Production of “Melomel” from Cupuaçu (Theobroma grandiflorum) Using the Probiotic Yeast Saccharomyces cerevisiae var. boulardii
Abstract
:1. Introduction
2. Material and Methods
2.1. Microorganisms
2.2. Preparation of the S. boulardii Inoculum
2.3. Production of Cupuaçu Melomel
2.4. Experimental Comparison of Cupuaçu Melomel Fermented by S. cerevisiae and S. boulardii
2.5. Antioxidant Activity and Phenolic Compounds
2.6. Viable Yeast Cell Counts
2.7. Survival of Microorganisms in Simulated In Vitro Gastric and Intestinal Juices
2.8. Cupuaçu Melomel Shelf Life
2.9. Statistical Analysis
3. Results and Discussion
3.1. Central Composite Design (CCD) for the Production of Cupuaçu Melomel
3.2. Experimental Comparison of Melomel with S. cerevisiae and S. boulardii Yeasts
3.3. Antioxidant Activity and Phenolic Compounds
3.4. Survival of Microorganisms in Simulated In Vitro Digestion
3.5. Cupuaçu Melomel Shelf Life
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministério da Agricultura e Abastecimento. Instrução Normativa n.11, de 20 de Outubro de 2000. Aprova o Regulamento Técnico de Identidade e Qualidade do Mel; Diário Oficial da República Federativa do Brasil: Brasília, DF, Brasil, 2000.
- Ministério de Agricultura, Pecuária e Abastecimento. Instrução Normativa n. 34, de 29 de Novembro de 2012. Aprova o Regulamento Técnico de Identidade e Qualidade de Bebidas Fermentadas: Fermentado de Fruta; Fermentado de Fruta Licoroso; Fermentado de Fruta Composto; Sidra; Hidromel; Fermentado de Cana; Saquê ou Sake; Diário Oficial da República Federativa do Brasil: Brasília, DF, Brasil, 2012.
- Amorim, T.S.; Lopes, S.B.; Bispo, J.A.C.; Bonafé, C.F.S.; Carvalho, G.B.M.; Martínez, E.A. Influence of acerola pulp concentration on mead production by Saccharomyces cerevisiae AWRI 796. LWT 2018, 97, 561–569. [Google Scholar] [CrossRef]
- Adamenko, K.; Rygielska, K.J.; Kucharska, A.Z.; Piórecki, N. Characteristics of Biologically Active Compounds in Cornelian Cherry Meads. Molecules 2018, 23, 2024. [Google Scholar] [CrossRef]
- Pereira, A.P.; Oliveira, J.M.; Mendes, A.F.; Estevinho, L.M.; Mendes, F.A. 14-Mead and Other Fermented Beverages. In Current Developments in Biotechnology and Bioengineering: Food and Beverages Industry; Elsevier: Amsterdam, The Netherlands, 2017; pp. 407–434. [Google Scholar] [CrossRef]
- Starowicza, M.; Granvogl, M. Trends in food science & technology an overview of mead production and the physicochemical, toxicological, and sensory characteristics of mead with a special emphasis on flavor. Trends Food Sci. Technol. 2020, 106, 402–416. [Google Scholar] [CrossRef]
- Rygielska, J.K.; Adamenko, K.; Kucharska, A.Z.; Szatkowska, K. Fruit and herbal meads–Chemical composition and antioxidant properties. Food Chem. 2019, 283, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Benlloch-Tinoco, M.; Ramírez, J.M.N.; García, P.; Gentile, P.; Girón-Hernández, J. Theobroma genus: Exploring the therapeutic potential of T. grandiflorum and T. bicolor in biomedicine. Food Biosci. 2024, 61, 104755. [Google Scholar] [CrossRef]
- Silva, C.V.A.; Salimo, Z.M.; Souza, T.A.; Reyes, D.E.; Bassicheto, M.C.; Medeiros, L.S.; Sartim, M.A.; Carvalho, J.C.; Gonçalves, J.F.C.; Monteiro, W.M.; et al. Cupuaçu (Theobroma grandiflorum): A Multifunctional Amazonian Fruit with Extensive Benefits. Food Res. Int. 2024, 192, 114729. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, M.V.V.A.; Silva, J.P.L.; Mathias, S.P.; Rosethal, A.; Calado, V.M.A. Caracterização físico-química e reológicas da polpa de cupuaçu congelada (Theobroma grandiflorumSchum). Perspect. Online Exatas Eng. 2013, 3, 46–53. [Google Scholar]
- Bezerra, J.A.; Corrêa, R.F.; Sanches, E.A.; Lamarão, C.V.; Stringheta, P.C.; Martins, E.; Campelo, P.H. “Cupuaçu” (Theobroma grandiflorum): A brief review on chemical and technological potential of this Amazonian fruit. Food Chem. Adv. 2024, 5, 100747. [Google Scholar] [CrossRef]
- Rogez, H.; Buxant, R.; Mignolet, E.; Souza, J.; Silva, E.; Larondelle, Y. Química e composição da polpa de três frutos típicos da Amazônia: Araça-boi (Eugenia stipitata), bacuri (Platonia insignis) e cupuaçu (Theobroma grandiflorum). Eur. Food Res. Technol. 2004, 218, 380–384. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Cupuaçu Production in Brazil. 2017. Available online: https://www.ibge.gov.br/explica/producao-agropecuaria/cupuacu/br (accessed on 5 October 2024).
- Souza, H.F.; Bessa, M.S.; Gonçalves, V.D.D.P.; Santos, J.V.; Pinheiro, C.; Chagas, E.G.L.; Carvalho, M.V.; Brandi, I.V.; Kamimura, E.S. Growing Conditions of Saccharomyces boulardii for the Development of Potentially Probiotic Mead: Fermentation Kinetics, Viable Cell Counts and Bioactive Compounds. Food Sci. Technol. Int. 2023, 30, 603–613. [Google Scholar] [CrossRef]
- Souza, H.F.; Bogáz, L.T.; Monteiro, G.F.; Freire, E.N.S.; Pereira, K.N.; Carvalho, M.V.; Silva Rocha, R.; Cruz, A.G.; Brandi, I.V.; Kamimura, E.S. Water Kefir in Co-Fermentation with Saccharomyces boulardii for the Development of a New Probiotic Mead. Food Sci. Biotechnol. 2024, 33, 3299–3311. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Kechagia, M.; Basoulis, D.; Konstantopoulou, S.; Dimitriadi, D.; Gyftopoulou, K.; Skarmoutsou, N.; Fakiri, E.M. Health Benefits of Probiotics: A Review. ISRN Nutr. 2013, 2013, 481651. [Google Scholar] [CrossRef]
- Capece, A.; Romaniello, R.; Pietrafesa, A.; Siesto, G.; Pietrafesa, R.; Zambuto, M.; Romano, P. Use of Saccharomyces cerevisiae var. boulardii in co-fermentations with S. cerevisiae for the production of craft beers with potential healthy value-added. Int. J. Food Microbiol. 2018, 284, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Sertović, E.; Sarić, Z.; Barać, M.; Barukčić, I.; Kostić, A.; Božanić, R. Physical, chemical, microbiological and sensory characteristics of a probiotic beverage produced from different mixtures of cow’s milk and soy beverage by Lactobacillus acidophilus La5 and yoghurt culture. Food Technol. Biotechnol. 2019, 57, 461–471. [Google Scholar] [CrossRef]
- Zendeboodi, F.; Khorshidian, N.; Mortazavian, A.M.; Da Cruz, A.G. Probiotic: Conceptualization from a New Approach. Curr. Opin. Food Sci. 2020, 32, 103–123. [Google Scholar] [CrossRef]
- Souza, H.F.D.; Freire, E.N.S.; Monteiro, G.F.; Bogáz, L.T.; Teixeira, R.D.; Junior, F.V.S.; Teixeira, F.D.; Santos, J.V.D.; Carvalho, M.V.D.; Rocha, R.D.S.; et al. Development of Potentially Probiotic Mead from Co-Fermentation by Saccharomyces cerevisiae var. boulardii and Kombucha Microorganisms. Fermentation 2024, 10, 482. [Google Scholar] [CrossRef]
- Nikolaou, A.; Kourkoutas, Y. High-Temperature Semi-Dry and Sweet Low Alcohol Wine-Making Using Immobilized Kefir Culture. Fermentation 2021, 7, 45. [Google Scholar] [CrossRef]
- Nikolaou, A.; Nelios, G.; Kanellaki, M.; Kourkoutas, Y. Freeze-dried immobilized kefir culture in cider-making. J. Sci. Food Agric. 2020, 100, 3319–3327. [Google Scholar] [CrossRef] [PubMed]
- Patelski, A.M.; Dziekońska-Kubczak, U.; Ditrych, M. The Fermentation of Orange and Black Currant Juices by the Probiotic Yeast Saccharomyces cerevisiae var. boulardii. Appl. Sci. 2024, 14, 3009. [Google Scholar] [CrossRef]
- Diaz, A.B.; Guerrero, E.D.; Valiente, S.; Castro, R.; Lasanta, C. Development and characterization of probiotic beers with Saccharomyces boulardii as an alternative to conventional brewer’s yeast. Foods 2023, 12, 2912. [Google Scholar] [CrossRef]
- De Paula, B.P.; de Souza Lago, H.; Firmino, L.; Júnior, W.J.F.L.; Corrêa, M.F.D.; Guerra, A.F.; Coelho, M.A.Z. Technological features of Saccharomyces cerevisiae var. boulardii for potential probiotic wheat beer development. LWT 2021, 135, 110233. [Google Scholar] [CrossRef]
- Ramírez-Cota, G.Y.; López-Villegas, E.O.; Jiménez-Aparicio, A.R.; Hernández-Sánchez, H. Modeling the Ethanol Tolerance of the Probiotic Yeast Saccharomyces cerevisiae var. boulardii CNCM I-745 for its Possible Use in a Functional Beer. Probiotics Antimicrob. Proteins 2021, 13, 187–194. [Google Scholar] [CrossRef]
- Cerezo, J.M.; Molina, A.T.; Vicent, A.C.; Colomer, L.P.; Martí, M.; Aroca, Á.S. Alcoholic and Non-Alcoholic Rosé Wines Made with Saccharomyces cerevisiae var. boulardii Probiotic Yeast. Arch. Microbiol. 2023, 205, 201. [Google Scholar] [CrossRef]
- Paula, B.P.; Chavéz, D.W.; Lemos Junior, W.J.F.; Guerra, A.F.; Corrêa, M.F.D.; Pereira, K.S.; Coelho, M.A. Growth parameters and survivability of Saccharomyces boulardii for probiotic alcoholic beverages development. Front. Microbiol. 2019, 10, 2092. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough study of reactivity of various compound classes toward the Folin-Ciocalteou reagent. J. Agric. Food Chem. 2010, 58, 8.139–8.144. [Google Scholar] [CrossRef]
- Vega, R.Z.; Soto, J.L.M.; Flores, H.E.M.; Magallón, R.F.; Ruiz, C.V.M.; González, J.V.; Ortega, T.J.A. Effect of incorporating prebiotics in coating materials for the microencapsulation of Sacharomyces boulardii. Int. J. Food Sci. Nutr. 2012, 63, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Shi, X.; Li, F.; Yan, X.; Li, B.; Luo, Y.; Jiang, G.; Liu, X.; Wang, L. Fermentation of mead using Saccharomyces cerevisiae and Lactobacillus paracasei: Strain growth, aroma components and antioxidant capacity. Food Biosci. 2023, 52, 102402. [Google Scholar] [CrossRef]
- Silva, T.F.; Glória, R.A.; Americo, M.F.; Freitas, A.S.; Jesus, L.C.L.; Barroso, F.A.L.; Laguna, J.G.; Rocha, N.D.C.; Loir, Y.L.; Jan, G.; et al. Unlocking the Potential of Probiotics: A comprehensive review on research, production and regulation of probiotics. Probiotics Antimicrob. Proteins 2024. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.J.; Liu, J.; Wen, X.P.; Zhang, G.; Cai, J.; Qiao, Z.; An, Z.; Zheng, J.; Li, L. Unique Probiotic Properties and Bioactive Metabolites of Saccharomyces boulardii. Probiotics Antimicrob. Proteins 2022, 15, 967–982. [Google Scholar] [CrossRef] [PubMed]
- Akalin, H.; Bayram, M.; Anli, R.E. Determination of some individual phenolic compounds and antioxidant capacity of mead produced from different types of honey. J. Inst. Brew. 2017, 123, 167–174. [Google Scholar] [CrossRef]
- Pereira, K.N. Production of Cupuassu (Theobroma grandiflorum) Melomel with Probiotic Yeast. Master’s Thesis, University of São Paulo, Faculty of Animal Science and Food Engineering, Pirassununga, São Paulo, SP, Brazil, 2024; p. 70. Available online: https://www.teses.usp.br/teses/disponiveis/74/74132/tde-26072024-085931/en.php (accessed on 5 October 2024).
- European Commission. National Low-Risk Drinking Recommendations (or Drinking Guidelines) and Standard Units Knowledge for Policy. 2024. Available online: https://knowledge4policy.ec.europa.eu/health-promotion-knowledge-gateway/national-low-risk-drinking-recommendations-drinking-guidelines_en (accessed on 27 October 2024).
- Alcohol—PAHO/WHO Pan American Health Organization. 2024. Available online: https://www.paho.org/en/topics/alcohol (accessed on 27 October 2024).
- Mulero-Cerezo, J.; Briz-Redón, Á.; Serrano-Aroca, Á. Saccharomyces cerevisiae var. boulardii: Valuable probiotic starter for craft beer production. Appl. Sci. 2019, 9, 3250. [Google Scholar] [CrossRef]
Assay | Initial Soluble Solids (°Brix) | Concentration of Pulp in the Cupuaçu Must (%) | Yeast (g/L) |
---|---|---|---|
1 | −1 (20) | −1 (5) | 1 |
2 | +1 (30) | −1 (5) | 1 |
3 | −1 (20) | +1 (15) | 1 |
4 | +1 (30) | +1 (15) | 1 |
5 CP | 0 (25) | 0 (10) | 1 |
6 CP | 0 (25) | 0 (10) | 1 |
7 CP | 0 (25) | 0 (10) | 1 |
Fermentation Time (Days) | Assay | Soluble Solids (°Brix) | Cupuaçu Pulp (%) | Soluble Solids f (°Brix) | pH f | Total Acidity f (mEq/L) | Alcohol Content f (%) | Viable Cell Count f (log CFU/mL) |
---|---|---|---|---|---|---|---|---|
10 | 1 | −1 (20.0) | −1 (5.0) | 9.7 | 3.3 | 51.0 | 6.4 | 8.0 |
2 | +1 (30.0) | −1 (5.0) | 17.6 | 3.4 | 58.5 | 7.6 | 7.8 | |
3 | −1 (20.0) | +1 (15.0) | 9.0 | 3.2 | 57.5 | 7.8 | 8.1 | |
4 | +1 (30.0) | +1 (15.0) | 16.8 | 3.4 | 64.0 | 9.0 | 8.2 | |
5 CP | 0 (25.0) | 0 (10.0) | 13.8 | 3.3 | 54.5 | 7.1 | 6.5 | |
6 CP | 0 (25.0) | 0 (10.0) | 13.3 | 3.3 | 53.0 | 6.8 | 7.9 | |
7 CP | 0 (25.0) | 0 (10.0) | 13.1 | 3.4 | 52.5 | 8.0 | 7.5 | |
30 | 1 | −1 (20.0) | −1 (5.0) | 6.8 | 3.2 | 64.5 | 9.0 | 6.7 |
2 | +1 (30.0) | −1 (5.0) | 11.6 | 3.4 | 71.5 | 13.0 | 3.4 | |
3 | −1 (20.0) | +1 (15.0) | 6.9 | 3.3 | 63.0 | 9.6 | 5.5 | |
4 | +1 (30.0) | +1 (15.0) | 11.0 | 3.4 | 73.0 | 13.8 | 3.3 | |
5 CP | 0 (25.0) | 0 (10.0) | 8.5 | 3.3 | 69.5 | 11.3 | 6.6 | |
6 CP | 0 (25.0) | 0 (10.0) | 8.1 | 3.2 | 69.5 | 9.4 | 6.4 | |
7 CP | 0 (25.0) | 0 (10.0) | 8.4 | 3.4 | 64.5 | 11.3 | 6.9 |
Responses | Source of Variation | Sum of Squares | Degrees of Freedom | Mean Square | Fcalculated | Ftabulated | p-Value | R2 |
---|---|---|---|---|---|---|---|---|
Soluble solids final (°Brix) | Regression | 62.18 | p − 1 = 3−1 | 31.09 | 444.14 | 18 | 0.09 | 0.99 |
Residual | 0.29 | n − p = 7 − 3 | 0.07 | |||||
Total | 62.47 | n − 1 = 7 − 1 |
Treatament | Soluble Solids (°Brix) | pH | Total Acidity (mEq/L) | Acohol Content (%) | Viable Cell Count (log CFU/mL) |
---|---|---|---|---|---|
Melomel + Sb | 12.42 a ± 0.12 | 3.43 a ± 0.02 | 54.8 a ± 2.04 | 8.22 a ± 0.79 | 7.99 a ± 0.24 |
Melomel + Sc | 12.13 b ± 0.20 | 3.46 b ± 0.01 | 56.3 a ± 1.36 | 8.00 a ± 0.57 | 8.36 b ± 0.10 |
0 Days of Fermentation | 10 Days of Fermentation | |||
---|---|---|---|---|
Melomel + Sb | Melomel + Sc | Melomel + Sb | Melomel + Sc | |
Total phenolics (mg GAE/100 mL) | 14.79 a ± 0.56 | 14.35 a ± 0.62 | 14.01 a ± 0.35 | 14.30 a ± 0.48 |
ABTS (µmol TE/100 mL) | 46.92 a ± 1.77 | 45.26 a ± 3.40 | 47.81 a ± 2.46 | 51.81 b ± 3.51 |
FRAP (µmol TE/100 mL) | 2.83 a ± 0.16 | 2.39 a ± 0.07 | 3.23 a ± 0.44 | 2.74 b ± 0.12 |
30 Days of Storage | ||
---|---|---|
Melomel + Sb | Melomel + Sc | |
Total phenolics (mg GAE/100 mL) | 16.79 a ± 2.51 | 12.66 b ± 167 |
ABTS (µmol TE/100 mL) | 43.59 a ± 2.24 | 42.59 a ± 2.73 |
FRAP (µmol TE/100 mL) | 2.98 a ± 0.30 | 2.87 a ± 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento Pereira, K.; de Souza, H.F.; de Oliveira, A.C.D.; Deziderio, M.A.; Di Próspero Gonçalves, V.D.; de Carvalho, M.V.; Kamimura, E.S. Production of “Melomel” from Cupuaçu (Theobroma grandiflorum) Using the Probiotic Yeast Saccharomyces cerevisiae var. boulardii. Fermentation 2025, 11, 253. https://doi.org/10.3390/fermentation11050253
Nascimento Pereira K, de Souza HF, de Oliveira ACD, Deziderio MA, Di Próspero Gonçalves VD, de Carvalho MV, Kamimura ES. Production of “Melomel” from Cupuaçu (Theobroma grandiflorum) Using the Probiotic Yeast Saccharomyces cerevisiae var. boulardii. Fermentation. 2025; 11(5):253. https://doi.org/10.3390/fermentation11050253
Chicago/Turabian StyleNascimento Pereira, Karina, Handray Fernandes de Souza, Amanda Cristina Dias de Oliveira, Marcela Aparecida Deziderio, Victor Dédalo Di Próspero Gonçalves, Marina Vieira de Carvalho, and Eliana Setsuko Kamimura. 2025. "Production of “Melomel” from Cupuaçu (Theobroma grandiflorum) Using the Probiotic Yeast Saccharomyces cerevisiae var. boulardii" Fermentation 11, no. 5: 253. https://doi.org/10.3390/fermentation11050253
APA StyleNascimento Pereira, K., de Souza, H. F., de Oliveira, A. C. D., Deziderio, M. A., Di Próspero Gonçalves, V. D., de Carvalho, M. V., & Kamimura, E. S. (2025). Production of “Melomel” from Cupuaçu (Theobroma grandiflorum) Using the Probiotic Yeast Saccharomyces cerevisiae var. boulardii. Fermentation, 11(5), 253. https://doi.org/10.3390/fermentation11050253