 e | 39.42 ± 0.92 f |
Vanillic | 17.90 ± 0.53 | 7.78 ± 0.24 b | 21.60 ± 0.64 c | 8.50 ± 0.01 d | 18.18 ± 0.00 e | 9.00 ± 0.18 f | 16.69 ± 0.61 g |
Caffeic | 3.97 ± 0.22 | 2.08 ± 0.21 b | 16.13 ± 0.97 c | 1.95 ± 0.04 b | 16.03 ± 0.79 c | ND | 21.75 ± 0.57 d |
3,4-dihydrobenzoic | NSP | 7.67 ± 0.40 a | 39.88 ± 0.72 b | 7.43 ± 0.19 a | 56.43 ± 0.97 c | 11.17 ± 1.15 d | 32.48 ± 0.54 e |
Ferulic | 5.28 ± 0.04 | 3.60 ± 0.45 b | 7.73 ± 0.48 c | 3.79 ± 0.06 b | 7.90 ± 0.34 c | 4.85 ± 0.16 d | 7.71 ± 0.26 c |
p-coumaric | 0.83 ± 0.09 | 0.90 ± 0.10 b | 3.02 ± 0.11 c | 0.59 ± 0.00 d | 3.15 ± 0.19 c | 0.84 ± 0.04 b | 2.95 ± 0.04 c |
Gallic | NSP | 28.78 ± 0.23 a | 51.08 ± 0.38 b | 30.73 ± 0.03 c | 35.32 ± 0.92 d | 33.68 ± 0.71 e | 43.28 ± 0.75 f |
Cinnamic | 0.53 ± 0.01 | 0.42 ± 0.04 b | 1.10 ± 0.09 c | 0.45 ± 0.04 b | 1.24 ± 0.04 d | 0.65 ± 0.04 e | 1.62 ± 0.05 f |
Rosmarinic | 5.96 ± 0.17 | ND | 3.06 ± 0.39 a | ND | 2.28 ± 0.04 a | ND | 2.90 ± 0.53 a |
Calculated total phenolic acids | 91.86 ± 2.79 | 119.23 ± 2.56 b | 351.60 ± 7.66 c | 108.84 ± 0.76 d | 322.67 ± 4.20 e | 120.63 ± 3.01 b | 312.64 ± 5.08 e |
Flavonoids | |||||||
Quercetin | 3.76 ± 0.04 | 4.47 ± 0.53 b | 4.94 ± 0.53 b | 3.31 ± 0.03 c | 5.02 ± 0.37 b | 3.63 ± 0.44 c | 8.81 ± 0.58 d |
Quercetin-3-glucoside | 13.41 ± 0.61 | 3.40 ± 0.33 b | 6.05 ± 0.33 c | 3.71 ± 0.45 b | 5.95 ± 0.47 c | 4.65 ± 0.55 d | 4.68 ± 0.26 d |
Rutin | 175.69 ± 5.69 | 5.94 ± 0.49 b | 216.53 ± 5.92 c | 3.35 ± 0.37 d | 185.86 ± 4.00 e | 14.72 ± 0.01 f | 240.16 ± 5.02 g |
Myricetin | 4.80 ± 0.16 | 1.94 ± 0.16 b | 8.00 ± 0.31 c | 3.47 ± 0.51 d | 8.36 ± 0.16 c | 3.87 ± 0.45 d | 10.62 ± 0.42 e |
Kaempferol | 0.46 ± 0.01 | 0.90 ± 0.08 b | 1.51 ± 0.17 c | 1.05 ± 0.06 b | 2.36 ± 0.24 d | 0.91 ± 0.11 b | 2.35 ± 0.18 d |
Catechin | 138.79 ± 0.66 | 23.73 ± 0.44 b | 101.78 ± 2.12 c | 17.97 ± 0.64 d | 105.39 ± 5.30 c | 26.24 ± 0.57 e | 106.55 ± 3.25 c |
Epicatechin | 47.82 ± 0.86 | 28.06 ± 0.45 b | 34.28 ± 0.55 c | 23.17 ± 0.40 d | 36.52 ± 3.08 c | 33.25 ± 3.07 c | 28.64 ± 1.80 b |
Calculated total flavonoids | 384.73 ± 8.03 | 68.44 ± 2.48 b | 373.09 ± 9.93 c | 56.03 ± 2.46 d | 349.46 ± 13.62 e | 87.27 ± 5.20 f | 401.81 ± 11.51 g |
Calculated total phenolic compounds | 476.59 ± 10.82 | 188.37 ± 5.11 b | 742.69 ± 17.59 c | 164.87 ± 3.22 d | 672.13 ± 17.82 e | 207.90 ± 8.21 f | 714.45 ± 16.59 c |
Antioxidant Capacity | CUPRAC | FRAP | ABTS | DPPH |
---|---|---|---|---|
Bilberries, Trolox μmol/100 g | 8150 ± 123 a | 4581 ± 77 a | 3346 ± 83 a | 954 ± 67 a |
Control beers, Trolox μmol/dm3 | ||||
Original extract 12 °P | 2248 ± 239 b | 1154 ± 56 b | 973 ± 25 b | 996 ± 45 b |
Original extract 14 °P | 2914 ± 128 c | 1123 ± 70 b | 1429 ± 51 c | 903 ± 96 b |
Original extract 16 °P | 2113 ± 129 b | 881 ± 36 c◦ | 940 ± 79 b | 897 ± 50 b |
Beers with bilberries, Trolox μmol/dm3 | ||||
Original extract 12 °P | 7107 ± 518 d | 3555 ± 245 d | 2681 ± 44 d | 2396 ± 80 c |
Original extract 14 °P | 9423 ± 435 e | 4253 ± 253 e | 4056 ± 312 e | 2089 ± 74 d |
Original extract 16 °P | 8132 ± 20 f | 3365 ± 58 d | 2991 ± 112 f | 2465 ± 77 c |
CUPRAC | DPPH | FRAP | FC | TPhC (Calculated from HPC) | |
---|---|---|---|---|---|
ABTS | 0.986 | 0.852 | 0.972 | 0.946 | 0.892 |
CUPRAC | - | 0.926 | 0.988 | 0.986 | 0.951 |
DPPH | - | - | 0.933 | 0.974 | 0.992 |
FRAP | - | - | - | 0.986 | 0.962 |
FC | - | - | - | - | 0.988 |
ABTS | CUPRAC | DPPH | FRAP | FC | |
---|---|---|---|---|---|
Chlorogenic | 0.858 | 0.929 | 0.990 | 0.929 | 0.974 |
Neochlorogenic | 0.603 | 0.596 | 0.602 | 0.702 | 0.617 |
Vanillic | 0.846 | 0.895 | 0.946 | 0.936 | 0.936 |
Caffeic | 0.839 | 0.926 | 0.980 | 0.902 | 0.968 |
3,4-dihydrobenzoic | 0.965 | 0.953 | 0.845 | 0.973 | 0.932 |
Ferulic | 0.902 | 0.947 | 0.952 | 0.950 | 0.971 |
p-coumaric | 0.923 | 0.968 | 0.975 | 0.982 | 0.993 |
Gallic | 0.519 | 0.628 | 0.843 | 0.672 | 0.729 |
Cinnamic | 0.835 | 0.903 | 0.928 | 0.860 | 0.928 |
Rozmarinic | 0.699 | 0.814 | 0.992 | 0.829 | 0.910 |
Quercetin | 0.538 | 0.643 | 0.751 | 0.578 | 0.696 |
Quercerin-3-glucoside | 0.775 | 0.780 | 0.750 | 0.829 | 0.792 |
Rutin | 0.866 | 0.936 | 0.997 | 0.936 | 0.979 |
Myricetin | 0.863 | 0.925 | 0.947 | 0.887 | 0.945 |
Kaempferol | 0.943 | 0.955 | 0.850 | 0.902 | 0.924 |
Catechin | 0.919 | 0.969 | 0.983 | 0.974 | 0.996 |
Epicatechin | 0.539 | 0.529 | 0.474 | 0.597 | 0.545 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nedyalkov, P.; Shopska, V.; Perretti, G.; Kaneva, M. Antioxidant Capacity, Phenolic and Organoleptic Profiles of Beers Maturated with Bilberries. Fermentation 2025, 11, 334. https://doi.org/10.3390/fermentation11060334
Nedyalkov P, Shopska V, Perretti G, Kaneva M. Antioxidant Capacity, Phenolic and Organoleptic Profiles of Beers Maturated with Bilberries. Fermentation. 2025; 11(6):334. https://doi.org/10.3390/fermentation11060334
Chicago/Turabian StyleNedyalkov, Petar, Vesela Shopska, Giuseppe Perretti, and Maria Kaneva. 2025. "Antioxidant Capacity, Phenolic and Organoleptic Profiles of Beers Maturated with Bilberries" Fermentation 11, no. 6: 334. https://doi.org/10.3390/fermentation11060334
APA StyleNedyalkov, P., Shopska, V., Perretti, G., & Kaneva, M. (2025). Antioxidant Capacity, Phenolic and Organoleptic Profiles of Beers Maturated with Bilberries. Fermentation, 11(6), 334. https://doi.org/10.3390/fermentation11060334