Biofermentation of Wheat Bran by Monascus anka and Production of High Value-Added Dietary Fiber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Expansion Culture of M. anka
2.3. Preparation of Wheat Bran Dietary Fiber and M. anka Wheat Bran Dietary Fiber
2.4. Scanning Electron Microscopy (SEM)
2.5. X-Ray Crystallography
2.6. Fourier Transform Infrared Spectrum (FT-IR)
2.7. Thermal Properties
2.8. Composition and Functional Properties of WDF and MWDF
2.9. Quantification of Pigments in MSB and MWFB
2.10. HPLC-MS of Monascus Pigments in MWFB
2.11. Statistical Analysis
3. Results and Discussion
3.1. Microstructure
3.2. X-Ray Diffraction Analysis
3.3. FT-IR Analysis
3.4. Thermal Properties
3.5. Changes in Composition and Functional Properties of Wheat Bran Dietary Fiber
3.6. Pigment Content in MSB and MWFB
3.7. HPLC-MS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Mocanu, V.; Madsen, K.L. Dietary fibre and metabolic health: A clinical primer. Clin. Transl. Med. 2024, 14, e70018. [Google Scholar] [CrossRef] [PubMed]
- Pathania, S.; Kaur, N. Utilization of fruits and vegetable by-products for isolation of dietary fibres and its potential application as functional ingredients. Bioact. Carbohydr. Diet. Fibre 2022, 27, 100295. [Google Scholar] [CrossRef]
- Wu, L.; Tang, C.; Chen, L.; Zhao, J. Modified dietary fiber from soybean dregs by fermentation alleviated constipation in mice. Food Chem. X 2023, 19, 100810. [Google Scholar] [CrossRef]
- Delcour, J.A.; Aman, P.; Courtin, C.M.; Hamaker, B.R.; Verbeke, K. Prebiotics, Fermentable Dietary Fiber, and Health Claims. Adv. Nutr. 2016, 7, 1–4. [Google Scholar] [CrossRef]
- Cingöz, A.; Akpinar, Ö.; Sayaslan, A. Effect of addition of wheat bran hydrolysate on bread properties. J. Food Sci. 2024, 89, 2567–2580. [Google Scholar] [CrossRef]
- Ma, S.; Wang, Z.; Liu, H.; Li, L.; Zheng, X.; Tian, X.; Sun, B.; Wang, X. Supplementation of wheat flour products with wheat bran dietary fiber: Purpose, mechanisms, and challenges. Trends Food Sci. Technol. 2022, 123, 281–289. [Google Scholar] [CrossRef]
- Li, X.; Wang, B.; Hu, W.; Chen, H.; Sheng, Z.; Yang, B.; Yu, L. Effect of γ-irradiation on structure, physicochemical property and bioactivity of soluble dietary fiber in navel orange peel. Food Chem. X 2022, 14, 100274. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Lei, H.; Zhen, X.; Liu, J.; Xie, W.; Tang, Q.; Gou, D.; Zhao, J. Advancements in modifying insoluble dietary fiber: Exploring the microstructure, physicochemical properties, biological activity, and applications in food industry—A review. Food Chem. 2024, 458, 140154. [Google Scholar] [CrossRef]
- Niu, Y.; Li, N.; Xia, Q.; Hou, Y.; Xu, G. Comparisons of three modifications on structural, rheological and functional properties of soluble dietary fibers from tomato peels. LWT 2018, 88, 56–63. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, R.; Wang, Y.; An, X.; Liu, N.; Song, M.; Yang, Y.; Yin, N.; Qi, J. Characterization and antioxidant activity of wheat bran polysaccharides modified by Saccharomyces cerevisiae and Bacillus subtilis fermentation. J. Cereal Sci. 2021, 97, 103157. [Google Scholar] [CrossRef]
- Marques, N.P.; de Cassia Pereira, J.; Gomes, E.; da Silva, R.; Araújo, A.R.; Ferreira, H.; Rodrigues, A.; Dussán, K.J.; Bocchini, D.A. Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Ind. Crops Prod. 2018, 122, 66–75. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y.; Yan, W.; Wang, P.; Li, J.; Lu, Y. Light stability and mechanism of monascus pigment under different lights. LWT 2024, 191, 115666. [Google Scholar] [CrossRef]
- Zhang, S.; Shu, M.; Gong, Z.; Liu, X.; Zhang, C.; Liang, Y.; Lin, Q.; Zhou, B.; Guo, T.; Liu, J. Enhancing extracellular monascus pigment production in submerged fermentation with engineered microbial consortia. Food Microbiol. 2024, 121, 104499. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xiong, M.; Bai, T.; Chen, D.; Zhang, Q.; Lin, D.; Liu, Y.; Liu, A.; Huang, Z.; Qin, W. Comparative study on the structure, physicochemical, and functional properties of dietary fiber extracts from quinoa and wheat. LWT 2021, 149, 111816. [Google Scholar] [CrossRef]
- Sun, C.; Wu, X.; Chen, X.; Li, X.; Zheng, Z.; Jiang, S. Production and characterization of okara dietary fiber produced by fermentation with Monascus anka. Food Chem. 2020, 316, 126243. [Google Scholar] [CrossRef]
- Guan, Y.; Xie, C.; Zhang, R.; Zhang, Z.; Tian, Z.; Feng, J.; Shen, X.; Li, H.; Chang, S.; Zhao, C.; et al. Characterization and the cholesterol-lowering effect of dietary fiber from fermented black rice (Oryza sativa L.). Food Funct. 2023, 14, 6128–6141. [Google Scholar] [CrossRef]
- Moczkowska, M.; Karp, S.; Niu, Y.; Kurek, M.A. Enzymatic, enzymatic-ultrasonic and alkaline extraction of soluble dietary fibre from flaxseed—A physicochemical approach. Food Hydrocoll. 2019, 90, 105–112. [Google Scholar] [CrossRef]
- Bai, X.; He, Y.; Quan, B.; Xia, T.; Zhang, X.; Wang, Y.; Zheng, Y.; Wang, M. Physicochemical properties, structure, and ameliorative effects of insoluble dietary fiber from tea on slow transit constipation. Food Chem. X 2022, 14, 100340. [Google Scholar] [CrossRef]
- Yang, X.; Dong, Y.; Liu, G.; Zhang, C.; Cao, Y.; Wang, C. Effects of nonionic surfactants on pigment excretion and cell morphology in extractive fermentation of Monascus sp. NJ1. J. Sci. Food Agric. 2020, 100, 1832. [Google Scholar] [CrossRef]
- Huang, Z.; Hu, T.; Liu, H.; Xie, H.; Tian, X.; Wu, Z. Biosynthesis and polyketide oxidation of Monascus red pigments in an integrated fermentation system with microparticles and surfactants. Food Chem. 2022, 394, 133545. [Google Scholar] [CrossRef]
- Gong, P.; Shi, R.; Liu, Y.; Luo, Q.; Wang, C.; Chen, W. Recent advances in monascus pigments produced by Monascus purpureus: Biosynthesis, fermentation, function, and application. LWT 2023, 185, 115162. [Google Scholar] [CrossRef]
- Yang, B.; Li, K.; Niu, M.; Wei, J.; Zhao, S.; Jia, C.; Xu, Y. Structural characteristics of wheat bran insoluble dietary fiber with various particle size distributions and their influences on the kinetics of gastrointestinal emptying in mice. Int. J. Biol. Macromol. 2024, 272, 132905. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Yang, L.; Guo, J.; Zhang, X.; Huang, Y.; Fu, Q. Preparation, Structural Characterization, and Hypoglycemic Activity of Dietary Fiber from Sea Buckthorn Pomace. Foods 2024, 13, 3665. [Google Scholar] [CrossRef] [PubMed]
- Xiong, M.; Zheng, S.; Bai, T.; Chen, D.; Qin, W.; Zhang, Q.; Lin, D.; Liu, Y.; Liu, A.; Huang, Z.; et al. The difference among structure, physicochemical and functional properties of dietary fiber extracted from triticale and hull-less barley. LWT 2022, 154, 112771. [Google Scholar] [CrossRef]
- Li, S.; Hu, N.; Zhu, J.; Zheng, M.; Liu, H.; Liu, J. Influence of modification methods on physicochemical and structural properties of soluble dietary fiber from corn bran. Food Chem. X 2022, 14, 100298. [Google Scholar] [CrossRef]
- Tang, C.; Wu, L.; Zhang, F.; Kan, J.; Zheng, J. Comparison of different extraction methods on the physicochemical, structural properties, and in vitro hypoglycemic activity of bamboo shoot dietary fibers. Food Chem. 2022, 386, 132642. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, X.; Gao, Z.; Zhang, M.; Mu, S.; Cheng, Y.; Qu, K. Effects of modification methods on the structural characteristics and functional properties of dietary fiber from cucumber. Food Chem. X 2024, 24, 101808. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Li, Y.; Yu, H.; Wang, Y.; Piao, C. Insoluble dietary fibre from okara (soybean residue) modified by yeast Kluyveromyces marxianus. LWT 2020, 134, 110252. [Google Scholar] [CrossRef]
- Kang, J.; Yin, S.; Liu, J.; Li, C.; Wang, N.; Sun, J.; Li, W.; He, J.; Guo, Q.; Cui, S.W. Fermentation models of dietary fibre in vitro and in vivo—A review. Food Hydrocoll. 2022, 131, 107685. [Google Scholar] [CrossRef]
- Jiang, G.; Bai, X.; Wu, Z.; Li, S.; Zhao, C.; Ramachandraiah, K. Modification of ginseng insoluble dietary fiber through alkaline hydrogen peroxide treatment and its impact on structure, physicochemical and functional properties. LWT 2021, 150, 111956. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, W.; Guo, R.; Yu, J.; Wang, Y. Enhancement of yellow pigments production via high CaCl2 stress fermentation of Monascus purpureus. FEMS Microbiol. Lett. 2024, 371, fnae012. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Yu, W.; Li, A.; Wang, Y. Study on production of yellow pigment from potato fermented by Monascus. Food Biosci. 2022, 50, 102088. [Google Scholar] [CrossRef]
- Moradi, S.; Mortazavi, S.A. Evaluation of Monascus purpureus fermentation in dairy sludge-based medium for enhanced production of vibrant red pigment with minimal citrinin content. PLoS ONE 2024, 19, e0315006. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.-R.; He, M.-H.; Sang, Z.-P.; Dong, J.-H.; Ma, Q.-G. Structurally diverse Monascus pigments with hypolipidemic and hepatoprotective activities from highland barley Monascus. Fitoterapia 2022, 156, 105090. [Google Scholar] [CrossRef]
- Zheng, Y.; Xin, Y.; Guo, Y. Study on the fingerprint profile of Monascus products with HPLC–FD, PAD and MS. Food Chem. 2009, 113, 705–711. [Google Scholar] [CrossRef]
- Li, L.; Chen, S.; Gao, M.; Ding, B.; Zhang, J.; Zhou, Y.; Liu, Y.; Yang, H.; Wu, Q.; Chen, F. Acidic conditions induce the accumulation of orange Monascus pigments during liquid-state fermentation of Monascus ruber M7. Appl. Microbiol. Biotechnol. 2019, 103, 8393–8402. [Google Scholar] [CrossRef]
- Martinkova, L. Biological activities of oligoketide pigments of Monascus purpureus. Food Addit. Contam. 1999, 16, 15–24. [Google Scholar] [CrossRef]
- Tan, H.; Xing, Z.; Chen, G.; Tian, X.; Wu, Z. Evaluating Antitumor and Antioxidant Activities of Yellow Monascus Pigments from Monascus ruber Fermentation. Molecules 2018, 23, 3242. [Google Scholar] [CrossRef]
Samples | IDF (g/100 g) | SDF (g/100 g) | Protein Content (g/100 g) | Fat Content (g/100 g) | Starch Content (g/100 g) | WHC (g/g) | OHC (g/g) | SC (mL/g) |
---|---|---|---|---|---|---|---|---|
WDF | 64.5 ± 1.14 a | 10.7 ± 0.72 b | 6.3 ± 0.49 a | 7.0 ± 0.60 a | 3.8 ± 0.36 b | 3.4 ± 0.32 b | 2.5 ± 0.30 b | 2.1 ± 0.28 b |
MWDF | 55.7 ± 1.05 b | 16.5 ± 0.79 a | 6.1 ± 0.50 b | 3.9 ± 0.34 b | 3.3 ± 0.35 a | 4.3 ± 0.50 a | 3.7 ± 0.41 a | 3.2 ± 0.34 a |
PSD | 2.19 | 1.51 | 0.99 | 0.94 | 0.71 | 0.82 | 0.71 | 0.62 |
Scheme | Absorption Peak (nm) | Color Value (μ/mL) |
---|---|---|
M. anka seed broth (MSB) | 532 | 143.8 |
410 | 142.7 | |
370 | 128.4 | |
M. anka wheat bran fermentation broth (MWFB) | 532 | 154.5 |
370 | 236.6 |
Color | Name | Molecular Formula | Molecular Weight | HPLC-MS [M+H]+ m/z |
---|---|---|---|---|
(Calculated Value) | ||||
red | rubropunctamine | C21H23NO4 | 353 | 354.1699 |
monascorubramine | C23H27NO4 | 381 | 382.2012 | |
orange | rubropunctatin | C21H22O5 | 354 | 355.154 |
monascorubrin | C23H26O5 | 382 | 383.1853 | |
yellow | monascine | C21H26O5 | 358 | 359.1853 |
ankaflavine | C23H30O5 | 386 | 387.2166 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; He, S.; Xu, H.; Zhang, H.; Cai, J.; Zhang, M.; Mu, D.; Li, Z.; Li, X.; Liu, L. Biofermentation of Wheat Bran by Monascus anka and Production of High Value-Added Dietary Fiber. Fermentation 2025, 11, 157. https://doi.org/10.3390/fermentation11030157
Wu X, He S, Xu H, Zhang H, Cai J, Zhang M, Mu D, Li Z, Li X, Liu L. Biofermentation of Wheat Bran by Monascus anka and Production of High Value-Added Dietary Fiber. Fermentation. 2025; 11(3):157. https://doi.org/10.3390/fermentation11030157
Chicago/Turabian StyleWu, Xuefeng, Siqi He, Hongyi Xu, Hui Zhang, Jing Cai, Min Zhang, Dongdong Mu, Zhenhong Li, Xingjiang Li, and Lanhua Liu. 2025. "Biofermentation of Wheat Bran by Monascus anka and Production of High Value-Added Dietary Fiber" Fermentation 11, no. 3: 157. https://doi.org/10.3390/fermentation11030157
APA StyleWu, X., He, S., Xu, H., Zhang, H., Cai, J., Zhang, M., Mu, D., Li, Z., Li, X., & Liu, L. (2025). Biofermentation of Wheat Bran by Monascus anka and Production of High Value-Added Dietary Fiber. Fermentation, 11(3), 157. https://doi.org/10.3390/fermentation11030157