Development of a Semi-Industrial Kefalotyri-Type Cheese Using Thermized Milk from Native Epirus Sheep Breeds and Autochthonous Starter and Adjunct Cultures
Abstract
1. Introduction
2. Materials and Methods
2.1. Native Starter/Adjunct LAB Strain Combinations and Culture Conditions
2.2. Traditional Kefalotyri Cheese Processing with Native Starter and Adjunct Cultures
2.3. Sampling of Traditional Kefalotyri Cheeses During Processing and Ripening
2.4. Microbiological Analyses of the Kefalotyri Cheese Samples
2.5. Measurement of pH and Gross Composition of the Kefalotyri Cheese Samples
2.6. Determination of Sugar and Organic Acid Concentrations
2.7. RP-HPLC Peptide Profiles
2.8. Volatile Compounds by SPME-GCMS
2.9. Statistical Analysis
3. Results
3.1. Physicochemical and Microbiological Characteristics of Sheep Milk After Thermization and After Inoculation with the Native Starter/Adjunct Strain Combinations
3.2. Evolution of the Native Starter/Adjunct LAB Strains, Indigenous NSLAB and Non-LAB During Processing, Fermentation, and Ripening of Kefalotyri Cheese Samples
3.3. pH and Gross Composition of the Kefalotyri Cheeses
3.4. Sugar and Organic Acid Concentrations
3.5. Peptide Profile of Kefalotyri Cheeses
3.6. Volatile Compounds Profile of the Kefalotyri Cheeses After Maturation for 90 Days
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anifantakis, E.M. Greek Cheeses: A Tradition of Centuries; National Dairy Committee of Greece: Athens, Greece, 1991. [Google Scholar]
- Litopoulou-Tzanetaki, E.; Tzanetakis, N. The Microfloras of Traditional Greek cheeses. In Cheese and Microbes; Donnely, C.W., Ed.; ASM Press: Washington, DC, USA, 2014; Chapter 9. [Google Scholar]
- National Publishing Office. Cheeses of protected denomination of origin. In Hellenic Code of Food and Beverages, 3rd ed.; Ministry of Finance, National Publishing Office: Athens, Greece, 2014; article 83D; pp. 14–59. [Google Scholar]
- Danezis, G.P.; Tsiplakou, E.; Pappa, E.C.; Pappas, A.C.; Mavrommatis, A.; Sotirakoglou, K.; Georgiou, C.A.; Zervas, G. Fatty acid profile and physicochemical properties of Greek protected designation of origin cheeses, implications for authentication. Eur. Food Res. Technol. 2020, 246, 1741–1753. [Google Scholar] [CrossRef]
- Hellenic Ministry of Agriculture. List of Greek Food Products of Protected Denomination of Origin (PDO) & Protected Geographical Indication (PGI), According to the EU Regulation No. 510/2006-Cheeses-updated 6 May 2025. Available online: www.minagric.gr/for-farmer-2/2012-02-02-07-52-07/ellinikaproionta/1270-tiria (accessed on 23 May 2025).
- Pappa, E.C.; Kondyli, E. Descriptive characteristics and cheesemaking technology of Greek cheeses not listed in the EU geographical indications registers. Dairy 2023, 4, 43–67. [Google Scholar] [CrossRef]
- Pappa, E.C.; Kondyli, E.; Pappas, A.C.; Giamouri, E.; Sarri, A.; Mavrommatis, A.; Zoidis, E.; Papalamprou, L.; Simitzis, P.; Goliomytis, M.; et al. Compositional differences of Greek cheeses of limited production. Foods 2023, 12, 2426. [Google Scholar] [CrossRef]
- Zerfyridis, G. Technology Milk Products: Cheese, 2nd ed.; Giachoudi-Giapouli: Thessaloniki, Greece, 2001. [Google Scholar]
- Prodromou, K.; Thasitou, P.; Haritonidou, E.; Tzanetakis, N.; Litopoulou-Tzanetaki, E. Microbiology of “Orinotyri”, a ewe’s milk cheese from the Greek mountains. Food Microbiol. 2001, 18, 319–328. [Google Scholar] [CrossRef]
- Pappa, E.C.; Kondyli, E.; Vlachou, A.M.; Kakouri, A.; Malamou, E. Evolution of the biochemical and microbiological characteristics of mountainous Kefalotyri cheese during ripening and storage. Food Res. 2021, 5, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Litopoulou-Tzanetaki, E.; Vafopoulou-Mastrogiannaki, A. Diacetyl and acetaldehyde concentrations during ripening of Kefalotyri cheese. J. Food Sci. 1988, 53, 663–664. [Google Scholar] [CrossRef]
- Anifantakis, E.M.; Kaminarides, S.E. Effect of various starters on the quality of Kefalotyri cheese. Le Lait 1987, 67, 527–535. [Google Scholar] [CrossRef]
- Govari, M.; Iliadis, S.; Papageorgiou, D.; Fletouris, D. Lipid and protein oxidation of grated Kefalotyri cheese packaged in vacuum or modified atmosphere and stored under retail display conditions. Int. Dairy J. 2022, 131, 105369. [Google Scholar] [CrossRef]
- National Publishing Office. Milk Products—Cheeses. In Hellenic Code of Food and Beverages, 3rd ed.; Ministry of Finance, National Publishing Office: Athens, Greece, 2014; article 83A; pp. 2–8. [Google Scholar]
- Georgala, A.; Kaminarides, S.; Anifantakis, E.M. Free fatty acid content of some traditional Greek cheese varieties. Aust. J. Dairy Technol. 2006, 61, 26–31. [Google Scholar]
- Govari, M.; Iliadis, S.; Papageorgiou, D.; Fletouris, D. Seasonal changes in fatty acid composition and conjugated linoleic acid contents of ovine milk and Kefalotyri cheese during ripening. Int. Dairy J. 2020, 109, 104775. [Google Scholar] [CrossRef]
- Govari, M.; Iliadis, S.; Papageorgiou, D.; Fletouris, D. Oxidative status of Kefalotyri cheese during aerobic storage in the dark or under fluorescent light. Int. J. Dairy Technol. 2023, 76, 187–199. [Google Scholar] [CrossRef]
- Kalavrouzioti, I.; Hatzikamari, M.; Litopoulou-Tzanetaki, E.; Tzanetakis, N. Production of hard cheese from caprine milk by the use of two types of probiotic cultures as adjuncts. Int. J. Dairy Technol. 2005, 58, 30–38. [Google Scholar] [CrossRef]
- Litopoulou-Tzanetaki, E. Changes in numbers and kinds of lactic acid bacteria during ripening of Kefalotyri cheese. J. Food Sci. 1990, 55, 111–113. [Google Scholar] [CrossRef]
- Silva, B.N.; Teixeira, J.A.; Cadavez, V.; Gonzales-Barron, U. Mild heat treatment and biopreservatives for artisanal raw milk cheeses: Reducing microbial spoilage and extending shelf-life through thermisation, plant extracts and lactic acid bacteria. Foods 2023, 12, 3206. [Google Scholar] [CrossRef]
- Samelis, J.; Tsanasidou, C.; Bosnea, L.; Ntziadima, C.; Gatzias, I.; Kakouri, A.; Pappas, D. Pilot-scale production of traditional Galotyri PDO cheese from boiled ewes’ milk fermented with the aid of Greek indigenous Lactococcus lactis subsp. cremoris starter and Lactiplantibacillus plantarum adjunct strains. Fermentation 2023, 9, 345. [Google Scholar]
- Samelis, J.; Lianou, A.; Kakouri, A.; Delbès, C.; Rogelj, I.; Matijašic, B.B.; Montel, M.C. Changes in the microbial composition of raw milk induced by thermization treatments applied prior to traditional Greek hard cheese processing. J. Food Prot. 2009, 72, 783–790. [Google Scholar] [CrossRef]
- Samelis, J.; Bosnea, L.; Kakouri, A. Microbiological quality and safety of raw sheep milks from native Epirus breeds: Selective effects of thermization on the microbiota surviving in resultant thermized milks intended for traditional Greek hard cheese production. Appl. Microbiol. 2025, 5, 11. [Google Scholar] [CrossRef]
- Noutsopoulos, D.; Kakouri, A.; Kartezini, E.; Pappas, D.; Hatziloukas, E.; Samelis, J. Growth, nisA gene expression and in situ activity of novel Lactococcus lactis subsp. cremoriscostarter culture in commercial hard cheese production. J. Food Prot. 2017, 80, 2137–2146. [Google Scholar] [PubMed]
- Vandera, E.; Kakouri, A.; Koukkou, A.-I.; Samelis, J. Major ecological shifts within the dominant nonstarter lactic acid bacteria in mature Greek Graviera cheese as affected by the starter culture type. Int. J. Food Microbiol. 2019, 290, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Sioziou, E.; Kakouri, A.; Bosnea, L.; Samelis, J. Antilisterial activity of raw sheep milk from two native Epirus breeds: Culture-dependent identification, bacteriocin gene detection and primary safety evaluation of the antagonistic LAB biota. Curr. Res. Microb. Sci. 2024, 6, 100209. [Google Scholar] [CrossRef]
- Asimakoula, S.; Giaka, K.; Fanitsios, C.; Kakouri, A.; Vandera, E.; Samelis, J.; Koukkou, A.-I. Monitoring growth compatibility and bacteriocin gene transcription of adjunct and starter lactic acid bacterial strains in milk. J. Food Prot. 2021, 84, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Bergamini, C.V.; Wolf, I.V.; Perotti, M.C.; Zalazar, C.A. Characterisation of biochemical changes during ripening in Argentinean sheep cheeses. Small Rum. Res. 2010, 94, 79–89. [Google Scholar] [CrossRef]
- Mallatou, H.; Pappa, E.C.; Boumba, V.A. Proteolysis in Teleme cheese made from sheep’s, goats’ or a mixture of sheep’s and goats’ milk. Int. Dairy J. 2004, 14, 977–987. [Google Scholar] [CrossRef]
- Thodis, P.; Kosma, I.S.; Nesseris, K.; Badeka, A.V.; Kontominas, M.G. Evaluation of a new bulk packaging container for the ripening of Feta cheese. Foods 2023, 12, 2176. [Google Scholar] [CrossRef]
- Hemme, D.; Foucaud-Scheunemann, C. Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int. Dairy J. 2004, 14, 467–494. [Google Scholar] [CrossRef]
- Upreti, P.; McKay, L.L.; Metzger, L.E. Influence of calcium and phosphorus, lactose, and salt-to-moisture ratio on Cheddar cheese quality: Changes in residual sugars and water-soluble organic acids during ripening. J. Dairy Sci. 2006, 89, 429–443. [Google Scholar] [CrossRef]
- Gantzias, C.; Lappa, I.K.; Aerts, M.; Georgalaki, M.; Manolopoulou, E.; Papadimitriou, K.; De Brandt, E.; Tsakalidou, E.; Vandamme, P. MALDI-TOF MS profiling of non-starter lactic acid bacteria from artisanal cheeses of the Greek island of Naxos. Int. J. Food Microbiol. 2020, 323, 108586. [Google Scholar] [CrossRef]
- Ferro, M.M.; Tedeschi, L.O.; Atzori, A.S. The comparison of the lactation and milk yield and composition of selected breeds of sheep and goats. Transl. Anim. Sci. 2017, 1, 498–506. [Google Scholar] [CrossRef]
- Nudda, A.; Atzori, A.S.; Correddu, F.; Battacone, G.; Lunesu, M.F.; Cannas, A.; Pulina, G. Effects of nutrition on main components of sheep milk. Small Rum. Res. 2020, 184, 106015. [Google Scholar] [CrossRef]
- Guinee, T.P.; Fox, P.F. Salt in cheese: Physical, chemical and biological aspects. In Cheese: Chemistry, Physics and Microbiology; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar] [CrossRef]
- Coelho, M.C.; Malcata, F.X.; Silva, C.C.G. Lactic acid bacteria in raw-milk cheeses: From starter cultures to probiotic functions. Foods 2022, 11, 2276. [Google Scholar] [CrossRef] [PubMed]
- Settanni, L.; Moschetti, G. Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiol. 2010, 27, 691–697. [Google Scholar] [CrossRef]
- Bozoudi, D.; Pavlidou, S.; Kotzamanidis, C.; Georgakopoulos, P.; Torriani, S.; Kondyli, E.; Claps, S.; Belibasaki, S.; Litopoulou-Tzanetaki, E. Graviera Naxou and Graviera Kritis Greek PDO cheeses: Discrimination based on microbiological and physicochemical criteria and volatile organic compounds profile. Small Rum. Res. 2016, 136, 161–172. [Google Scholar] [CrossRef]
- Tsigkrimani, M.; Panagiotarea, K.; Paramithiotis, S.; Bosnea, L.; Pappa, E.; Drosinos, E.H.; Skandamis, P.N.; Mataragas, M. Microbial ecology of sheep milk, artisanal Feta, and Kefalograviera cheeses. Part II: Technological, safety, and probiotic attributes of lactic acid bacteria isolates. Foods 2022, 11, 459. [Google Scholar] [CrossRef]
- Bottari, B.; Levante, A.; Neviani, E.; Gatti, M. How the fewest become the greatest. L. casei’s impact on long ripened cheeses. Front. Microbiol. 2018, 9, 2866. [Google Scholar]
- Bielecka, M.M.; Cichosz, G. The influence of an adjunct culture of Lactobacillus paracasei LPC-37 on the physicochemical properties of Dutch-type cheese during ripening. LWT Food Sci. Technol. 2017, 83, 95–100. [Google Scholar] [CrossRef]
- Milesi, M.M.; Vinderola, G.; Sabbag, N.; Meinardi, C.A.; Hynes, E. Influence on cheese proteolysis and sensory characteristics of non-starter lactobacilli strains with probiotic potential. Food Res. Int. 2009, 42, 1186–1196. [Google Scholar] [CrossRef]
- Cogan, T.M.; Beresford, T.P.; Steele, J.; Broadbent, J.; Shah, N.P.; Ustunol, Z. Invited review: Advances in starter cultures and cultured foods. J. Dairy Sci. 2007, 90, 4005–4021. [Google Scholar] [CrossRef]
- Mills, S.; Griffin, C.; O’Connor, P.M.; Serrano, L.M.; Meijer, W.C.; Hill, C.; Ross, R.P. A multibacteriocin cheese starter system, comprising nisin and lacticin 3147 in Lactococcus lactis, in combination with plantaricin from Lactobacillus plantarum. Appl. Environ. Microbiol. 2017, 83, e00799-17. [Google Scholar] [CrossRef]
- Pisano, M.B.; Fadda, M.E.; Viale, S.; Deplano, M.; Mereu, F.; Blazic, M.; Cosentino, S. Inhibitory effect of Lactiplantibacillusplantarum and Lactococcus lactis autochthonous strains against Listeria monocytogenes in a laboratory cheese model. Foods 2022, 11, 715. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, O.S.; Argyri, A.A.; Varzakis, E.E.; Tassou, C.C.; Chorianopoulos, N.G. Greek functional Feta cheese: Enhancing quality and safety using a Lactobacillus plantarum strain with probiotic potential. Food Microbiol. 2018, 74, 21–33. [Google Scholar] [CrossRef]
- O’Sullivan, L.; Ross, R.P.; Hill, C. A lacticin 481-producing adjunct culture increases starter lysis while inhibiting nonstarter lactic acid bacteria proliferation during Cheddar cheese ripening. J. Appl. Microbiol. 2003, 95, 1235–1241. [Google Scholar] [CrossRef]
- Garde, S.; Ávila, M.; Gaya, P.; Medina, M.; Nuñez, M. Proteolysis of Hispánico cheese manufactured using lacticin 481-producing Lactococcus lactis ssp. lactis INIA 639. J. Dairy Sci. 2006, 89, 840–849. [Google Scholar] [PubMed]
- Vivar-Quintana, A.M.; Blanco López, M.A.; Revilla, I.; González-Martín, I.; Hernández-Hierro, J.M.; González-Pérez, C. Seasonal evolution of hydrophilic and hydrophobic peptide contents in cheeses made from ewe’s, goat’s or cow’s milk. Czech J. Food Sci. 2009, 27, S106–S108. [Google Scholar] [CrossRef]
- De Llano, D.G.; Polo, M.C.; Ramos, M. Study of proteolysis in artisanal cheeses: High performance liquid chromatography of peptides. J. Dairy Sci. 1995, 78, 1018–1024. [Google Scholar] [CrossRef]
- McSweeney, P.L.H.; Sousa, M.J.F. Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review. Lait 2000, 80, 293–324. [Google Scholar] [CrossRef]
- Ozturkoglu-Budak, S.; Gursoy, A.; Aykas, D.P.; Kocak, C.; Donmez, S.; de Vries, R.P.; Bronll, P.A. Volatile compound profiling of Turkish Divle cave cheese during production and ripening. J.Dairy Sci. 2016, 99, 5120–5131. [Google Scholar] [CrossRef]
- Castillo, I.; Calvo, M.V.; Alonso, L.; Juarez, M.; Fontecha, J. Changes in lipolysis and volatile fraction of a goat cheese manufactured employing a hygienized rennet paste and a defined starter strain. Food Chem. 2007, 100, 590–598. [Google Scholar] [CrossRef]
- Kondyli, E.; Massouras, T.; Katsiari, M.C.; Voutsinas, L.P. Free fatty acids and volatile compounds in low-fat Kefalograviera-type cheeses made with commercial adjunct cultures. Int. Dairy J. 2003, 13, 47–54. [Google Scholar] [CrossRef]
| Milk Type | pH | Milk Composition (%) | FPD 2 | ||||
|---|---|---|---|---|---|---|---|
| Fat | Protein | Lactose | SRWF 1 | Total Solids | |||
| Raw milk (RM) | 6.58 ± 0.12 a | 6.08 ± 0.51 a | 5.08 ± 0.16 a | 4.53 ± 0.15 a | 10.43 ± 0.19 a | 16.60 ± 0.47 a | −0.55 ± 0.01 ab |
| Thermized milk (TM) | 6.63 ± 0.07 a | 5.66 ± 1.07 a | 5.04 ± 0.14 a | 4.56 ± 0.21 a | 10.46 ± 0.25 a | 16.27 ±0.86 a | −0.56 ± 0.01 a |
| Inoculated milk with control culture (IMC) | 6.63 ± 0.04 a | 5.61 ± 0.93 a | 4.93 ± 0.16 a | 4.48 ± 0.21 a | 10.22 ± 0.24 a | 15.94 ± 0.74 a | −0.54 ± 0.02 ab |
| Inoculated milk with novel culture (IMN) | 6.58 ± 0.07 a | 5.76 ± 0.73 a | 4.96 ± 0.16 a | 4.41 ± 0.10 a | 10.20 ± 0.18 a | 16.02 ± 0.67 a | −0.52 ± 0.02 b |
| Cheese Type | Production Stage/Day | TVC (MPCA/ 37 °C) | Total Mesophilic LAB (MRS/30 °C) | Total Thermophilic LAB (MRS/45 °C) | Dairy Mesophilic LAB (M17/22 °C) | Dairy Thermophilic LAB (M17/45 °C) | Enterococci (SB/37 °C) | Lc. lactis subsp. cremoris M78 | Lp. plantarum H25 (MRS/30 °C) |
|---|---|---|---|---|---|---|---|---|---|
| C-cheese (control) | Inoculated milk | 6.56 ± 0.20 a,A | 6.17 ± 0.15 a,A | 3.53 ± 0.49 a,A | 6.24 ± 0.10 a,A | 6.06 ± 0.03 abc,A | 3.82 ± 0.25 ab,A | 6.21 ± 0.06 bc,A | N/A |
| Fresh curd | 7.91 ± 0.30 cd,A | 7.15 ± 0.26 c,A | 3.77 ± 0.18 ab,A | 6.85 ± 0.30 b,A | 7.67 ± 0.34 e,A | 3.65 ± 0.35 a,A | 6.81 ± 0.26 de,A | N/A | |
| 1 | 8.37 ± 0.72 de,A | 7.42 ± 0.19 c,A | 4.26 ± 0.51 bcd,A | 7.41 ± 0.23 de,A | 7.29 ± 0.22 de,A | 4.24 ± 0.52 abc,A | 6.99 ± 0.26 def,A | N/A | |
| 6 | 8.58 ± 0.15 ef,A | 8.24 ± 0.35 def,A | 5.01 ± 0.37 ef,A | 8.02 ± 0.28 fg,A | 7.28 ± 0.23 de,A | 4.51 ± 0.17 bcd,A | 7.24 ± 0.24 ef,A | N/A | |
| 18 | 8.81 ± 0.06 ef,A | 8.67 ± 0.15 g,A | 5.37 ± 0.29 fg,A | 8.27 ± 0.15 gh,A | 6.90 ± 0.86 bcde,A | 5.01 ± 0.45 d,A | 7.44 ± 0.27 f,A | N/A | |
| 30 | 8.45 ± 0.07 ef,A | 8.64 ± 0.32 g,A | 5.60 ± 0.38 g,A | 8.22 ± 0.15 gh,A | 6.11 ± 0.66 abc,A | 5.09 ± 0.55 d,A | 6.89 ± 0.24 de,A | N/A | |
| 90 | 7.57 ± 0.19 c,A | 8.03 ± 0.22 d,A | 4.29 ± 0.41 bcd,A | 7.16 ± 0.13 bcd,A | 6.20 ± 0.55 abc,A | 5.18 ± 0.57 d,A | 5.90 ± 0.41 b,A | N/A | |
| N-cheese (novel) | Inoculated milk | 6.41 ± 0.07 a,A | 6.16 ± 0.14 a,A | 3.44 ± 0.37 a,A | 6.19 ± 0.09 a,A | 5.89 ± 0.26 ab,A | 3.71 ± 0.16 a,A | 5.82 ± 0.18 b,A | 5.04 ± 0.71 a |
| Fresh curd | 7.79 ± 0.17 c,A | 6.73 ± 0.15 b,B | 4.17 ± 0.19 bc,A | 6.73 ± 0.11 b,A | 7.64 ± 0.17 e,A | 3.80 ± 0.32 ab,A | 6.82 ± 0.21 de,A | 4.67 ± 0.82 a | |
| 1 | 8.54 ± 0.35 ef,A | 7.36 ± 0.25 c,A | 4.47 ± 0.25 cde,A | 7.38 ± 0.25 cde,A | 6.54 ± 1.20 abcd,A | 4.20 ± 0.41 abc,A | 6.93 ± 0.20 de,A | 6.32 ± 0.44 b | |
| 6 | 8.83 ± 0.02 ef,A | 8.51 ± 0.15 efg,A | 4.82 ± 0.35 def,A | 8.54 ± 0.14 h,B | 7.01 ± 0.32 cde,A | 4.56 ± 0.43 cd,A | 7.02 ± 0.16 ef,A | 8.39 ± 0.15 c | |
| 18 | 8.88 ± 0.05 f,A | 8.62 ± 0.16 fg,A | 5.11 ± 0.21 fg,A | 8.09 ± 0.62 fg,A | 6.71 ± 0.92 abcde,A | 4.71 ± 0.61 cd,A | 7.13 ± 0.20 ef,A | 8.53 ± 0.18 c | |
| 30 | 8.37 ± 0.27 de,A | 8.14 ± 0.20 de,B | 5.11 ± 0.16 fg,A | 7.73 ± 0.15 ef,B | 5.66 ± 0.52 aA | 4.71 ± 0.45 cd,A | 6.53 ± 0.43 cd,A | 7.30 ± 0.42 b | |
| 90 | 7.09 ± 0.12 b,B | 7.44 ± 0.30 c,B | 3.41 ± 0.38 a,B | 6.97 ± 0.25 bc,A | 5.74 ± 0.63 a,A | 5.12 ± 0.30 d,A | 5.12 ± 0.67 a,B | <5.00/5.65/<5.00 * |
| Cheese Type | Day | Fat (%) | Moisture (%) | Protein (%) | Salt (%) | SFA (%) | FDM (%) | TS (%) | pH |
|---|---|---|---|---|---|---|---|---|---|
| Control (C) | 1 | 30.98 ± 1.13 a,A | 42.77 ± 0.74 d,A | 0.52 ± 0.14 a,A | 0.52 ± 0.14 a,A | 20.14 ± 0.91 ab,A | 54.07 ± 1.35 b,A | 57.23 ± 0.74 a,A | 5.73 ± 0.11 b,A |
| 6 | 33.38 ± 0.93 bc,A | 36.09 ± 0.31 bc,A | 3.19 ± 0.11 cd,A | 3.19 ± 0.11 cd,A | 20.92 ± 0.48 bc,A | 52.23 ± 1.17 ab,A | 63.91 ± 0.31 bc,A | 5.52 ± 0.15 a,A | |
| 30 | 34.94 ± 1.59 c,A | 34.78 ± 2.16 ab,A | 2.76 ± 0.29 bc,A | 2.76 ± 0.29 bc,A | 22.19 ± 0.82 d,A | 53.57 ± 0.90 ab,A | 65.22 ± 2.16 cd,A | 5.38 ± 0.10 a,A | |
| 90 | 35.50 ± 1.24 c,A | 33.17 ±0.81 a,A | 3.42 ± 0.09 de,A | 3.42 ± 0.09 de,A | 21.52 ± 0.50 cd,A | 53.10 ± 1.21 ab,A | 66.83 ± 0.81 d,A | 5.46 ± 0.14 a,A | |
| Novel (N) | 1 | 30.65 ± 1.44 a,A | 43.50 ± 0.73 d,A | 0.56 ± 0.05 a,A | 0.56 ± 0.05 a,A | 19.66 ± 0.59 a,A | 54.23 ± 1.86 b,A | 56.50 ± 0.73 a,A | 5.73 ± 0.15 b,A |
| 6 | 32.61 ± 1.54 ab,A | 36.45 ± 0.49 bc,A | 3.44 ± 0.29 de,A | 3.44 ± 0.29 de,A | 20.48 ± 0.84 abc,A | 51.30 ± 2.07 a,A | 63.55 ± 0.49 bc,A | 5.48 ± 0.09 a,A | |
| 30 | 33.55 ± 1.56 bc,A | 36.72 ± 1.54 c,B | 2.48 ± 0.72 b,A | 2.48 ± 0.72 b,A | 21.40 ± 0.56 cd,A | 53.03 ± 2.24 ab,A | 63.28 ± 1.54 b,B | 5.34 ± 0.03 a,A | |
| 90 | 35.19 ± 0.71 c,A | 33.67 ± 0.23 a,A | 3.95 ± 0.46 e,A | 3.95 ± 0.46 e,A | 21.01 ± 0.28 bc,A | 53.07 ± 1.24 ab,A | 66.33 ± 0.23 d,A | 5.42 ± 0.04 a,A |
| Cheese Type | Production Day | Lactose mg/g Cheese | Glucose mg/g Cheese | Galactose mg/g Cheese |
|---|---|---|---|---|
| Control (C) | 1 | 15.06 ± 1.33 cde,A | 14.13 ± 4.96 ab,A | 22.15 ± 13.19 bc,A |
| 6 | 15.28 ± 2.94 de,A | 17.30 ± 1.75 ab,A | 7.38 ± 12.79 cb,A | |
| 30 | 11.85 ± 0.90 bcd,A | 18.67 ± 1.79 ab,A | 0.11 ± 0.20 a,A | |
| 90 | 9.16 ± 1.71 b,A | 12.12 ± 3.04 a,A | 3.31 ± 4.56 a,A | |
| Novel (N) | 1 | 18.91 ± 1.55 e,A | 18.83 ± 5.65 b,A | 26.36 ± 13.44 c,A |
| 6 | 11.13 ± 4.79 bc,B | 17.68 ± 5.15 ab,A | 11.93 ± 10.65 abc,A | |
| 30 | 0.96 ± 1.66 a,B | 14.26 ± 4.18 ab,A | 0.63 ± 1.09 a,A | |
| 90 | 0.50 ± 0.86 a,B | 15.83 ± 0.96 ab,A | 0.00 ± 0.00 a,A |
| Cheese Type | Production Day | Citric | Succinate | Lactic | Pyruvic | Formic | Acetic | Propionic |
|---|---|---|---|---|---|---|---|---|
| Control (C) | 1 | 4.14 ± 0.44 c,A | 0.82 ± 0.02 a,A | 27.11 ± 4.50 ab,A | 1.28 ± 0.12 a,A | 1.82 ± 1.64 b,A | 2.26 ± 0.28 a,A | 1.38 ± 1.23 ab,A |
| 6 | 5.44 ± 1.60 cd,A | 0.88 ± 0.07 a,A | 30.46 ± 9.54 b,A | 1.20 ± 0.59 a,A | 0.92 ± 0.50 ab,A | 3.04 ± 2.66 ab,A | 1.78 ± 1.91 ab,A | |
| 30 | 3.98 ± 0.87 bc,A | 0.84 ± 0.03 a,A | 28.25 ± 7.11 ab,A | 3.90 ± 3.34 b,A | 1.65 ± 0.99 ab,A | 4.96 ± 0.68 b,A | 1.77 ± 1.21 ab,A | |
| 90 | 2.19 ± 1.90 ab,A | 0.52 ± 0.45 a,A | 19.38 ± 2.77 a,A | 1.67 ± 1.01 a,A | 0.31 ± 0.28 a,A | 1.01 ± 1.23 a,A | 2.66 ± 2.83 abc,A | |
| Novel (N) | 1 | 6.76 ± 0.52 d,B | 0.96 ± 0.04 a,A | 43.73 ± 1.40 c,B | 0.79 ± 0.24 a,A | 1.17 ± 0.49 ab,A | 3.55 ± 0.48 ab,A | 0.37 ± 0.24 a,A |
| 6 | 4.34 ± 1.50 c,A | 0.94 ± 0.10 a,A | 25.98 ± 6.38 ab,A | 1.24 ± 0.59 a,A | 0.66 ± 0.10 ab,A | 1.26 ± 0.30 a,A | 0.80 ± 0.58 ab,A | |
| 30 | 1.28 ± 0.60 a,B | 1.90 ± 1.05 b,B | 27.66 ± 7.53 ab,A | 2.59 ± 0.28 ab,A | 1.43 ± 0.47 ab,A | 5.23 ± 2.97 b,A | 3.23 ± 1.92 bc,A | |
| 90 | 1.20 ± 0.23 a,A | 1.39 ± 0.95 ab,A | 24.25 ± 3.97 ab,A | 1.22 ± 0.49 a,A | 1.26 ± 0.57 ab,A | 5.07 ± 0.95 b,B | 4.85 ± 0.30 c,A |
| Cheese Type | Production Day | HO | HI | HO/HI | Part 0 | Part I | Part II | Part III |
|---|---|---|---|---|---|---|---|---|
| C-cheese (control) | 1 | 32.19 ± 12.77 bc,A | 67.81 ± 12.77 ab,A | 0.51 ± 0.26 bc,A | 37.02 ± 2.29 a,A | 11.89 ± 2.09 a,A | 21.29 ± 11.64 b,A | 29.80 ± 14.43 b,A |
| 6 | 34.96 ± 14.37 c,A | 65.04 ± 14.37 a,A | 0.58 ± 0.31 c,A | 43.40 ± 14.21 ab,A | 10.58 ± 4.29 a,A | 14.29 ± 2.53 ab,A | 31.73 ± 13.75 b,A | |
| 30 | 17.81 ± 3.54 a,A | 82.19 ± 3.54 c,A | 0.22 ± 0.05 a,A | 49.80 ± 3.75 bcd | 20.23 ± 2.58 bc,A | 14.50 ± 2.02 ab,A | 15.47 ± 2.56 a,A | |
| 90 | 20.91 ± 4.58 ab,A | 79.09 ± 4.58 bc,A | 0.27 ± 0.08 ab,A | 55.97 ± 5.13 cd,A | 15.60 ± 1.38 ab,A | 13.11 ± 1.91 ab,A | 15.33 ± 4.56 a,A | |
| N-cheese (novel) | 1 | 40.67 ± 4.54 c,A | 59.33 ± 4.54 a,A | 0.69 ± 0.13 c,A | 32.54 ± 4.35 a,A | 10.79 ± 3.24 a,A | 19.99 ± 4.74 ab,A | 36.68 ± 4.08 b,A |
| 6 | 36.73 ± 2.81 c,A | 63.27 ± 2.81 a,A | 0.59 ± 0.07 c,A | 39.69 ± 1.30 ab,A | 10.71 ± 2.80 a,A | 16.93 ± 1.73 ab,A | 32.67 ± 2.20 b,A | |
| 30 | 16.96 ± 4.30 a,A | 83.04 ± 4.30 c,A | 0.21 ± 0.06 a,A | 44.09 ± 9.72 abc,A | 23.45 ± 2.70 c,A | 19.70 ± 6.09 ab,A | 12.76 ± 3.47 a,A | |
| 90 | 14.94 ± 1.37 a,A | 85.06 ± 1.37 c,A | 0.18 ± 0.02 a,A | 60.83 ± 4.31 d,A | 17.40 ± 3.89 b,A | 11.41 ± 1.41 a,A | 10.35 ± 0.51 a,A |
| Retention Time | RIexp * | RIlit ** | Volatile Compound | Cheese (C) Ppm | Cheese (N) Ppm |
|---|---|---|---|---|---|
| Alcohols | |||||
| 4.003 | <500 | 427 | Ethyl Alcohol | 0.214 ± 0.19 a | 0.294 ± 0.05 a |
| 5.635 | 538 | 554 | 1-Propanol | 0.008 na | 0.004 ± 0.01 na |
| 8.498 | 650 | 669 | 1-Butanol | 0.018 na | 0.018 ± 0.01 na |
| 10.993 | 730 | 735 | 3-methyl-Butan-1-ol | 0.071 ± 0.008 a | 0.06 ± 0.01 a |
| Ketones | |||||
| 4.481 | <500 | 500 | 2-Propanone (Acetone) | 1.976 ± 0.280 a | 1.532 ± 0.65 a |
| 6.385 | 574 | 580 | 2,3-Butanedione | 0.039 na | ND |
| 6.551 | 613 | 622 | 2-Butanone | 0.012 na | ND |
| 16.866 | 881 | 888 | 2-Heptanone | 0.123 ± 0.071 a | 0.069 ± 0.01 a |
| 24.072 | 1092 | 1095 | 2-Nonanone | 0.053 ± 0.02 a | 0.018 ± 0.01 a |
| Ethers | |||||
| 4.655 | <500 | 485 | Ethyl ether | 0.340 ± 0.02 a | 0.351 ± 0.06 a |
| Esters | |||||
| 5.077 | 512 | 522 | Methyl acetate | 0.025 ± 0.015 a | 0.019 ± 0.01 a |
| 6.979 | 601 | 610 | Ethyl acetate | 0.020 ± 0.004 na | 0.034 na |
| 7.485 | 610 | 621 | Methyl priopionate | 0.030 na | ND |
| 10.518 | 710 | 735 | Methyl butyrate | 0.758 ± 0.76 na | 0.418 ± 0.091 na |
| 13.408 | 790 | 798 | Ethyl butyrate | 0.109 ± 0.088 a | 0.168 ± 0.04 a |
| 18.082 | 792 | 798 | Methyl hexanoate | 0.262 ± 0.314 a | 0.087 ± 0.001 a |
| 20.757 | 980 | 996 | Ethyl hexanoate | 0.070 ± 0.044 a | 0.070 ± 0.02 a |
| 25.063 | 1113 | 1120 | Methyl caprylate | 0.110 ± 0.160 na | 0.015 ± 0.01 na |
| 27.356 | 1182 | 1193 | Ethyl octanoate | 0.015 na | 0.008 na |
| 30.869 | 1320 | 1324 | Methyl decanoate | 0.144 na | ND |
| Alkane | |||||
| 5.862 | 2-methyl-Pentane | 0.06 ± 0.01 a | 0.05 ± 0.006 a | ||
| 6.615 | 592 | 600 | Hexane | 0.043 ± 0.025 na | 0.053 na |
| 9.748 | 701 | 700 | Heptane | 0.983 ± 0.18 a | 0.888 ± 0.101 a |
| 13.474 | 799 | 800 | Octane | 0.018 na | ND |
| Acids | |||||
| 6.23 | 570 | 595 | Acetic acid | 0.241 ± 0.190 a | 0.440 ± 0.12 a |
| 11.272 | 761 | 753 | Isobutyric acid | 0.064 ± 0.015 na | 0.121 ± 0.06 na |
| 12.682 | 780 | 784 | Butanoic acid | 0.922 ± 0.713 a | 1.548 ± 0.26 a |
| 14.428 | 830 | 838 | 3-Methylbutanoic acid | 0.168 ± 0.148 na | ND |
| 14.556 | 880 | 878 | Pentanoic acid | 0.194 na | 0.308 ± 0.097 na |
| 14.887 | 891 | 898 | 2-Methylbutanoicacid | 0.116 ± 0.055 a | 0.149 ± 0.053 a |
| 19.565 | 960 | 965 | Caproic acid | 0.207 ± 0.164 na | 0.154 ± 0.109 na |
| Aldehydes | |||||
| 8.366 | 640 | 650 | 3-methylbutanal | 0.006 na | ND |
| Miscellaneous | |||||
| 11.597 | 740 | 747 | Dimethyl disulfide | 0.004 na | ND |
| 17.271 | 890 | 895 | Styrene | 0.042 ± 0.003 a | 0.035 ± 0.005 a |
| 18.381 | 801 | - | 1,3-Dihydroxy-6-methoxy-1,2,3,4,-tetrahydroquinolin-2-one | 0.013 na | ND |
| 18.925 | 937 | 940 | a-pinene | 0.016 ± 0.002 a | 0.012 ± 0.001 a |
| 22.329 | 1030 | 1039 | dl-Limonene | 0.005 ± 0.001 na | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosnea, L.; Kosma, I.; Kakouri, A.; Paramithiotis, S.; Samelis, J. Development of a Semi-Industrial Kefalotyri-Type Cheese Using Thermized Milk from Native Epirus Sheep Breeds and Autochthonous Starter and Adjunct Cultures. Fermentation 2025, 11, 673. https://doi.org/10.3390/fermentation11120673
Bosnea L, Kosma I, Kakouri A, Paramithiotis S, Samelis J. Development of a Semi-Industrial Kefalotyri-Type Cheese Using Thermized Milk from Native Epirus Sheep Breeds and Autochthonous Starter and Adjunct Cultures. Fermentation. 2025; 11(12):673. https://doi.org/10.3390/fermentation11120673
Chicago/Turabian StyleBosnea, Loulouda, Ioanna Kosma, Athanasia Kakouri, Spiros Paramithiotis, and John Samelis. 2025. "Development of a Semi-Industrial Kefalotyri-Type Cheese Using Thermized Milk from Native Epirus Sheep Breeds and Autochthonous Starter and Adjunct Cultures" Fermentation 11, no. 12: 673. https://doi.org/10.3390/fermentation11120673
APA StyleBosnea, L., Kosma, I., Kakouri, A., Paramithiotis, S., & Samelis, J. (2025). Development of a Semi-Industrial Kefalotyri-Type Cheese Using Thermized Milk from Native Epirus Sheep Breeds and Autochthonous Starter and Adjunct Cultures. Fermentation, 11(12), 673. https://doi.org/10.3390/fermentation11120673

