Comprehensive Analysis and Production of Powdered Starter Using Saccharomyces cerevisiae YM45
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains and Culture Conditions
2.2. Alcohol Production
2.3. Determination of Fruit-Flavored Yeast
2.4. Optimal Culture Conditions
2.5. Excipients
2.6. Manufacturing of Powdered Starter
2.7. Quality Characteristics of Powdered Starter
2.8. Statistical Analysis
3. Results
3.1. Selection of Fruit-Flavored Yeast
3.2. Determination of Optimal Culture Conditions
3.2.1. Culture Temperature
3.2.2. Nitrogen and Carbon Source Availability in Medium
3.3. Quality Characteristics of Powdered Starter by Excipient
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, S.Y.; Gil, N.Y.; Mun, J.Y.; Song, G.C.; Yeo, S.H. Research for utilization and industrialization of Korean starter. Food Ind. Nutr. 2018, 23, 14–19. [Google Scholar]
- Baek, C.H.; Bae, S.Y.; Mun, J.Y.; Choi, H.S.; Kang, J.E.; Jung, S.T.; Yeo, S.H. Quality characteristics and preparing of solid starter using fungal strains for Takju. Korean J. Food Preserv. 2016, 23, 797–803. [Google Scholar] [CrossRef]
- So, M.H. Characteristics of Koji molds isolated from Koji-starters for brewing in Korea and Japan. Korean J. Food Nutr. 1993, 6, 1–7. [Google Scholar]
- Casey, G.P.; Ingledew, W.M. Ethanol tolerance in yeasts. Crit. Rev. Microbiol. 1986, 13, 219–280. [Google Scholar] [CrossRef]
- Jolly, N.P.; Augustyn, O.P.H.; Pretorius, I.S. The role and use of non-Saccharomyces yeast in wine production. S. Afr. J. Enol. Vitic. 2006, 27, 15–39. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, T.S.; Noh, B.S. Volatile flavor components in the mashes of Takju prepared using different yeasts. Korean J. Food Sci. Technol. 2007, 39, 593–599. [Google Scholar]
- Kim, Z.U. Food Processing; Moonwoondang: Seoul, Republic of Korea, 1985; p. 5. [Google Scholar]
- Kim, C.J.; Kim, K.C.; Kim, D.Y.; Oh, M.J.; Lee, S.K.; Lee, S.O.; Chung, S.T.; Jung, J.H. Fermentation Technology; Sunjinmunwhasa: Seoul, Republic of Korea, 1990; pp. 79–103. [Google Scholar]
- Lee, H.S.; Park, C.S.; Choi, J.Y. Quality characteristics of the mashes of Takju prepared using different yeasts. Korean J. Food Sci. Technol. 2010, 42, 56–62. [Google Scholar]
- Seo, D.J.; Yeo, S.H.; Mun, J.Y.; Baek, S.Y. Effects of low temperature-adapted Saccharomyces cerevisiae Y297 strain and fermentation temperature on the quality characteristics of Yakju. Korean J. Food Preserv. 2016, 23, 666–672. [Google Scholar] [CrossRef]
- Shin, K.R.; Kim, B.C.; Yang, J.Y.; Kim, Y.D. Characterization of Yakju prepared with yeasts from fruits. J. Korean Soc. Food Sci. Nutr. 1999, 28, 794–800. [Google Scholar]
- Armin, S.; Matthias, F.; Rainer, J.; Doris, R.; Philippe, D. Characterizing aromatic typicality of Riesling wines: Merging volatile compositional and sensory aspects. Food Res. Int. 2015, 69, 26–37. [Google Scholar]
- Marcos, E.H.; Oliver, B.; Marcus, F. Aroma component analysis by HS-SPME/GC-MS to characterize Lager, Ale, and sour beer styles. Food Res. Int. 2024, 194, 114763. [Google Scholar]
- Atsuko, I.; Hrroshi, U.; Ryoko, K.; Hiroshi, I. Changes in the aroma compounds of sake during aging. J. Agric. Food Chem. 2005, 53, 4118–4123. [Google Scholar]
- Pires, E.J.; Teixeira, J.A.; Branyik, T.; Vicente, A.A. Yeast: The soul of beer’s aroma-a review of flavor-active esters and higher alcohols produced by brewing yeast. Appl. Microbiol. Biotechnol. 2014, 98, 1937–1949. [Google Scholar] [CrossRef] [PubMed]
- Lim, B.R.; Kim, D.H.; Kang, J.E.; Han, G.J.; Jeong, S.T.; Kim, C.W. Effects of enzyme treatment and skin contact time on the characteristics of Dae-hong peach wine. J. Korean Soc. Food Cult. 2023, 38, 442–455. [Google Scholar]
- Kang, J.E.; Kim, Y.M.; Lee, J.E.; Im, B.R.; Choi, J.H.; Han, G.J.; Jeong, H.N. Quality characteristics of distilled soju using Dae-hong peaches. Korea J. Food Preserv. 2023, 30, 683–690. [Google Scholar] [CrossRef]
- Berny, J.F.; Hennebert, G.L. Viability and stability of yeast cells and filamentous fungus spores during freeze drying: Effects of protectants and cooling rates. Mycologia 1991, 83, 805–815. [Google Scholar] [CrossRef]
- Abadias, M.; Benabarre, A.; Teixido, N.; Usall, J.; Vinas, I. Effect of freeze drying and protectants on viability of the biocontrol yeast Candida sake. Int. J. Food Microbiol. 2001, 65, 173–182. [Google Scholar] [CrossRef]
- Susanna, R.; Pirjo, R. Protecting probiotic bacteria by microencapsulation: Challenges for industrial applications. Eur. Food Res. Technol. 2010, 231, 1–12. [Google Scholar]
- Sofia, C.A.; Silva, J.; Ho, P.; Teixeira, P.; Xavier, M.F.; Gibbs, P. Survival of freeze-dried Lactobacillus plantarum and Lactobacillus rhamnosus during storage in the presence of protectants. Biotechnol. Lett. 2002, 24, 1587–1591. [Google Scholar]
- Park, S.K.; Jin, H.; Lee, C.M.; Baik, S.H. Effect of protectants and fermentative properties of Saccharomyces cerevisiae JBCC-95 isolated from Makgeolli after freeze drying. J. Korean Soc. Food Sci. Nutr. 2023, 52, 516–521. [Google Scholar] [CrossRef]
- Oh, H.W.; Lee, S.H. A study on the manufacture and quality characteristics of freeze-dried honey powders by forming agents. J. Apic. 2022, 37, 217–227. [Google Scholar]
- Chae, M.K.; Choi, J.S.; Moon, H.B.; Park, J.B.; Choi, K.T.; Yeo, S.H.; Park, H.D. Development of air-blast dried yeast starter for ‘Yakju’ and monitoring on its fermentation characteristics. Korean J. Food Preserv. 2021, 28, 810–819. [Google Scholar] [CrossRef]
- Lee, S.J.; Kang, H.B.; Kim, S.H.; Jeong, W.S.; Kim, S.Y.; Yeo, S.H. Solid fungi starters using Aspergillus spp. under different manufacturing conditions. Fermentation 2023, 9, 487. [Google Scholar] [CrossRef]
- Lee, M.J.; Lee, Y.B.; Yang, J.Y.; Kwon, H.S.; Yoon, J.R. Isolation and identification of volatile compounds extracted from twigs of Pinus densiflora with Likens-Nickerson apparatus. J. Korean Soc. Food Sci. Nutr. 1998, 27, 568–573. [Google Scholar]
- Boo, C.G.; Hong, S.J.; Shin, E.C. Comparative evaluation of the volatile profiles and taste properties of commercial coffee products using electronic nose, electronic tongue, and GC/MSD. J. Korean Soc. Food Sci. Nutr. 2021, 50, 810–822. [Google Scholar] [CrossRef]
- Dai, Z.; Gu, H.; Zhang, S.; Xin, F.; Zhang, W.; Dong, W.; Ma, J.; Kia, H.; Jiang, M. Metabolic construction strategies for direct methanol uilization in Saccharomyces cerevisiae. Bioresour. Technol. 2017, 245, 1407–1412. [Google Scholar] [CrossRef]
- Seo, D.J.; Yeo, S.H.; Mun, J.Y.; Jung, W.J.; Cho, Y.S.; Baek, S.Y. Characteristics of yeasts with low temperature adaptation for yakju brewed. Korean J. Food Preserv. 2015, 22, 908–914. [Google Scholar] [CrossRef]
- Shin, H.J.; Byun, O.H.; Kim, Y.J.; Bang, B.Y.; Park, J.M.; Jeong, Y.S.; Bai, D.H. Study of tannin reducing effect of Aronia by yeast isolated from Jeotgal. Korean J. Mycol. 2015, 43, 247–252. [Google Scholar]
- Kim, G.J.; Chung, H.C.; Kwon, O.H. Characteristics of culture and isolating lactic acid bacteria and yeast from Sourdough. J. Korean Soc. Food Sci. Nutr. 2004, 33, 1180–1185. [Google Scholar]
- Kim, Y.H.; Kang, S.W.; Lee, J.H.; Chang, H.I.; Yun, C.W.; Paik, H.D.; Kang, C.W.; Kim, S.W. Optimization of medium components for cell mass production of Saccharomyces cerevisiae JUL3 using response surface methodology. Korean J. Biotechnol. Bioeng. 2006, 21, 479–483. [Google Scholar]
- Kang, H.R.; Lee, A.R.; Kwon, Y.H.; Kim, J.H.; Kim, H.R.; Ahn, B.H. Optimization of culture conditions for the yeast and analysis of qualities of Makgeolli brewed with the yeast isolated from Korean traditional Nuruk. Korean J. Mycol. 2012, 40, 204–209. [Google Scholar] [CrossRef]
- Morgan, C.A.; Herman, N.; White, P.A.; Vesey, G. Preservation of micro-organisms by drying; A review. J. Microbiol. Methods 2006, 66, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Chalat, S.; Ulrich, K.; Petra, F. Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnol. Prog. 2007, 23, 302–315. [Google Scholar]
- Solberg, M.; Buckalew, J.J.; Chen, C.C.; Schaffner, D.W.; O’Neil, K.; Mcdowell, J.J.; Post, L.S.; Boderck, M. Microbiological safety assurance system of foodservice facilities. Food Technol. 1990, 44, 68–73. [Google Scholar]
- Jeon, E.B.; Kim, J.Y.; Choi, M.S.; Choi, S.H.; Bang, H.J.; Park, S.Y. Microbial contamination levels in the raw materials of home meal replacement Shabu-Shabu meal kit distributed in markets. J. Food Hyg. Saf. 2020, 35, 375–381. [Google Scholar] [CrossRef]
- Fry, R.M.; Greaves, R.I.N. The survival of bacteria during and after drying. Epidemiol. Infect. 1951, 49, 220–246. [Google Scholar] [CrossRef]
- Lee, S.B.; Kim, D.H.; Park, H.D. Effects of protectant and rehydration conditions on the survival rate and malolactic fermentation efficiency of freeze-dried Lactobacillus plantarum JH287. Appl. Microbiol. Biotechnol. 2016, 100, 7853–7862. [Google Scholar] [CrossRef]
- Lee, S.B.; Choi, W.S.; Jo, H.J.; Yeo, S.H.; Park, H.D. Optimization of air-blast drying process for manufacturing Saccharomyces cerevisiae and non-Saccharomyces cerevisiae yeast as industrial wine starters. AMB Express 2016, 6, 105. [Google Scholar] [CrossRef]
- Roshanak, S.; Rosita, S. Investigation of the best Saccharomyces cerevisiae growth condition. Electron. Physician 2017, 9, 3592–3597. [Google Scholar]
- Lajos, S.; Jozsef, S. Cyclodextrins as food ingredients. Trends Food Sci. Technol. 2004, 15, 137–142. [Google Scholar]
- Zhang, Z.; Niu, J.; Wang, J.; Zheng, Q.; Maio, W.; Lin, Q.; Li, X.; Jin, Z.; Qiu, C.; Sang, S.; et al. Advances in the preparation and application of cyclodextrin derivatives in food and the related fileds. Food Res. Int. 2024, 195, 114952. [Google Scholar] [CrossRef] [PubMed]
Strain | Origin 1 | Ethanol Production (%) |
---|---|---|
Saccharomyces cerevisiae YM1 | Makgeolli | 10.79 ± 0.01 2 |
Saccharomyces cerevisiae YM3 | Makgeolli | 10.90 ± 0.02 |
Saccharomyces cerevisiae YM4 | Makgeolli | 11.11 ± 0.01 |
Saccharomyces cerevisiae YM10 | Makgeolli | 11.25 ± 0.05 |
Saccharomyces cerevisiae YM12 | Makgeolli | 9.86 ± 0.01 |
Saccharomyces cerevisiae YM17 | Makgeolli | 10.90 ± 0.03 |
Saccharomyces cerevisiae YM26 | Makgeolli | 11.38 ± 0.06 |
Saccharomyces cerevisiae YM31 | Makgeolli | 10.92 ± 0.02 |
Saccharomyces cerevisiae YM33 | Makgeolli | 10.89 ± 0.01 |
Saccharomyces cerevisiae YM34 | Makgeolli | 11.35 ± 0.02 |
Saccharomyces cerevisiae YM36 | Makgeolli | 11.20 ± 0.02 |
Saccharomyces cerevisiae YM38 | Makgeolli | 11.99 ± 0.00 |
Saccharomyces cerevisiae YM40 | Makgeolli | 9.89 ± 0.02 |
Saccharomyces cerevisiae YM43 | Makgeolli | 11.49 ± 0.02 |
Saccharomyces cerevisiae YM44 | Makgeolli | 11.84 ± 0.03 |
Saccharomyces cerevisiae YM45 | Makgeolli | 10.84 ± 0.04 |
Saccharomyces cerevisiae YM47 | Makgeolli | 11.69 ± 0.03 |
Saccharomyces cerevisiae YM48 | Makgeolli | 10.87 ± 0.01 |
Saccharomyces cerevisiae YM50 | Makgeolli | 10.85 ± 0.01 |
Saccharomyces cerevisiae YM51 | Makgeolli | 11.22 ± 0.07 |
Saccharomyces cerevisiae YM54 | Makgeolli | 10.46 ± 0.06 |
Saccharomyces cerevisiae YM58 | Makgeolli | 9.39 ± 0.02 |
Wickerhamomyces anomalus CP-2 | Nuruk | 11.54 ± 0.04 |
Debaryomyces hansenii D5-P5 | Doenjang | 11.14 ± 0.02 |
Wicherhamomyces anomalus NR-06 | Nuruk | 10.45 ± 0.01 |
Saccharomyces cerevisiae NR-09 | Nuruk | 9.87 ± 0.02 |
Source of Medium | Composition |
---|---|
Nitrogen | Sodium nitrate, ammonium sulfate, ammonium chloride, tryptone, potassium nitrate |
Carbon | Glucose, galactose, lactose, mannose, mannitol, sucrose, fructose, maltose, soluble starch, sorbitol |
Compound | Relevance Index 1 | Sensory Descriptors | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
YM4 | YM33 | YM34 | YM38 | YM40 | YM45 | YM50 | YM54 | YM58 | CP-2 | D5-P5 | NR-06 | NR-09 | ||
Trimethylamine | 59.9 ± 16.5 abc | 70.6 ± 0.9 abc | 65.5 ± 1.0 abc | 71.9 ± 4.3 abc | 74.7 ± 7.2 bc | 76.6 ± 1.5 c | 53.4 ± 14.8 a | 65.5 ± 9.5 abc | 57.4 ± 4.9 ab | 61.1 ± 8.5 abc | 57.8 ± 8.9 ab | 59.9 ± 9.6 abc | 59.7 ± 16.6 abc | Amine; Ammoniacal; Fruity; Oily; Pungent; Rancid; Sweaty |
Methyl formate | 37.9 ± 11.3 a | 69.4 ± 0.6 cde | 64.0 ± 1.0 bcde | 70.7 ± 4.1 cde | 73.5 ± 7.4 de | 75.1 ± 1.2 e | 54.2 ± 11.1 b | 62.5 ± 6.9 bcde | 58.4 ± 6.4 bc | 59.8 ± 8.2 bcd | 70.3 ± 5.5 cde | 72.0 ± 3.9 cde | 66.6 ± 10.9 bc | Aldehydic; Etheral; Fresh; Fruity; Pleasant; Pungent |
Methanethiol | 36.3 ± 10.2 a | 69.2 ± 0.7 cde | 64.0 ± 0.9 bcde | 70.4 ± 4.1 cde | 73.2 ± 7.2 de | 74.8 ± 1.3 e | 53.9 ± 11.8 b | 63.1 ± 8.0 bcde | 57.7 ± 5.8 bc | 59.7 ± 8.2 bcd | 61.6 ± 2.8 bcde | 70.8 ± 7.5 cde | 65.5 ± 11.3 ed | Cabbage; Cheese; Fishy; Garlic; Meaty; Rotten; Sulfurous |
Methanol | 36.9 ± 10.7 bc | 36.7 ± 5.9 ab | 38.7 ± 6.7 ab | 34.7 ± 5.2 ab | 35.61 ± 7.1 ab | 31.3 ± 2.1 a | 77.6 ± 9.8 de | 74.2 ± 7.2 d | 68.5 ± 0.4 d | 92.5 ± 3.4 e | 66.6 ± 15.2 cd | 71.6 ± 20.8 d | 52.0 ± 6.1 bc | Agreeable; Fruity; Plum |
Acetaldehyde | 39.7 ± 9.4 ab | 36.5 ± 5.8 ab | 38.6 ± 6.7 ab | 34.3 ± 5.2 ab | 35.5 ± 7.1 ab | 31.2 ± 2.0 a | 66.1 ± 22.6 cd | 73.1 ± 6.7 d | 67.6 ± 1.3 cd | 92.2 ± 3.4 e | 66. ± 15.1 cd | 82.0 ± 5.6 de | 51.9 ± 6.2 bc | Alcoholic; Ethanol; Pungent; Strong; Sweet; Weak |
Ethyl chloride | 35.8 ± 2.5 bc | 36.3 ± 5.2 bc | 42.5 ± 15.6 cd | 32.7 ± 8.0 b | 78.8 ± 15.5 ef | 35.3 ± 4.0 bc | 91.7 ± 0.6 f | 7.7 ± 1.4 a | 41.5 ± 17.2 bc | 58.4 ± 18.1 cde | 9.5 ± 4.4 a | 39.6 ± 18.5 cd | 61.7 ± 20.4 de | Alcoholic; Ethanol; Pungent; Strong; Sweet; Weak |
Ethanol | 34.7 ± 2.4 b | 35.1 ± 5.0 b | 41.1 ± 15.1 bc | 31.7 ± 7.7 b | 78.0 ± 15.4 de | 34.1 ± 3.9 | 90.9 ± 0.7 e | 7.4 ± 1.4 a | 41.5 ± 16.4 bc | 57.9 ± 17.7 cd | 9.7 ± 4.1 a | 33.8 ± 19.3 b | 61.1 ± 20.2 cd | Almond; Cherry; choking |
Propenal | 34.6 ± 2.4 b | 35.0 ± 5.0 b | 41.0 ± 15.1 b | 31.6 ± 7.7 b | 75.5 ± 14.9 cd | 34.0 ± 3.9 b | 87.6 ± 0.3 d | 7.4 ± 1.4 a | 40.1 ± 15.8 b | 55.9 ± 17.3 bc | 9.3 ± 4.0 a | 33.2 ± 18.3 b | 55.5 ± 25.9 bc | Acetaldehyde; Cocoa; Earthy; Etheral; Nutty; Plastic |
Propanal | 34.8 ± 2.8 b | 35.3 ± 5.1 b | 41.7 ± 16.7 b | 31.2 ± 7.6 b | 75.3 ± 14.7 cd | 33.6 ± 3.8 b | 87.4 ± 0.3 d | 7.4 ± 1.4 a | 39.7 ± 15.4 b | 55.8 ± 17.3 bc | 9.3 ± 4.0 a | 33.1 ± 18.3 b | 55.3 ± 25.9 bc | Etheral; Pungent |
2-Methylbutane | 88.9 ± 2.1 e | 84.2 ± 5.6 e | 76.4 ± 5.4 de | 87.4 ± 0.9 e | 80.4 ± 6.6 e | 82.9 ± 4.9 e | 81.7 ± 0.4 e | 57.0 ± 8.9 bcd | 9.3 ± 0.4 a | 74.9 ± 9.7 de | 45.1 ± 27.4 b | 52.1 ± 24.2 bc | 69.1 ± 8.5 cde | Gasoline; Pleasant |
Diethyl ether | 18.6 ± 0.7 cde | 23.2 ± 2.4 def | 28.1 ± 3.5 f | 24.2 ± 3.0 ef | 30.6 ± 7.0 f | 14.9 ± 1.3 abc | 8.4 ± 1.9 ab | 9.0 ± 0.5 ab | 8.0 ± 0.8 a | 7.9 ± 1.4 a | 16.0 ± 11.0 cd | 16.3 ± 5.5 bcd | 8.7 ± 1.9 ab | Etheral |
Propan-2-one | 92.6 ± 1.1 e | 83.9 ± 0.4 b | 91.7 ± 0.4 de | 90.5 ± 0.4 cde | 88.7 ± 3.7 c | 81.5 ± 1.8 a | 92.9 ± 0.3 e | 90.3 ± 0.5 cde | 89.2 ± 1.8 cd | 91.9 ± 0.7 de | 91.5 ± 0.8 de | 91.7 ± 0.8 de | 91.6 ± 0.5 de | Apple; Fruity; Glue; Pear; Solvent; Sweet; Violet |
Methyl acetate | 30.3 ± 4.0 a | 25.2 ± 1.3 a | 24.2 ± 1.1 a | 28.9 ± 2.1 a | 37.3 ± 5.6 a | 30.7 ± 1.7 a | 88.6 ± 0.6 d | 54.9 ± 0.9 b | 75.1 ± 6.7 cd | 81.9 ± 6.9 cd | 72.6 ± 21.1 c | 78.0 ± 10.6 cd | 68.2 ± 15.2 bc | Blackcurrant; Fragrant; Fruity; Fruity(weet); Pleasant; Sweet |
Dimethyl sulfide | 23.8 ± 1.2 a | 26.2 ± 3.2 a | 23.2 ± 0.7 a | 27.2 ± 1.0 a | 35.0 ± 3.5 a | 27.0 ± 2.2 a | 85.9 ± 0.4 c | 53.9 ± 1.4 b | 73.9 ± 6.9 c | 72.2 ± 17.3 c | 70.5 ± 20.5 bc | 75.7 ± 10.0 c | 54.0 ± 16.3 b | Cabbage; Corn; Fruity; Moldy; Onion; Sweet; Tomato |
Pentane | 1.3 ± 0.2 ab | 1.7 ± 0.9 abc | 1.3 ± 0.1 abc | 1.6 ± 0.6 abc | 2.2 ± 0.8 abc | 1.2 ± 0.2 a | 2.1 ± 0.1 abc | 1.5 ± 0.3 abc | 1.8 ± 0.5 abc | 3.3 ± 1.2 d | 2.4 ± 0.9 bcd | 2.5 ± 0.3 cd | 2.0 ± 0.4 abc | Alkane; Gasoline |
Strain | Excipient | Moisture Content (%) | Bacterial Contamination (log CFU/g) | Viability (log CFU/g) | |||
---|---|---|---|---|---|---|---|
Distilled Water | PBS Buffer | 0.85% NaCl | Peptone Water | ||||
YM45 | Skim milk | 4.15 ± 0.12 1 | 2.48 ± 0.00 | 8.02 ± 0.65 | 8.14 ± 0.90 | 8.07 ± 0.51 | 8.01 ± 0.24 |
Maltodextrin | 4.40 ± 0.10 | 2.48 ± 0.00 | 8.41 ± 0.40 | 8.48 ± 0.71 | 8.33 ± 0.81 | 8.35 ± 0.83 | |
Cyclodextrin | 4.70 ± 0.10 | 2.30 ± 0.24 | 8.68 ± 0.51 | 8.74 ± 0.90 | 8.63 ± 0.78 | 8.61 ± 0.70 | |
Lactomeal | 4.16 ± 0.07 | 2.57 ± 0.18 | 7.96 ± 0.81 | 8.09 ± 0.72 | 8.05 ± 0.79 | 7.99 ± 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.J.; Kim, J.-Y.; Kim, S.-Y.; Yeo, S.-H.; Kim, C.-W. Comprehensive Analysis and Production of Powdered Starter Using Saccharomyces cerevisiae YM45. Fermentation 2025, 11, 203. https://doi.org/10.3390/fermentation11040203
Lee SJ, Kim J-Y, Kim S-Y, Yeo S-H, Kim C-W. Comprehensive Analysis and Production of Powdered Starter Using Saccharomyces cerevisiae YM45. Fermentation. 2025; 11(4):203. https://doi.org/10.3390/fermentation11040203
Chicago/Turabian StyleLee, Su Jeong, Joo-Yeon Kim, So-Young Kim, Soo-Hwan Yeo, and Chan-Woo Kim. 2025. "Comprehensive Analysis and Production of Powdered Starter Using Saccharomyces cerevisiae YM45" Fermentation 11, no. 4: 203. https://doi.org/10.3390/fermentation11040203
APA StyleLee, S. J., Kim, J.-Y., Kim, S.-Y., Yeo, S.-H., & Kim, C.-W. (2025). Comprehensive Analysis and Production of Powdered Starter Using Saccharomyces cerevisiae YM45. Fermentation, 11(4), 203. https://doi.org/10.3390/fermentation11040203