Valorization of Food Processing Wastewater for Astaxanthin Production by the Mixotrophic Fermentation of Microalgae: A Review
Abstract
1. Introduction
2. Environmental Footprint of Food Processing Wastewater
2.1. Nutrient Profile and Biochemical Characteristics
2.2. Environmental Risks
2.3. Microalgae-Based Carbon Sequestration
3. Astaxanthin Production and Food Processing Wastewater Treatment by Microalgae
3.1. Microalgal Species for Astaxanthin Production
3.2. Inducing Conditions for Astaxanthin Synthesis
3.3. Nutrient Removal by Microalgae in Wastewater
4. Potential Technologies for Astaxanthin Production
4.1. Two-Stage Cultivation Model
4.2. Nutrient Profile Adjustment of Wastewater
4.3. Co-Growth of Microalgae with Other Microorganisms
5. Practical Application of Microbial Astaxanthin in Animal Feed
5.1. Improvement of Meat Quality
5.2. Boosting of Immunity
5.3. Stimulation of Animal Growth
5.4. Extension of Shelf Life
6. Challenges and Prospects
6.1. High Risk of Wastewater Management
6.2. Low Digestibility of Microalgae-Based Feed
6.3. Instability of Astaxanthin in Feed Production
6.4. Co-Production of Other High-Value Components
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Álvarez-Castillo, E.; Guerrero, P.; de la Caba, K.; Bengoechea, C.; Guerrero, A. Biorefinery concept in the meat industry: From slaughterhouse biowastes to superaborbent materials. Chem. Eng. J. 2023, 471, 144564. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.C.; Cheng, Z.; Li, Y.; Tang, J. Effect of fermentation liquid from food waste as a carbon source for enhancing denitrification in wastewater treatment. Chemosphere 2016, 144, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, K.L.; Torres-Lozada, P.; Chaparro, T.R. Beverage wastewater treatment by anaerobic digestion in two-stages for organic matter removal and energy production. Biomass Bioenergy 2021, 154, 106260. [Google Scholar] [CrossRef]
- Chamorro, F.; Carpena, M.; Fraga-Corral, M.; Echave, J.; Rajoka, M.S.R.; Barba, F.J.; Cao, H.; Xiao, J.; Prieto, M.; Simal-Gandara, J. Valorization of kiwi agricultural waste and industry by-products by recovering bioactive compounds and applications as food additives: A circular economy model. Food Chem. 2022, 370, 131315. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q. A State-of-the-Art Review of Microalgae-Based Food Processing Wastewater Treatment: Progress, Problems, and Prospects. Water 2025, 17, 536. [Google Scholar] [CrossRef]
- Lu, Q.; Zhou, W.; Min, M.; Ma, X.; Chandra, C.; Doan, Y.T.; Ma, Y.; Zheng, H.; Cheng, S.; Griffith, R. Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production. Bioresour. Technol. 2015, 198, 189–197. [Google Scholar] [CrossRef]
- Sun, D.; Lin, X.; Lu, Z.; Huang, J.; Li, G.; Xu, J. Process evaluation of urban river replenished with reclaimed water from a wastewater treatment plant based on the risk of algal bloom and comprehensive acute toxicity. Water Reuse 2022, 12, 1–10. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, H.; Shan, Y.; Hang, Y.; Wang, D.; Zhou, Y.; Hubacek, K. Changes in global food consumption increase GHG emissions despite efficiency gains along global supply chains. Nat. Food 2023, 4, 483–495. [Google Scholar] [CrossRef]
- Zhai, C.; Yu, Y.; Han, J.; Hu, J.; He, D.; Zhang, H.; Shi, J.; Mohamed, S.R.; Dawood, D.H.; Wang, G. Isolation, characterization, and application of Clostridium sporogenes F39 to degrade zearalenone under anaerobic conditions. Foods 2022, 11, 1194. [Google Scholar] [CrossRef]
- Wu, H.; Chen, H.; Shao, X.; Yue, X.; Sun, J.; Zhang, T.; Qiu, F. All-wood-based hybrid membrane derived from waste sawdust for efficient emulsion separation. Food Bioprod. Process. 2025, 149, 92–99. [Google Scholar] [CrossRef]
- Paranjpe, A.; Saxena, S.; Jain, P. A review on performance improvement of anaerobic digestion using co-digestion of food waste and sewage sludge. J. Environ. Manag. 2023, 338, 117733. [Google Scholar] [CrossRef]
- Wang, G.; Tang, K.; Hambly, A.C.; Zhang, Y.; Andersen, H.R. Sustainable and reagentless Fenton treatment of complex wastewater. Environ. Sci. Technol. 2022, 57, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Waqas, S.; Harun, N.Y.; Sambudi, N.S.; Abioye, K.J.; Zeeshan, M.H.; Ali, A.; Abdulrahman, A.; Alkhattabi, L.; Alsaadi, A.S. Effect of operating parameters on the performance of integrated fixed-film activated sludge for wastewater treatment. Membranes 2023, 13, 704. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Lu, Y. Microalga- and yeast-based astaxanthin production via nutrient recovery from wastewater for aquaculture practice: An emerging technology for sustainable development. J. Chem. Technol. Biotechnol. 2022, 97, 3035–3048. [Google Scholar] [CrossRef]
- Bleisch, R.; Ihadjadene, Y.; Torrisi, A.; Walther, T.; Mühlstädt, G.; Steingröwer, J.; Streif, S.; Krujatz, F. Physiological Adaptation of Chromochloris zofingiensis in Three-Phased Cultivation Performed in a Pilot-Scale Photobioreactor. Life 2025, 15, 648. [Google Scholar] [CrossRef]
- Oslan, S.N.H.; Shoparwe, N.F.; Yusoff, A.H.; Rahim, A.A.; Chang, C.S.; Tan, J.S.; Oslan, S.N.; Arumugam, K.; Ariff, A.B.; Sulaiman, A.Z. A review on Haematococcus pluvialis bioprocess optimization of green and red stage culture conditions for the production of natural astaxanthin. Biomolecules 2021, 11, 256. [Google Scholar] [CrossRef]
- Patel, A.K.; Tambat, V.S.; Chen, C.-W.; Chauhan, A.S.; Kumar, P.; Vadrale, A.P.; Huang, C.-Y.; Dong, C.-D.; Singhania, R.R. Recent advancements in astaxanthin production from microalgae: A review. Bioresour. Technol. 2022, 364, 128030. [Google Scholar] [CrossRef]
- Ariyadasa, T.U.; Thevarajah, B.; Anthonio, R.A.D.P.; Nimarshana, P.; Wasath, W.A.J. From present to prosperity: Assessing the current status and envisioning opportunities in the industrial-scale cultivation of Haematococcus pluvialis for astaxanthin production. Phytochem. Rev. 2024, 23, 749–779. [Google Scholar] [CrossRef]
- Tchabo, W.; Ma, Y.; Kwaw, E.; Xiao, L.; Wu, M.; Apaliya, T.M. Impact of extraction parameters and their optimization on the nutraceuticals and antioxidant properties of aqueous extract mulberry leaf. Int. J. Food Prop. 2018, 21, 717–732. [Google Scholar] [CrossRef]
- Dai, Z.; Li, Z.; Shi, E.; Nie, M.; Feng, L.; Chen, G.; Gao, R.; Zeng, X.; Li, D. Study on the interaction between four typical carotenoids and human gut microflora using an in vitro fermentation model. J. Agric. Food Chem. 2022, 70, 13592–13601. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Q. Cultivation of microalgae in food processing effluent for pollution attenuation and astaxanthin production: A review of technological innovation and downstream application. Front. Bioeng. Biotechnol. 2024, 12, 1365514. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Z.; Zhong, Y.; Gerken, H.; Huang, J.; Chen, F. Utilization of cane molasses towards cost-saving astaxanthin production by a Chlorella zofingiensis mutant. J. Appl. Phycol. 2013, 25, 1447–1456. [Google Scholar] [CrossRef]
- Pan, M.; Zhu, X.; Pan, G.; Angelidak, I. Integrated valorization system for simultaneous high strength organic wastewater treatment and astaxanthin production from Haematococcus pluvialis. Bioresour. Technol. 2021, 326, 124761. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Yu, N.; Sun, Z.-Y.; Gou, M.; Xia, Z.-Y.; Tang, Y.-Q.; Kida, K. Acclimation improves methane production from molasses wastewater with high salinity in an upflow anaerobic filter reactor: Performance and microbial community dynamics. Appl. Biochem. Biotechnol. 2020, 191, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, S.-A.; Yun, J.-H.; Ko, S.-R.; Cho, D.-H.; Kim, H.S.; Oh, H.-M.; Kim, H.-S.; Ahn, C.-Y. Cultivation of Chlorella sp. HS2 using wastewater from soy sauce factory. Chemosphere 2023, 342, 140162. [Google Scholar] [CrossRef] [PubMed]
- Allison, C.E.; Safferman, S.I. Evaluation of a greenhouse ecosystem to treat craft beverage wastewater. Sustainability 2024, 16, 7395. [Google Scholar] [CrossRef]
- Kurup, G.G.; Adhikari, B.; Zisu, B. Recovery of proteins and lipids from dairy wastewater using food grade sodium lignosulphonate. Water Resour. Ind. 2019, 22, 100114. [Google Scholar] [CrossRef]
- Langenhoff, A.A.; Intrachandra, N.; Stuckey, D.C. Treatment of dilute soluble and colloidal wastewater using an anaerobic baffled reactor: Influence of hydraulic retention time. Water Res. 2000, 34, 1307–1317. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Feng, L.; Xu, Y.; Du, Z.; Zhang, L. Biochar prepared from maize straw and molasses fermentation wastewater: Application for soil improvement. RSC Adv. 2020, 10, 14510–14519. [Google Scholar] [CrossRef]
- El-Kamah, H.; Mahmoud, M. Performance evaluation of sequencing batch reactor for beverage industrial wastewater treatment. Water Environ. Res. 2012, 84, 155–161. [Google Scholar] [CrossRef]
- Sheldon, M.S.; Erdogan, I.G. Multi-stage EGSB/MBR treatment of soft drink industry wastewater. Chem. Eng. J. 2016, 285, 368–377. [Google Scholar] [CrossRef]
- Zhu, X.; Li, M.; Zheng, W.; Liu, R.; Chen, L. Performance and microbial community of a membrane bioreactor system—Treating wastewater from ethanol fermentation of food waste. J. Environ. Sci. 2017, 53, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, Z.; Zinatizadeh, A.A.; Zinadini, S.; van Loosdrecht, M.; Batstone, D.J. A high-rate A2O bioreactor with airlift-driven circulation and anoxic hybrid growth for enhanced carbon and nutrient removal from a nutrient rich wastewater. Chemosphere 2025, 370, 143811. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Ma, C.; Guo, L.; Lu, Y.; Li, H. Co-Fermentation of Chlorella vulgaris with oleaginous yeast in starch processing effluent as a carbon-Reducing strategy for wastewater treatment and biofuel feedstock production. Fermentation 2023, 9, 476. [Google Scholar] [CrossRef]
- Huo, S.; Kong, M.; Zhu, F.; Qian, J.; Huang, D.; Chen, P.; Ruan, R. Co-culture of Chlorella and wastewater-borne bacteria in vinegar production wastewater: Enhancement of nutrients removal and influence of algal biomass generation. Algal Res. 2020, 45, 101744. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, F.; Liao, K.; Xiao, Y.; Chen, S.; Lu, Q.; Li, J.; Zhou, W. Microalgae for nutrient recycling from food waste to aquaculture as feed substitute: A promising pathway to eco-friendly development. J. Chem. Technol. Biotechnol. 2021, 96, 2496–2508. [Google Scholar] [CrossRef]
- El Bakraoui, H.; Malaki, A.; Slaoui, M.; Laroche, C. Chromochloris zofingiensis-Based Treatment of Whey Wastewater for Biorefinery Application: Biomass, Nutrient Removal, Astaxanthin and Lipid Production. Appl. Sci. 2025, 15, 5832. [Google Scholar] [CrossRef]
- Li, M.; Song, G.; Liu, R.; Huang, X.; Liu, H. Inactivation and risk control of pathogenic microorganisms in municipal sludge treatment: A review. Front. Environ. Sci. Eng. 2022, 16, 70. [Google Scholar] [CrossRef]
- Fu, Q.; Xu, Q.; Liu, Z.; Wang, D.; Liu, X.; He, D.; He, Y.; Li, Y.; Yang, J.; Duan, A. Insights into potassium permanganate reducing H2S generation from anaerobic fermentation of sludge. Chem. Eng. J. 2022, 430, 133150. [Google Scholar] [CrossRef]
- Tubeileh, A.; Rennie, T.J.; Goss, M.J. A review on biomass production from C4 grasses: Yield and quality for end-use. Curr. Opin. Plant Biol. 2016, 31, 172–180. [Google Scholar] [CrossRef]
- Sharma, S.; Rana, V.S.; Prasad, H.; Lakra, J.; Sharma, U. Appraisal of carbon capture, storage, and utilization through fruit crops. Front. Environ. Sci. 2021, 9, 700768. [Google Scholar] [CrossRef]
- Sun, J.; Zhai, N.; Miao, J.; Sun, H. Can green finance effectively promote the carbon emission reduction in “local-neighborhood” areas?—Empirical evidence from China. Agriculture 2022, 12, 1550. [Google Scholar] [CrossRef]
- Li, G.; Xu, S.; Tang, Y.; Wang, Y.; Lou, J.; Zhang, Q.; Zheng, X.; Li, J.; Iqbal, B.; Cheng, P. Spartina alterniflora invasion altered soil greenhouse gas emissions via affecting labile organic carbon in a coastal wetland. Appl. Soil Ecol. 2024, 203, 105615. [Google Scholar] [CrossRef]
- Xu, Y.; Schmiege, S.C.; Sharkey, T.D. The oxidative pentose phosphate pathway in photosynthesis: A tale of two shunts. New Phytol. 2024, 242, 2453–2463. [Google Scholar] [CrossRef] [PubMed]
- Diallo, F.; Masse, D.; Diarra, K.; Feder, F. Impact of organic fertilisation on lettuce biomass production according to the cultivation duration in tropical soils. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2020, 70, 215–223. [Google Scholar] [CrossRef]
- Lu, Q.; Lu, Y.; Yang, L. Challenging problems of applying microalgae for aquaculture environment protection and nutrition supplementation: A long road traveled and still a far way to go. Front. Bioeng. Biotechnol. 2023, 11, 1151440. [Google Scholar] [CrossRef]
- Hu, J.; Meng, W.; Su, Y.; Qian, C.; Fu, W. Emerging technologies for advancing microalgal photosynthesis and metabolism toward sustainable production. Front. Mar. Sci. 2023, 10, 1260709. [Google Scholar] [CrossRef]
- Kim, B.-H.; Choi, J.-E.; Cho, K.; Kang, Z.; Ramanan, R.; Moon, D.-G.; Kim, H.-S. Influence of water depth on microalgal production, biomass harvest, and energy consumption in high rate algal pond using municipal wastewater. J. Microbiol. Biotechnol. 2018, 28, 630–637. [Google Scholar] [CrossRef]
- Katsuda, T.; Lababpour, A.; Shimahara, K.; Katoh, S. Astaxanthin production by Haematococcus pluvialis under illumination with LEDs. Enzym. Microb. Technol. 2004, 35, 81–86. [Google Scholar] [CrossRef]
- Sarada, R.; Tripathi, U.; Ravishankar, G. Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Process Biochem. 2002, 37, 623–627. [Google Scholar] [CrossRef]
- Pan-utai, W.; Parakulsuksatid, P.; Phomkaivon, N. Effect of inducing agents on growth and astaxanthin production in Haematococcus pluvialis: Organic and inorganic. Biocatal. Agric. Biotechnol. 2017, 12, 152–158. [Google Scholar] [CrossRef]
- Wen, Z.; Liu, Z.; Hou, Y.; Liu, C.; Gao, F.; Zheng, Y.; Chen, F. Ethanol induced astaxanthin accumulation and transcriptional expression of carotenogenic genes in Haematococcus pluvialis. Enzym. Microb. Technol. 2015, 78, 10–17. [Google Scholar] [CrossRef]
- Christian, D.; Zhang, J.; Sawdon, A.J.; Peng, C.-A. Enhanced astaxanthin accumulation in Haematococcus pluvialis using high carbon dioxide concentration and light illumination. Bioresour. Technol. 2018, 256, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Xing, H.; Zhao, Y.; Li, T.; Han, B.; Zhao, P.; Yu, X. Enhancing astaxanthin and lipid coproduction in Haematococcus pluvialis by the combined induction of plant growth regulators and multiple stresses. Bioresour. Technol. 2022, 344, 126225. [Google Scholar] [CrossRef] [PubMed]
- Cray, R.; Levine, I. Oxidative stress modulates astaxanthin synthesis in Haematococcus pluvialis. J. Appl. Phycol. 2022, 34, 2327–2338. [Google Scholar] [CrossRef]
- Ip, P.-F.; Chen, F. Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem. 2005, 40, 3491–3496. [Google Scholar] [CrossRef]
- Mao, X.; Wu, T.; Sun, D.; Zhang, Z.; Chen, F. Differential responses of the green microalga Chlorella zofingiensis to the starvation of various nutrients for oil and astaxanthin production. Bioresour. Technol. 2018, 249, 791–798. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, D.; Zhang, Y.; Chen, F. Glucose triggers cell structure changes and regulates astaxanthin biosynthesis in Chromochloris zofingiensis. Algal Res. 2019, 39, 101455. [Google Scholar] [CrossRef]
- Ma, R.Y.-N.; Chen, F. Enhanced production of free trans-astaxanthin by oxidative stress in the cultures of the green microalga Chlorococcum sp. Process Biochem. 2001, 36, 1175–1179. [Google Scholar] [CrossRef]
- Huo, S.; Wang, Z.; Zhu, S.; Zhou, W.; Dong, R.; Yuan, Z. Cultivation of Chlorella zofingiensis in bench-scale outdoor ponds by regulation of pH using dairy wastewater in winter, South China. Bioresour. Technol. 2012, 121, 76–82. [Google Scholar] [CrossRef]
- Haque, F.; Dutta, A.; Thimmanagari, M.; Chiang, Y.W. Integrated Haematococcus pluvialis biomass production and nutrient removal using bioethanol plant waste effluent. Process Saf. Environ. Prot. 2017, 111, 128–137. [Google Scholar] [CrossRef]
- Lin, B.; Cui, Y.; Yan, M.; Wang, Y.; Gao, Z.; Meng, C.; Qin, S. Construction of astaxanthin metabolic pathway in the green microalga Dunaliella viridis. Algal Res. 2019, 44, 101697. [Google Scholar] [CrossRef]
- Perozeni, F.; Cazzaniga, S.; Baier, T.; Zanoni, F.; Zoccatelli, G.; Lauersen, K.J.; Wobbe, L.; Ballottari, M. Turning a green alga red: Engineering astaxanthin biosynthesis by intragenic pseudogene revival in Chlamydomonas reinhardtii. Plant Biotechnol. J. 2020, 18, 2053–2067. [Google Scholar] [CrossRef] [PubMed]
- Hanlon, P.; Sewalt, V. GEMs: Genetically engineered microorganisms and the regulatory oversight of their uses in modern food production. Crit. Rev. Food Sci. Nutr. 2021, 61, 959–970. [Google Scholar] [CrossRef]
- Wayama, M.; Ota, S.; Matsuura, H.; Nango, N.; Hirata, A.; Kawano, S. Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis. PLoS ONE 2013, 8, e53618. [Google Scholar] [CrossRef]
- Liu, X.; Xing, X.; Dong, Q.; Liu, W.; Li, W. Efficient removal of nitrogen/phosphorous by mix-cultivation of Haematococcus pluvialis and Simplicillium lanosoniveum in wastewater supplemented with NaHCO3. Biochem. Eng. J. 2022, 182, 108433. [Google Scholar] [CrossRef]
- Yu, C.; Li, X.; Han, B.; Zhao, Y.; Geng, S.; Ning, D.; Ma, T.; Yu, X. Simultaneous improvement of astaxanthin and lipid production of Haematococcus pluvialis by using walnut shell extracts. Algal Res. 2021, 54, 102171. [Google Scholar] [CrossRef]
- Wu, Y.-H.; Yang, J.; Hu, H.-Y.; Yu, Y. Lipid-rich microalgal biomass production and nutrient removal by Haematococcus pluvialis in domestic secondary effluent. Ecol. Eng. 2013, 60, 155–159. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Z.; Xu, J.; Ma, L. Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy. J. Biosci. Bioeng. 2018, 126, 644–648. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Z.; Takala, J.; Hiltunen, E.; Qin, L.; Xu, Z.; Qin, X.; Yuan, Z. Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production. Bioresour. Technol. 2013, 137, 318–325. [Google Scholar] [CrossRef]
- Cheng, P.; Cheng, J.J.; Cobb, K.; Zhou, C.; Zhou, N.; Addy, M.; Chen, P.; Yan, X.; Ruan, R. Tribonema sp. and Chlorella zofingiensis co-culture to treat swine wastewater diluted with fishery wastewater to facilitate harvest. Bioresour. Technol. 2020, 297, 122516. [Google Scholar] [CrossRef]
- Lu, Q.; Li, H.; Liu, H.; Xu, Z.; Saikaly, P.E.; Zhang, W. A fast microbial nitrogen-assimilation technology enhances nitrogen migration and single-cell-protein production in high-ammonia piggery wastewater. Environ. Res. 2024, 257, 119329. [Google Scholar] [CrossRef] [PubMed]
- Difusa, A.; Talukdar, J.; Kalita, M.C.; Mohanty, K.; Goud, V.V. Effect of light intensity and pH condition on the growth, biomass and lipid content of microalgae Scenedesmus species. Biofuels 2015, 6, 37–44. [Google Scholar] [CrossRef]
- Wahidin, S.; Idris, A.; Shaleh, S.R.M. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour. Technol. 2013, 129, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yue, C.; Geng, S.; Ning, D.; Ma, T.; Yu, X. Role of media composition in biomass and astaxanthin production of Haematococcus pluvialis under two-stage cultivation. Bioprocess Biosyst. Eng. 2019, 42, 593–602. [Google Scholar] [CrossRef]
- Fábregas, J.; Otero, A.; Maseda, A.; Domínguez, A. Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. J. Biotechnol. 2001, 89, 65–71. [Google Scholar] [CrossRef]
- Yu, H.-Q.; Fang, H. Acidogenesis of dairy wastewater at various pH levels. Water Sci. Technol. 2002, 45, 201–206. [Google Scholar] [CrossRef]
- Han, G.; Shin, S.G.; Lee, J.; Lee, C.; Jo, M.; Hwang, S. Mesophilic acidogenesis of food waste-recycling wastewater: Effects of hydraulic retention time, pH, and temperature. Appl. Biochem. Biotechnol. 2016, 180, 980–999. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Lu, Q.; Zhou, W. Toxicity alleviation for microalgae cultivation by cationic starch addition and ammonia stripping and study on the cost assessment. RSC Adv. 2019, 9, 38235–38245. [Google Scholar] [CrossRef]
- Guštin, S.; Marinšek-Logar, R. Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent. Process Saf. Environ. Prot. 2011, 89, 61–66. [Google Scholar] [CrossRef]
- Kim, E.J.; Kim, H.; Lee, E. Influence of ammonia stripping parameters on the efficiency and mass transfer rate of ammonia removal. Appl. Sci. 2021, 11, 441. [Google Scholar] [CrossRef]
- Peng, L.; Yin, T.; Song, Z.; Xiong, S.; Liu, R.; You, J.; Huang, Q. Superior ammonia nitrogen adsorption capacity and reusability biochar microsphere applied in live fish transportation. Chem. Eng. J. 2025, 514, 163261. [Google Scholar] [CrossRef]
- Cheng, H.; Zhu, Q.; Xing, Z. Adsorption of ammonia nitrogen in low temperature domestic wastewater by modification bentonite. J. Clean. Prod. 2019, 233, 720–730. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, H.; Sun, Y.; Li, H. Combined zeolite-based ammonia slow-release and algae-yeast consortia to treat piggery wastewater: Improved nitrogen and carbon migration. Bioresour. Technol. 2023, 387, 129671. [Google Scholar] [CrossRef]
- Lu, Q.; Qian, W.; Liu, W.; Liu, H.; Zhou, W.; Deng, J.; Wang, Q.; Sun, Y.; Zhou, K.; Ming, C. A fluorescence in situ hybridization method for the measurement of denitrifying phosphorus-accumulation organisms and study on the metabolisms of activated sludge. J. Clean. Prod. 2017, 152, 28–37. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, W.; Fu, Z.; Cheng, Y.; Min, M.; Liu, Y.; Zhang, Y.; Chen, P.; Ruan, R. Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system. Bioresour. Technol. 2014, 167, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Basiony, M.; Ouyang, L.; Wang, D.; Yu, J.; Zhou, L.; Zhu, M.; Wang, X.; Feng, J.; Dai, J.; Shen, Y. Optimization of microbial cell factories for astaxanthin production: Biosynthesis and regulations, engineering strategies and fermentation optimization strategies. Synth. Syst. Biotechnol. 2022, 7, 689–704. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Liu, L.; Chen, J.; Wei, D. Effects of Xanthophyllomyces dendrorhous on cell growth, lipid, and astaxanthin production of Chromochloris zofingiensis by mixed culture strategy. J. Appl. Phycol. 2018, 30, 3009–3015. [Google Scholar] [CrossRef]
- Fath, M.; Zilouei, H. Investigating the Effect of Nutrients on Cocultivation of Haematococcus pluvialis and Xanthophyllomyces dendrorhous. Plant Algae Environ. 2025, 9, 10–23. [Google Scholar]
- Long, X.; Wang, L.; Li, Y.; Sun, W.; Wu, X. Effects of long-term Haematococcus pluvialis astaxanthin feeding on the growth, coloration, and antioxidant capacity of commercial-sized Oncorhynchus mykiss. Aquac. Rep. 2023, 30, 101603. [Google Scholar] [CrossRef]
- Řehulka, J. Influence of astaxanthin on growth rate, condition, and some blood indices of rainbow trout, Oncorhynchus mykiss. Aquaculture 2000, 190, 27–47. [Google Scholar] [CrossRef]
- Salarzadeh, A.; Rajabi, B. The effects of dietary supplementation synthetic Astaxanthin on body astaxanthin, survival, growth of white leg shrimp (Litopenaeus vannamei). Int. J. Adv. Res. 2015, 3, 797–803. [Google Scholar]
- Ju, Z.Y.; Deng, D.F.; Dominy, W.G.; Forster, I.P. Pigmentation of Pacific white shrimp, Litopenaeus vannamei, by dietary astaxanthin extracted from Haematococcus pluvialis. J. World Aquac. Soc. 2011, 42, 633–644. [Google Scholar] [CrossRef]
- Aracati, M.F.; Rodrigues, L.F.; de Oliveira, S.L.; Rodrigues, R.A.; Conde, G.; Cavalcanti, E.N.F.; Borba, H.; Char-lie-Silva, I.; Fernandes, D.C.; Eto, S.F. Astaxanthin improves the shelf-life of tilapia fillets stored under refrigeration. J. Sci. Food Agric. 2022, 102, 4287–4295. [Google Scholar] [CrossRef]
- Carr, C.; Johnson, D.; Brendemuhl, J.; Gonzalez, J. Fresh pork quality and shelf-life characteristics of meat from pigs supplemented with natural astaxanthin in the diet. Prof. Anim. Sci. 2010, 26, 18–25. [Google Scholar] [CrossRef]
- Yang, Y.; Kim, Y.; Jin, Z.; Lohakare, J.; Kim, C.; Ohh, S.; Lee, S.; Choi, J.; Chae, B. Effects of dietary supplementation of astaxanthin on production performance, egg quality in layers and meat quality in finishing pigs. Asian-Australas. J. Anim. Sci. 2006, 19, 1019–1025. [Google Scholar] [CrossRef]
- Szczepanik, K.; Oczkowicz, M.; Dobrowolski, P.; Świątkiewicz, M. The Protective Effects of Astaxanthin (AST) in the Liver of Weaned Piglets. Animals 2023, 13, 3268. [Google Scholar] [CrossRef]
- Sha, Y.; Chen, Y.; Dong, J.; Gao, X.; Yuan, H.; Zhang, J.; Gao, Y.; Li, X. Effects of astaxanthin microencapsulated from Haematococcus pluvialis on the growth, muscle quality, antioxidant system, and related gene expression of Cyprinus carpio. Aquac. Int. 2025, 33, 110. [Google Scholar] [CrossRef]
- Tolba, S.A.; Magnuson, A.D.; Sun, T.; Lei, X.G. Dietary supplemental microalgal astaxanthin modulates molecular profiles of stress, inflammation, and lipid metabolism in broiler chickens and laying hens under high ambient temperatures. Poult. Sci. 2020, 99, 4853–4860. [Google Scholar] [CrossRef]
- Lim, K.C.; Yusoff, F.M.; Shariff, M.; Kamarudin, M.S.; Nagao, N. Dietary supplementation of astaxanthin enhances hemato-biochemistry and innate immunity of Asian seabass, Lates calcarifer (Bloch, 1790). Aquaculture 2019, 512, 734339. [Google Scholar] [CrossRef]
- Li, M.-Y.; Liu, X.-Y.; Xia, C.-G.; Wang, G.-Q.; Zhang, D.-M. Astaxanthin enhances hematology, antioxidant and immunological parameters, immune-related gene expression, and disease resistance against in Channa argus. Aquac. Int. 2019, 27, 735–746. [Google Scholar] [CrossRef]
- Bingol, M.; Brennan, C.; Zeng, M.; Oz, F. Effect of the fortification with astaxanthin on the quality parameters and heterocyclic amines content of meatballs. Int. J. Food Sci. Technol. 2022, 57, 7653–7665. [Google Scholar] [CrossRef]
- Gowd, V.; Xiao, J.; Wang, M.; Chen, F.; Cheng, K.W. Multi-Mechanistic Antidiabetic Potential of Astaxanthin: An Update on Preclinical and Clinical Evidence. Mol. Nutr. Food Res. 2021, 65, 2100252. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Gu, Z.; Liao, Y.; Li, S.; Xue, Y.; Firempong, M.A.; Xu, Y.; Yu, J.; Smyth, H.D.; Xu, X. Improved intestinal absorption and oral bioavailability of astaxanthin using poly (ethylene glycol)-graft-chitosan nanoparticles: Preparation, in vitro evaluation, and pharmacokinetics in rats. J. Sci. Food Agric. 2022, 102, 1002–1011. [Google Scholar] [CrossRef] [PubMed]
- Pogorzelska, E.; Godziszewska, J.; Brodowska, M.; Wierzbicka, A. Antioxidant potential of Haematococcus pluvialis extract rich in astaxanthin on colour and oxidative stability of raw ground pork meat during refrigerated storage. Meat Sci. 2018, 135, 54–61. [Google Scholar] [CrossRef]
- Zheng, X.; Huang, Q. Assessment of the antioxidant activities of representative optical and geometric isomers of astaxanthin against singlet oxygen in solution by a spectroscopic approach. Food Chem. 2022, 395, 133584. [Google Scholar] [CrossRef]
- Xiao, L.; Zheng, S.; Lin, Z.; Zhang, C.; Zhang, H.; Chen, J.; Wang, L. Singlet Oxygen in Food: A Review on Its Formation, Oxidative Damages, Quenchers, and Applications in Preservation. Antioxidants 2025, 14, 865. [Google Scholar] [CrossRef]
- Hernández-Marin, E.; Barbosa, A.; Martínez, A. The Metal Cation Chelating Capacity of Astaxanthin. Does This Have Any Influence on Antiradical Activity? Molecules 2012, 17, 1039–1054. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.; Bai, B.; Shen, Y. Mechanistic exploration of astaxanthin quenching singlet oxygen and inhibiting myoglobin-induced photooxidation. Food Chem. 2025, 492, 145463. [Google Scholar] [CrossRef]
- Gao, R.; Liu, H.; Li, Y.; Liu, H.; Zhou, Y.; Yuan, L. Correlation between dominant bacterial community and non-volatile organic compounds during the fermentation of shrimp sauces. Food Sci. Hum. Wellness 2023, 12, 233–241. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, M.; Xu, B.; Guo, Z. Intelligent quality control of gelatinous polysaccharide-based fresh products during cold chain logistics: A review. Food Biosci. 2024, 62, 105081. [Google Scholar] [CrossRef]
- Asjad, M.A.; Lou, Z.; Iqbal, M.W.; Raza, A.; Aadil, R.M. Formulation and sterilization of Dendrobium officinale stem-based drinks: Assessing stability, antioxidant, sensory and microbial properties. J. Food Meas. Charact. 2025, 19, 3986–4002. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, B.; Guo, X.; Liu, D.; Qiu, C.; Ma, H. Effect of thermosonication on texture degradation of carrot tissue in relation to alterations in cell membrane and cell wall structure. Food Chem. 2022, 393, 133335. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhu, W.; Li, X.; Fan, J. Effects of heat pump drying temperature and dietary fat on carrot β-carotene bioaccessibility. Int. J. Agric. Biol. Eng. 2017, 10, 234–242. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, F.; Wan, X.; Zhang, H.; Cai, M.; Hu, K.; Duan, Y. Effects of rapeseed protein addition on soybean protein-based textured protein produced by low-moisture extrusion: Changes in physicochemical attributes, structural properties and barrel flow behaviors. Food Hydrocoll. 2024, 149, 109631. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, W.; Wu, B.; Wu, P.; Duan, Y.; Yang, Q.; Ma, H. Modification of garlic skin dietary fiber with twin-screw extrusion process and in vivo evaluation of Pb binding. Food Chem. 2018, 268, 550–557. [Google Scholar] [CrossRef]
- Rokey, G.J.; Plattner, B.; Souza, E.M.d. Feed extrusion process description. Rev. Bras. De Zootec. 2010, 39, 510–518. [Google Scholar] [CrossRef]
Wastewater | Nutrient Profile (mg/L) | SS (mg/L) | Reference | ||
---|---|---|---|---|---|
TOC/COD | TN | TP | |||
Molasses wastewater | TOC: 57,433.2; COD: 128,723 | NH3+ and NO2−: 484.2 | / | / | [24] |
Molasses fermentation wastewater | COD: 63,500 | 834 | / | / | [29] |
Beverage industrial wastewater | COD: 4424 | 68 | 11 | 580 | [30] |
Equalization tank wastewater of soft drink industry | COD: 5533 | NH3+ and NO2−: 1.5 | 5.9 | 39 | [31] |
Bottle-washing wastewater of soft drink industry | COD: 453 | NH3+ and NO2−: 0.9 | 1.4 | 9.5 | [31] |
Food waste fermentation wastewater | TOC: 5500; COD: 15,000 | 350 | 85 | 1050 | [32] |
Cidery wastewater | COD: 8000 | / | / | 6000 | [26] |
Beverage wastewater | COD: 11,214 | 8.1 | 16–68 | 5600 | [26] |
Winery wastewater | COD: 3236 | 7.6 | 5.26 | 11,311 | [26] |
Milk processing wastewater | COD: 1237.0–1509.0 | 52.4–66.5 | 24.2–26.7 | / | [33] |
Soft drink wastewater | COD: 1229.0–1603.0 | 16.7–43.8 | 61.5–65.5 | / | [33] |
Soybean oil plant wastewater | COD: 1349.0–1436.0 | 44.1–87.9 | 116.4–185.0 | / | [33] |
Defective soy sauce | TOC: 158,500; COD: 790,000 | 13500 | / | / | [25] |
Starch processing effluent | TOC: 2680–2820 | 228–281 | 25.7–29.4 | 580–610 | [34] |
Vinegar production wastewater | COD: 740 | 20.5 | 7.4 | / | [35] |
Soybean fermentation effluent | TOC: 2042.2 | 394.44 | 46.78 | / | [36] |
Microalgae | Source | Culture Medium | Inducing Conditions | Cultivation Period (Day) | Biomass Yield | Astaxanthin Yield | Reference |
---|---|---|---|---|---|---|---|
Haematococcus pluvialis | A microbial culture collection in Tsukuba, Japan | Kobayashi’s basal medium | Light with short wavelength (380–470 nm, blue and purple light) | 12–13 | 0.480–0.546 mg/cm3 | 9.3–14 μg/cm3 | [49] |
Haematococcus pluvialis | Germany | Artificial medium | Salinity stress (0.25, 0.50, and 1.0% salinity) | 6–16 | ~9.5 g/L | ~9 mg/L | [50] |
Haematococcus pluvialis | A culture collection of algae in the United States | NSIII medium | magnesium acetate, sodium acetate, and potassium acetate (10, 50, and 100 mM) | 24–30 | 0.22–0.35 g/L/day | 3.79–10.21 mg/L/day | [51] |
Haematococcus pluvialis | A microbial culture collection in Tsukuba, Japan | BG11 medium | Ethanol (1, 2, and 3%) | 14 | 5.7 g/L | 119.61 mg/L | [52] |
Haematococcus pluvialis | A culture collection of algae in the United States | MES-Volvox culture medium | 15% CO2 and 300 μmol/m2/s light | 12 | 878 mg/L | 36.23 mg/g | [53] |
Haematococcus pluvialis | Lugu Lake in Yunnan Province, China | BG11 medium | Melatonin (10, 15, and 20 μM) and putrescine (50, 100, and 150 nM) | 13 | ~1.2 g/L | 36.4 mg/g | [54] |
Haematococcus pluvialis | Industrial facility in Reykjanesbaer, Iceland | Bold’s basal medium | Hydrogen peroxide (0.1 mM) | 14 | / | 12.27 mg/L | [55] |
Haematococcus pluvialis | Industrial facility in Reykjanesbaer, Iceland | Bold’s basal medium | High light (175 μmol/m2/s) | 14 | / | 16.91 mg/L | [55] |
Haematococcus pluvialis | Industrial facility in Reykjanesbaer, Iceland | Bold’s basal medium | Nitrogen starvation | 14 | / | 13.67 mg/L | [55] |
Chromochloris zofingiensis | A culture collection, Rockville, USA | Modified Bristol’s medium | 1 mM NaClO | 9 | 4.8 g/L | 1.47 mg/g | [56] |
Chromochloris zofingiensis | A culture collection, Rockville, USA | Modified Bristol’s medium | 0.1 mM H2O2 | 9 | ~7.5 g/L | 1.7 mg/g | [56] |
Chromochloris zofingiensis | A culture collection, Rockville, USA | Kuhl medium | Nitrogen starvation | 5 | 1.2 g/L | 4.45 mg/L | [57] |
Chromochloris zofingiensis | A culture collection, Rockville, USA | Kuhl medium | Phosphorus starvation | 5 | 2.7 g/L | 2.16 mg/L | [57] |
Chromochloris zofingiensis | A culture collection, Rockville, USA | Kuhl medium | Sulfur starvation | 5 | 1.8 g/L | 2.86 mg/L | [57] |
Chromochloris zofingiensis | / | Kuhl medium | 5 g/L glucose | 8 | / | ~0.55% of dry weight | [58] |
Chlorococcum sp. | A rocky wall of Victoria Peak, Hong Kong | Modified Kuhl medium | Illumination (22 μE/m2/s) and hydrogen peroxide (0.1 mM) | 7 | / | 7.086 mg/g | [59] |
Microalgae | Wastewater | Nutrient Removal (%) and Initial Concentration | Biomass Yield | Period (day) | Reference | ||
---|---|---|---|---|---|---|---|
COD | TN | TP | |||||
Haematococcus pluvialis (co-cultured with fungus) | Wastewater from wastewater treatment plant | 100 | 83.3 (~550 mg/L) | 88.2 (~90 mg/L) | 1.39 g/L | 12 | [66] |
Haematococcus pluvialis | Walnut shell extracts | 39.18 (280.5 mg/L) | 52.15 (8.71 mg/L) | 45.46 (5.7 mg/L) | 0.92 g/L | 13 | [67] |
Haematococcus pluvialis (co-cultured with fungus) | Wastewater from wastewater treatment plant | / | 100 | 100 | 1.95 g/L | 12 | [66] |
Haematococcus pluvialis | Ethanol plant waste effluent | / | 91.7 | 100 | 4.37 g/L | 16 | [61] |
Haematococcus pluvialis | Domestic secondary effluent | / | 93.8 (7.0 mg/L) | 97.8 (0.46 mg/L) | 207 mg/L | 22 | [68] |
Chromochloris zofingiensis | Whey wastewater | 85.47 (100.36 g/L) | 92.69 (2.81 g/L) | 77.08 (795.30 mg/L) | 3.86 g/L | 7 | [37] |
Chromochloris zofingiensis | Municipal wastewater and biogas slurry | / | 93 (31.5 mg/L) | 90 (10.15 mg/L) | 2.5 g/L | 4 | [69] |
Chromochloris zofingiensis | Piggery wastewater | 79.84 (3500 mg/L) | 82.70 (148.0 mg/L) | 98.17 (156.0 mg/L) | 2.96 g/L | 10 | [70] |
Chromochloris zofingiensis | Dairy wastewater | / | 51.7 (118.0 mg/L) | 97.5 (149.0 mg/L) | ~1.1 × 107 cells/mL | 6 | [60] |
Chromochloris zofingiensis | Swine wastewater and fishery wastewater | ~95 (2596 mg/L) | ~80 (586 mg/L) | ~95 (62 mg/L) | ~1.8 g/L | 7 | [71] |
Source | Format | Dosage | Animal | Functions | Reference |
---|---|---|---|---|---|
Haematococcus pluvialis | Microalgae powder | Astaxanthin: 18.57 and 31.25 mg/kg | Oncorhynchus mykiss | (1) Compared with the control group, weight gain rate and specific growth rate of rainbow trout fed 30 mg/kg microalgae powder were much higher, reaching 251.55% and 1.05%/day, respectively; (2) Astaxanthin content in rainbow trout fed 30 mg/kg microalgae powder was around 14 mg/kg while that in the fish of control group was less than 1 mg/kg; (3) Astaxanthin supplementation (30 mg/kg microalgae powder) in diet increased the total antioxidant capacity and activity of glutathione peroxidase in liver and serum; (4) Through supplying astaxanthin in diet, malondialdehyde content in serum and liver of rainbow trout dropped from 33.2 to 16.94 nmol/mL and from 1.25 to 0.67 nmol/mL, respectively. | [90] |
/ | / | Astaxanthin: 49.8 mg/kg | Oncorhynchus mykiss | (1) Relative weight gain of fish fed astaxanthin-containing diet was 19.4%, which is slightly higher than that (18.4%) of fish fed astaxanthin-free diet. | [91] |
Haematococcus pluvialis | Microalgae powder | Microalgae: 50 and 100 mg/kg | Marsupenaeus japonicus | (1) Survival rate of Marsupenaeus japonicus increased from 37% to 51% by astaxanthin supplementation; (2) With dietary supplementation of astaxanthin, weight gain of kuruma prawn was improved from 281% to 348%; (3) Body astaxanthin of kuruma prawn fed Haematococcus pluvialis reached 128–179 mg/kg, which is much higher than that (55 mg/kg) of kuruma prawn fed astaxanthin-free diet. | [92] |
Haematococcus pluvialis | Astaxanthin extract | Astaxanthin: 25, 50, 75, 100 and 150 mg/kg | Litopenaeus vannamei | (1) Natural astaxanthin had greater pigmentation efficiency than synthetic astaxanthin; (2) Tail muscle of shrimp fed microalgal astaxanthin contained more esterified astaxanthin (around 10–30 mg/kg) than that of shrimp fed synthetic astaxanthin; (3) Diet containing microalgal astaxanthin significantly improved redness (4.12–5.54) and yellowness (5.98–8.63) of the tail muscle of shrimp. | [93] |
Haematococcus pluvialis | Astaxanthin extract | Astaxanthin: 100 and 200 mg/kg | Oreochromis niloticus | (1) By the end of 50-day storage, tilapia filets treated with astaxanthin had better sensory quality (e.g., brightness and texture) than those not treated with astaxanthin; (2) Tilapia supplemented with astaxanthin presented lower lipid oxidation index. | [94] |
/ | Natural astaxanthin | Astaxanthin: 66.7 mg/kg | Pig | (1) Natural astaxanthin shows promise for improving the length of consumer retail acceptability of pork products by delaying oxidation and surface discoloration. | [95] |
/ | / | Astaxanthin: 5, 10 and 20 ppm | Pig | (1) Growth performance of pigs was not improved by the dietary supplementation of astaxanthin; (2) The increase in astaxanthin supplementation reduced average fat depth and the 10th rib fat depth of pigs; (3) Pigs fed 5 or 10 ppm astaxanthin had the highest percentage of fat-free lean; (4) When the addition of astaxanthin increased from 10 ppm to 20 ppm, there was not any further improvement in carcass characteristics of pigs; (5) Based on a price of USD 9.07/lb for 10,000 ppm astaxanthin product, supplementation of 20 ppm astaxanthin in pig’s diet was of no economic benefit. | [96] |
Haematococcus pluvialis | Astaxanthin extract | Astaxanthin: 25 mg/kg | Weaned piglets | (1) Dietary intake of astaxanthin reduces the average percentage of collagen fibers in liver tissue to around 2%, having a protective effect on the liver of piglets; (2) Astaxanthin affected the expressions of specific genes, such as CREB, NOTCH1, CYP7A1 and NR1H3, related to liver function. | [97] |
Haematococcus pluvialis | Microcapsuled astaxanthin | / | Cyprinus carpio | (1) Weight gain rate, specific growth rate, and condition factor of fish were improved significantly by astaxanthin supplementation; (2) With astaxanthin supplementation, total superoxide dismutase activity significantly increased while malondialdehyde content decreased; (3) Compared to the control group, crude protein content in fish fed astaxanthin was higher while crude ash content was lower; (4) The muscle of fish fed astaxanthin had higher water-holding capacity. | [98] |
Haematococcus pluvialis | Astaxanthin extract | Astaxanthin: 10, 20, 40, and 80 mg/kg | Chicken | (1) through affecting the hepatic mRNA levels of several redox status-controlling genes, microalgal astaxanthin modulates molecular profiles of stress. | [99] |
Haematococcus pluvialis | Lyophilized microalgal cells | Astaxanthin: 50, 100 and 150 mg/kg | Lates calcarifer | (1) White blood cell, red blood cell, and hemoglobin content increased with the astaxanthin supplementation; (2) Increasing supplementary astaxanthin levels resulted in the drop of serum cholesterol and triglyceride levels of fish; (3) Innate immune parameters, including total immunoglobulin, lysozyme activity, respiratory burst activity, and phagocytic activity, increased with astaxanthin supplementation, reaching 35.37 g/L, 295.27 U/mL, 0.83, and 93.33%, respectively. | [100] |
/ | Astaxanthin (purity > 98%) | Astaxanthin: 50 and 100 mg/kg | Channa argus | (1) Hemoglobin content, white blood cell, and red blood cell were improved by astaxanthin supplementation; (2) Through providing astaxanthin-containing diet, survival rate of Channa argus increased from 26% to 58% after challenge with Aeromonas hydrophila. | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Q.; Yang, L.; Zhang, X. Valorization of Food Processing Wastewater for Astaxanthin Production by the Mixotrophic Fermentation of Microalgae: A Review. Fermentation 2025, 11, 580. https://doi.org/10.3390/fermentation11100580
Lu Q, Yang L, Zhang X. Valorization of Food Processing Wastewater for Astaxanthin Production by the Mixotrophic Fermentation of Microalgae: A Review. Fermentation. 2025; 11(10):580. https://doi.org/10.3390/fermentation11100580
Chicago/Turabian StyleLu, Qian, Limin Yang, and Xiaowei Zhang. 2025. "Valorization of Food Processing Wastewater for Astaxanthin Production by the Mixotrophic Fermentation of Microalgae: A Review" Fermentation 11, no. 10: 580. https://doi.org/10.3390/fermentation11100580
APA StyleLu, Q., Yang, L., & Zhang, X. (2025). Valorization of Food Processing Wastewater for Astaxanthin Production by the Mixotrophic Fermentation of Microalgae: A Review. Fermentation, 11(10), 580. https://doi.org/10.3390/fermentation11100580