Enhancing Docosahexaenoic Acid Production by Schizochytrium sp. via Periodic Hydrogen Peroxide and p-Aminobenzoate Control
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains
2.2. Media
2.3. Fed-Batch Cultivation of Schizochytrium sp. for DHA Production
2.4. Measurement of Concentrations of Schizochytrium sp. Cells, Lipid, DHA, and Glucose
2.5. ROS and the Activities of Key Enzymes Involved in the DHA Biosynthetic Pathway Analysis
2.6. Measurements of Specific Rates of Cell Growth and Glucose Consumption
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effects of Exogenous H2O2 on DHA Fermentation Performance
3.2. Effects of Exogenous p-Aminobenzoate on DHA Fermentation Performance
3.3. Increasing DHA Production with the Periodic Hydrogen Peroxide and p-Aminobenzoate Feeding Strategy
3.4. Enhancement of Catalytic Performance of Key Enzyme in DHA Biosynthesis with the Periodic Hydrogen Peroxide and p-Aminobenzoic Acid Feeding Strategy
3.5. Reducing Glucose Distribution for Cell Maintenance, the Periodic Hydrogen Peroxide and p-Aminobenzoic Acid Feeding Strategy
3.6. The Advantages of the Proposed Periodic Control
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Drover, J.R.; Hoffman, D.R.; Wheaton, D.H.; Birch, E.E.; Castañeda, Y.S.; Morale, S.E.; Garfield, S. Cognitive function in 18-month-old term infants of the DIAMOND study: A randomized, controlled clinical trial with multiple dietary levels of docosahexaenoic acid. Early Hum. Dev. 2011, 87, 223–230. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, Z.Y.; Yang, W.Q.; Huang, P.W.; Gu, Y.; Sun, X.M.; Huang, H. Enhanced docosahexaenoic acid production from cane molasses by engineered and adaptively evolved Schizochytrium sp. Bioresour. Technol. 2023, 376, 128833. [Google Scholar]
- Yurko-Mauro, K.; Alexander, D.D.; Van Elswyk, M.E. Docosahexaenoic acid and adult memory: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0120391. [Google Scholar] [CrossRef] [PubMed]
- Rohman, A.; Irnawati; Windarsih, A.; Riswanto, F.D.O.; Indrayanto, G.; Fadzillah, N.A.; Riyanto, S.; Bakar, N.K.A. Application of Chromatographic and Spectroscopic-Based Methods for Analysis of Omega-3 (ω-3 FAs) and Omega-6 (ω-6 FAs) Fatty Acids in Marine Natural Products. Molecules 2023, 28, 5524. [Google Scholar] [CrossRef]
- Xu, X.; Huang, C.; Xu, Z.; Xu, H.; Wang, Z.; Yu, X. The strategies to reduce cost and improve productivity in DHA production by Aurantiochytrium sp.: From biochemical to genetic respects. Appl. Microbiol. Biot. 2020, 104, 9433–9447. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Kurt, E.; LBassi, T.; Sa, L.; Xie, D. Biotechnological production of omega-3 fatty acids: Current status and future perspectives. Front. Microbiol. 2023, 14, 1280296. [Google Scholar] [CrossRef]
- Chauton, M.S.; Reitan, K.I.; Norsker, N.H.; Tveterås, R.; Kleivdal, H.T. A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: Research challenges and possibilities. Aquaculture 2015, 436, 95–103. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, P.P.; Zhang, M.; Zhu, Y.M.; Wang, X.P.; Luo, X.A.; Bao, Z.D.; Yu, L.J. Transcriptome analysis reveals that up-regulation of the fatty acid synthase gene promotes the accumulation of docosahexaenoic acid in Schizochytrium sp. S056 when glycerol is used. Algal. Res. 2016, 15, 83–92. [Google Scholar] [CrossRef]
- Certik, M.; Shimizu, S. Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J. Biosci. Bioeng. 1999, 87, 1–14. [Google Scholar] [CrossRef]
- Sijtsma, L.; de Swaaf, M.E. Biotechnological production and applications of the ω-3 polyunsaturated fatty acid docosahexaenoic acid. Appl. Microbiol. Biotechnol. 2004, 64, 146–153. [Google Scholar] [CrossRef]
- Chi, G.X.; Xu, Y.Y.; Cao, X.Y.; Li, Z.P.; Cao, M.F.; Chisti, Y.; He, N. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnol. Adv. 2022, 55, 107897. [Google Scholar]
- EFSA NDA Panel (EFSA Panel on Nutrition, Novel Foods and Food Allergens); Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; HirschErnst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of oil from Schizochytrium limacinum (strain TKD-1) for use in infant and follow-on formula as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2023, 21, e8414. [Google Scholar]
- Hu, F.; Clevenger, A.L.; Zheng, P.; Huang, Q.Y.; Wang, Z.K. Low-temperature effects on docosahexaenoic acid biosynthesis in Schizochytrium sp. TIO01 and its proposed underlying mechanism. Biotechnol. Biofuels 2020, 13, 172. [Google Scholar] [CrossRef] [PubMed]
- Kang, N.K.; Lee, B.; Choi, G.G.; Moon, M.; Park, M.S.; Lim, J.K.; Yang, J.W. Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles. Korean J. Chem. Eng. 2014, 31, 861–867. [Google Scholar] [CrossRef]
- Yilancioglu, K.; Cokol, M.; Pastirmaci, I.; Erman, B.; Cetiner, S. Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. PLoS ONE 2014, 9, e91957. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; Zhang, T.; Guo, X.; Liu, Y.; Liu, R.; Jin, Q.Z.; Wang, X.G. Optimization of cultivation conditions for efficient production of carotenoid-rich DHA oil by Schizochytrium sp. S31. Process Biochem. 2020, 94, 190–197. [Google Scholar] [CrossRef]
- Chang, G.F.; Gao, N.S.; Tian, G.W.; Wu, Q.H.; Chang, M.; Wang, X.G. Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp S31 with constantly high oxygen transfer coefficient. Bioresour. Technol. 2013, 142, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.Q.; Li, T.Y.; Yang, Z.Q.; He, T.; Ding, J.; Li, T.; Huang, A.G. Eliminating the accumulation of reactive oxygen species through periodic hypoxic stress control for effective DHA production by Schizochytrium sp. Chem. Eng. Sci. 2023, 280, 119040. [Google Scholar] [CrossRef]
- Ren, L.J.; Feng, Y.; Li, J.; Qu, L.; Huang, H. Impact of phosphate concentration on docosahexaenoic acid production and related enzyme activities in fermentation of Schizochytrium sp. Bioprocess Biosyst. Eng. 2013, 36, 1177–1183. [Google Scholar]
- Zhang, P.; Hai, H.; Sun, D.X.; Yuan, W.H.; Liu, W.J.; Ding, R.R.; Teng, M.T.; Ma, L.; Tian, J.; Chen, C.F. A high throughput method for total alcohol determination in fermentation broths. BMC Biotechnol. 2019, 19, 30. [Google Scholar] [CrossRef]
- Hsu, R.Y.; Lardy, H.A. Malic enzyme. Methods Enzymol. 1969, 13, 230–235. [Google Scholar]
- Langdon, R.G. Glucose 6-phosphate dehydrogenase from erythrocytes. Methods Enzymol. 1966, 9, 126–131. [Google Scholar]
- Jakobsen, A.N.; Aasen, I.M.; Josefsen, K.D.; Strom, A.R. Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp strain T66: Effects of N and P starvation and O2 limitation. Appl. Microbiol. Biotechnol. 2008, 80, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.J.; Ji, X.J.; Huang, H.; Qu, L.A.; Feng, Y.; Tong, Q.Q.; Ouyang, P.K. Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp. Appl. Microbiol. Biotechnol. 2010, 87, 1649–1656. [Google Scholar] [CrossRef] [PubMed]
- Ruenwai, R.; Neiss, A.; Laoteng, K.; Vongsangnak, W.; Dalfard, A.B.; Cheevadhanarak, S.; Petranovic, D.; Nielsen, J. Heterologous production of polyunsaturated fatty acids in Saccharomyces cerevisiae causes a global transcriptional response resulting in reduced proteasomal activity and increased oxidative stress. Biotechnol. J. 2011, 6, 343–356. [Google Scholar] [CrossRef]
- Ren, L.J.; Sun, X.M.; Ji, X.J.; Chen, S.L.; Guo, D.S.; Huang, H. Enhancement of docosahexaenoic acid synthesis by manipulation of antioxidant capacity and prevention of oxidative damage in Schizochytrium sp. Bioresour. Technol. 2017, 223, 141–148. [Google Scholar]
- Li, Z.P.; Ling, X.P.; Zhou, H.; Meng, T.; Zeng, J.J.; Hang, W.; Shi, Y.Y.; He, N. Screening chemical modulators of benzoic acid derivatives to improve lipid accumulation in Schizochytrium limacinum SR21 with metabolomics analysis. Biotechnol. Biofuels 2019, 12, 209. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zhu, H.; Chu, J.; Wu, J. N-acetyltransferase co-expression increases α-glucosidase expression level in Pichia pastoris. J. Biotechnol. 2019, 289, 26–30. [Google Scholar] [CrossRef]
- Ratledge, C. The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: A reappraisal and unsolved problems. Biotechnol. Lett. 2014, 36, 1557–1568. [Google Scholar] [CrossRef]
- Ren, L.J.; Huang, H.; Xiao, A.H.; Lian, M.; Jin, L.J.; Ji, X.J. Enhanced docosahexaenoic acid production by reinforcing acetyl-CoA and NADPH supply in Schizochytrium sp. HX-308. Bioprocess Biosyst Eng. 2009, 32, 837–843. [Google Scholar] [CrossRef]
- Jia, L.Q.; Li, T.Y.; Wang, R.Y.; Ma, M.Y.; Yang, Z.Q. Enhancing docosahexaenoic acid production from Schizochytrium sp. by using waste Pichia pastoris as nitrogen source based on two-stage feeding control. Bioresour. Technol. 2024, 403, 130891. [Google Scholar] [CrossRef]
- Anane, E.; García, Á.C.; Haby, B.; Hans, S.; Krausch, N.; Krewinkel, M.; Hauptmann, P.; Neubauer, P.; Cruz Bournazou, M.N. A model-based framework for parallel scale-down fed-batch cultivations in mini-bioreactors for accelerated phenotyping. Biotechnol. Bioeng. 2019, 116, 2906–2918. [Google Scholar] [CrossRef]
- Anane, E.; Sawatzki, A.; Neubauer, P.; Cruz Bournazou, M.N. Modelling concentration gradients in fed-batch cultivations of E. coli—Towards the flexible design of scale-down experiments. J. Chem. Technol. Biotechnol. 2019, 94, 516–526. [Google Scholar] [CrossRef]
- Brand, E.; Junne, S.; Anane, E.; Cruz Bournazou, M.N.; Neubauer, P. Importance of the cultivation history for the response of Escherichia coli to oscillations in scale-down experiments. Bioprocess Biosyst. Eng. 2018, 41, 1305–1313. [Google Scholar] [CrossRef]
- Hewitt, C.J.; Nebe-Von-Caron, G.; Axelsson, B.; McFarlane, C.M.; Nienow, A.W. Studies related to the scale-up of high-cell-density E-coli fed-batch fermentations using multiparameter flow cytometry: Effect of a changing microenvironment with respect to glucose and dissolved oxygen concentration. Biotechnol. Bioeng. 2000, 70, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.B.; Liao, X.Y.; Du, G.C.; Chen, J. A new strategy to enhance glutathione production by multiple H2O2-induced oxidative stresses in Candida utilis. Bioresour. Technol. 2009, 100, 350–355. [Google Scholar] [CrossRef]
- Liu, L.S.; Wang, F.Z.; Yang, J.; Li, X.R.; Cui, J.Y.; Liu, J.; Shi, M.L.; Wang, K.; Chen, L. Nitrogen feeding strategies and metabolomic analysis to alleviate high-nitrogen inhibition on docosahexaenoic acid production in crypthecodinium cohnii. J. Agric. Food Chem. 2018, 66, 10640–10650. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.Q.; Shi, Z.P.; Yan, J.; Ding, J.; Hua, Q. Enhancing heterologous proteins production by MutS Pichia pastoris via periodic methanol induction control. AIChE J. 2020, 66, e16798. [Google Scholar] [CrossRef]
- Russc, G.L.; Langellotti, A.L.; Sacchi, R.; Masi, P. Techno-economic assessment of DHA-rich Aurantiochytrium sp. production using food industry by-products and waste streams as alternative growth media. Bioresour. Technol. Rep. 2022, 18, 100997. [Google Scholar]
Run | H2O2 Concentration (mmol/L) | p-Aminobenzoate Concentration (mg/L) | Glucose Consumption Rate (g/L/h) | Dry Cell Weight (g/L) | Lipid Concentration (g/L) |
---|---|---|---|---|---|
1 | 0 | 0 | 0.87 ± 0.06 bc | 5.34 ± 0.29 c | 0.80 ± 0.05 e |
2 | 1 | 0 | 0.91 ± 0.07 b | 5.21 ± 0.27 c | 0.92 ± 0.07 cde |
3 | 2 | 0 | 1.18 ± 0.10 a | 5.12 ± 0.29 c | 1.16 ± 0.10 ab |
4 | 3 | 0 | 0.88 ± 0.06 bc | 4.96 ± 0.16 c | 0.82 ± 0.07 de |
5 | 4 | 0 | 0.74 ± 0.06 d | 4.22 ± 0.15 d | 0.58 ± 0.05 f |
6 | 0 | 100 | 0.94 ± 0.08 b | 6.18 ± 0.20 b | 0.96 ± 0.08 cd |
7 | 0 | 200 | 1.25 ± 0.10 a | 6.80 ± 0.21 a | 1.18 ± 0.10 a |
8 | 0 | 300 | 1.11 ± 0.09 a | 6.30 ± 0.20 b | 1.02 ± 0.09 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, L.; Ma, M.; Wang, X.; Wang, R.; Xin, S. Enhancing Docosahexaenoic Acid Production by Schizochytrium sp. via Periodic Hydrogen Peroxide and p-Aminobenzoate Control. Fermentation 2025, 11, 558. https://doi.org/10.3390/fermentation11100558
Jia L, Ma M, Wang X, Wang R, Xin S. Enhancing Docosahexaenoic Acid Production by Schizochytrium sp. via Periodic Hydrogen Peroxide and p-Aminobenzoate Control. Fermentation. 2025; 11(10):558. https://doi.org/10.3390/fermentation11100558
Chicago/Turabian StyleJia, Luqiang, Mengyao Ma, Xingyue Wang, Ruoyu Wang, and Shuqi Xin. 2025. "Enhancing Docosahexaenoic Acid Production by Schizochytrium sp. via Periodic Hydrogen Peroxide and p-Aminobenzoate Control" Fermentation 11, no. 10: 558. https://doi.org/10.3390/fermentation11100558
APA StyleJia, L., Ma, M., Wang, X., Wang, R., & Xin, S. (2025). Enhancing Docosahexaenoic Acid Production by Schizochytrium sp. via Periodic Hydrogen Peroxide and p-Aminobenzoate Control. Fermentation, 11(10), 558. https://doi.org/10.3390/fermentation11100558