Improvement of Thermophilic Butanol Production by Thermoanaerobacterium thermosaccharolyticum from Waste Figs Through the Gradual Addition of Butyric Acid
Abstract
1. Introduction
2. Materials and Methods
2.1. Substrate and Inoculum
2.2. Experimental Setup and Procedure
2.3. Analytical Methods
2.4. Box–Wilson Design
3. Results and Discussion
X1 | X2 | Y | ||
---|---|---|---|---|
Fig Concentration (g/L) | Butyric Acid Concentration (g/L) | Butanol Concentration (g/L) | ||
Experimental | Prediction | |||
Axial points | ||||
A1 | 0 | 2 | 0.27 | 0.29 |
A2 | 30 | 2 | 0.2 | 0.23 |
A3 | 15 | 0 | 0.19 | 0.22 |
A4 | 15 | 4 | 0.14 | 0.15 |
Factorial points | ||||
F1 | 25.6 | 3.42 | 0.24 | 0.22 |
F2 | 25.6 | 0.58 | 0.22 | 0.19 |
F3 | 4.39 | 3.42 | 0.19 | 0.18 |
F4 | 4.39 | 0.58 | 0.33 | 0.31 |
Center point | ||||
C1 | 15 | 2 | 0.35 | 0.36 |
C2 | 15 | 2 | 0.36 | 0.36 |
C3 | 15 | 2 | 0.36 | 0.36 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
USDA | United States Department of Agriculture |
UV | Ultraviolet |
ABE | Acetone-ethanol-butanol |
DSMZ | German Collection of Microorganisms and Cell Cultures |
FID | Flame ionization detector |
FT-IR | Fourier Transform Infrared Spectroscopy |
ANOVA | Analysis of variance |
VFA | Volatile Fatty acid |
H2 | Hydrogen gas |
CO2 | Carbon dioxide gas |
TS | Total sugar |
TVFA | Total Volatile Fatty acids |
B/G | Butyrate-to-glucose |
ORP | Oxidation-Reduction Potential |
GM | Genetically modified |
non-GM | Non-genetically modified |
References
- Galván, A.; Rodríguez, A.; Martín, A.; Serradilla, M.; Martínez-Dorado, A.; Córdoba, M. Effect of Temperature during Drying and Storage of Dried Figs on Growth, Gene Expression and Aflatoxin Production. Toxins 2021, 13, 134. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, Y.; Guo, Y.; Jiang, Y.; Wen, L.; Yang, B. New Insights of Fig (Ficus carica L.) as a Potential Function Food. Trends Food Sci. Technol. 2023, 140, 104146. [Google Scholar] [CrossRef]
- Arvaniti, O.S.; Samaras, Y.; Gatidou, G.; Thomaidis, N.S.; Stasinakis, A.S. Review on Fresh and Dried Figs: Chemical Analysis and Occurrence of Phytochemical Compounds, Antioxidant Capacity and Health Effects. Food Res. Int. 2019, 119, 244–267. [Google Scholar] [CrossRef]
- Food and Agricultural Organization (FAO). FAO Statistical Databases and Datasets. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 14 February 2025).
- Celik, D.; Kabak, B. Assessment to Propose a Maximum Permitted Level for Ochratoxin A in Dried Figs. J. Food Compos. Anal. 2022, 112, 104705. [Google Scholar] [CrossRef]
- USDA; U.S. Department of Agriculture, Agricultural Research Service. Food Data of Dried Fig. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/174665/nutrients (accessed on 12 February 2025).
- Kılıç, C.; Özer, H.; İnner, B. Real-Time Detection of Aflatoxin-Contaminated Dried Figs Using Lights of Different Wavelengths by Feature Extraction with Deep Learning. Food Control 2024, 156, 110150. [Google Scholar] [CrossRef]
- Abibu, W.A.; Karapinar, I. Optimization of Pretreatment Conditions of Fig (Ficus carica) Using Autoclave and Microwave Treatments. Biomass Convers. Biorefin. 2023, 13, 11229–11243. [Google Scholar] [CrossRef]
- Heperkan, D.; Somuncuoglu, S.; Karbancioglu-Güler, F.; Mecik, N. Natural Contamination of Cyclopiazonic Acid in Dried Figs and Co-Occurrence of Aflatoxin. Food Control 2012, 23, 82–86. [Google Scholar] [CrossRef]
- Isman, B.; Biyik, H. The Aflatoxin Contamination of Fig Fruits in Aydin City (Turkey). J. Food Saf. 2009, 29, 318–330. [Google Scholar] [CrossRef]
- Kabak, B. Aflatoxins in Hazelnuts and Dried Figs: Occurrence and Exposure Assessment. Food Chem. 2016, 211, 8–16. [Google Scholar] [CrossRef]
- Bircan, C. Incidence of Ochratoxin A in Dried Fruits and Co-Occurrence with Aflatoxins in Dried Figs. Food Chem. Toxicol. 2009, 47, 1996–2001. [Google Scholar] [CrossRef]
- Kılıç, C.; İnner, B. A Novel Method for Non-Invasive Detection of Aflatoxin Contaminated Dried Figs with Deep Transfer Learning Approach. Ecol. Inf. 2022, 70, 101728. [Google Scholar] [CrossRef]
- Boudra, H.; Le Bars, J.; Le Bars, P.; Dupuy, J. Time of Aspergillus Flavus Infection and Aflatoxin Formation in Ripening of Figs. Mycopathologia 1994, 127, 29–33. [Google Scholar] [CrossRef]
- Özmıhçı, S.; Hacıoğlu, İ.; Altındağ, E.E. Impacts of Mycotoxin on Biohydrogen Production from Waste Dry Fruits. J. Mater. Cycles Waste Manag. 2022, 24, 1736–1746. [Google Scholar] [CrossRef]
- Tan, F.; Lu, W.; Cao, B.; Wang, S.; Mu, M.; Zheng, A. Environmental Impact and Water Footprint of Biofuel Production from Macro-Algae Biomass Based on Life Cycle Assessment. Renew. Energy 2025, 254, 123612. [Google Scholar] [CrossRef]
- Gopalakrishnan, N.K.; Balasubramanian, B.; Meyyazhagan, A.; Chaudhary, A.; Palani, V.; Kamyab, H.; Pappuswamy, M. Exploring the Efficiency and Scalability of Using Algae as a Biomass Feedstock for Biofuel Production. Algal Res. 2025, 90, 104251. [Google Scholar] [CrossRef]
- Atofarati, E.O.; Enweremadu, C.C. A Review of Sustainable Biofuel Catalysts and Additive Technologies Using Nanoparticles. Fuel 2026, 403, 136100. [Google Scholar] [CrossRef]
- Amini, F.; Giyahchi, M.; Moghimi, H. Biorefinery of Saponification Effluent for Biodiesel Production by a Newly Isolated Oleaginous Yeast Strain. Renew. Energy 2026, 256, 123948. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Li, X.; Shi, J.; Liu, L. Exploring the Potential of Multiple Lignocellulosic Biomass as a Feedstock for Biobutanol Production. Fuel 2024, 357, 129697. [Google Scholar] [CrossRef]
- Ramandani, A.A.; Lan, J.C.W.; Lim, J.W.; Lay, C.H.; Srimongkol, P.; Srinuanpan, S.; Khoo, K.S. Artificial Intelligence-Driven and Prediction of Green Biohydrogen Derived from Microalgae Biorefinery: A Review. Renew. Sustain. Energy Rev. 2026, 225, 116118. [Google Scholar] [CrossRef]
- Qureshi, N.; Ezeji, T.C. Butanol, “a Superior Biofuel” Production from Agricultural Residues (Renewable Biomass): Recent Progress in Technology. Biofuels Bioprod. Biorefining 2008, 2, 319–330. [Google Scholar] [CrossRef]
- Bunevičienė, K.; Barčauskaitė, K.; Drapanauskaitė, D.; Gvildienė, K.; Antanaitis, Š.; Mažeika, R. Screening of Biofuel Ash Chemical Composition and Potential Environmental Risk Caused by Heavy Metals: A Six-Year Study in Lithuania. Environ. Pollut. 2025, 381, 126602. [Google Scholar] [CrossRef]
- Mitra, R.; Bhattacharya, I.; Bhar, R.; Dubey, B.K.; Ghosh, A.; Sen, R. Strategic Conversion of Algal and Lignocellulosic Biomass Wastes as Mixed Feedstock for Enhanced and Environment-Friendly Production of Bioethanol. Energy Convers. Manag. 2025, 342, 120157. [Google Scholar] [CrossRef]
- Pedraza-Casanova, L.; Romero-Ramirez, P.; Carrillo, H.; Cifuentes, B.; Guerrero, J.L.; García-Núñez, J.A. An in Silico Environmental Risk Assessment of Palm Oil Transesterification in Supercritical Ethanol as a Tool to Enhance Sustainable Biofuel Production. J. Supercrit. Fluids 2025, 226, 106724. [Google Scholar] [CrossRef]
- Suresh, A.R.; Alphonse mani, A.S.; Muthuvelu, K.S. Investigation of Pre-Treatment Techniques on Spent Substrate of Pleurotus Ostreatus for Enhanced Biobutanol Production Using Clostridium Acetobutylicum MTCC 11274. Bioresour. Technol. 2024, 394, 130228. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Park, J.H.; Jang, S.H.; Nielsen, L.K.; Kim, J.; Jung, K.S. Fermentative Butanol Production by Clostridia. Biotechnol. Bioeng. 2008, 101, 209–228. [Google Scholar] [CrossRef] [PubMed]
- Wittevrongel, G.R.; Simoens, M.; Denayer, J.F.M. Investigating Steam Regeneration as Rapid Temperature Swing Adsorption Method for Biobutanol Recovery Using an Activated Carbon Monolith. Sep. Purif. Technol. 2025, 362, 131848. [Google Scholar] [CrossRef]
- Thirmal, C.; Dahman, Y. Comparisons of Existing Pretreatment, Saccharification, and Fermentation Processes for Butanol Production from Agricultural Residues. Can. J. Chem. Eng. 2012, 90, 745–761. [Google Scholar] [CrossRef]
- Dürre, P. Biobutanol: An Attractive Biofuel. Biotechnol. J. 2007, 2, 1525–1534. [Google Scholar] [CrossRef]
- García, V.; Päkkilä, J.; Ojamo, H.; Muurinen, E.; Keiski, R.L. Challenges in Biobutanol Production: How to Improve the Efficiency? Renew. Sustain. Energy Rev. 2011, 15, 964–980. [Google Scholar] [CrossRef]
- Dürre, P. Fermentative Butanol Production: Bulk Chemical and Biofuel. Ann. N. Y Acad. Sci. 2008, 1125, 353–362. [Google Scholar] [CrossRef]
- Niemistö, J.; Saavalainen, P.; Pongrácz, E.; Keiski, R.L. Biobutanol as a Potential Sustainable Biofuel—Assessment of Lignocellulosic and Waste-Based Feedstocks. J. Sustain. Dev. Energy Water Environ. Syst. 2013, 1, 58–77. [Google Scholar] [CrossRef]
- Jones, D.T.; Woods, D.R. Acetone-Butanol Fermentation Revisited. Microbiol. Rev. 1986, 50, 484–524. [Google Scholar] [CrossRef] [PubMed]
- Hitschler, L.; Kuntz, M.; Langschied, F.; Basen, M. Thermoanaerobacter Species Differ in Their Potential to Reduce Organic Acids to Their Corresponding Alcohols. Appl. Microbiol. Biotechnol. 2018, 102, 8465–8476. [Google Scholar] [CrossRef]
- Tashiro, Y.; Yoshida, T.; Noguchi, T.; Sonomoto, K. Recent Advances and Future Prospects for Increased Butanol Production by Acetone-Butanol-Ethanol Fermentation. Eng. Life Sci. 2013, 13, 432–445. [Google Scholar] [CrossRef]
- Freier-Schröder, D.; Wiegel, J.; Gottschalk, G. Butanol Formation by Clostridium thermosaccharolyticum at Neutral PH. Biotechnol. Lett. 1989, 11, 831–836. [Google Scholar] [CrossRef]
- Taylor, M.P.; Eley, K.L.; Martin, S.; Tuffin, M.I.; Burton, S.G.; Cowan, D.A. Thermophilic Ethanologenesis: Future Prospects for Second-Generation Bioethanol Production. Trends Biotechnol. 2009, 27, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Scully, S.M.; Brown, A.E.; Mueller-Hilger, Y.; Ross, A.B.; Örlygsson, J. Influence of Culture Conditions on the Bioreduction of Organic Acids to Alcohols by Thermoanaerobacter Pseudoethanolicus. Microorganisms 2021, 9, 162. [Google Scholar] [CrossRef]
- Bhandiwad, A.; Shaw, A.J.; Guss, A.; Guseva, A.; Bahl, H.; Lynd, L.R. Metabolic Engineering of Thermoanaerobacterium Saccharolyticum for N-Butanol Production. Metab. Eng. 2014, 21, 17–25. [Google Scholar] [CrossRef]
- Wolın, E.A.; Wolın, M.J.; Wolfe, R.S. Formation of Methane By Bacterial Extracts. J. Biol. Chem. 1963, 238, 2882–2886. [Google Scholar] [CrossRef]
- Pfennig, N.; Lippert, K.D. Über Das Vitamin B12-Bedürfnis Phototropher Schwefelbakterien. Arch. Mikrobiol. 1966, 55, 245–256. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Kaplan, N.D.; Argun, H. Hydrogen Production from Agropyron Repens by Dark Fermentation with a Consolidated Bioprocessing Approach. Int. J. Hydrogen Energy 2024, 143, 825–832. [Google Scholar] [CrossRef]
- Ören, İ.; Argun, H. Co-Fermentation of Lemna Minor with Glucose and Diospyros Kaki Peels for Hydrogen Production. Biomass Convers. Biorefin 2024, 14, 15801–15810. [Google Scholar] [CrossRef]
- Rice, E.W.; Baird Rodger, B.; Andrew, D.; Eaton, L. Standard Methods for the Examination of Water and Wastewater. Choice Rev. Online 2012, 49, 6910. [Google Scholar] [CrossRef]
- Öztürk, A.B. Biobutanol Production via Two-Step Fermentation from Waste Rice and Economic Analysis. Ph.D. Thesis, Yıldız Technical University, Istanbul, Türkiye, 2021. [Google Scholar]
- Box, G.E.P.; Wilson, K.B. On the Experimental Attainment of Optimum Conditions. J. R. Stat. Soc. Ser. B Stat. Methodol. 1951, 13, 1–38. [Google Scholar] [CrossRef]
- Çatalkaya, E.Ç.; Şengül, F. Application of Box-Wilson Experimental Design Method for the Photodegradation of Bakery’s Yeast Industry with UV/H2O2 and UV/H2O2/Fe(II) Process. J. Hazard. Mater. 2006, 128, 201–207. [Google Scholar] [CrossRef]
- Bali, U. Application of Box-Wilson Experimental Design Method for the Photodegradation of Textile Dyestuff with UV/H2O2 Process. Dyes Pigment. 2004, 60, 187–195. [Google Scholar] [CrossRef]
- Cebeci, Y.; Sönmez, I. Application of the Box-Wilson Experimental Design Method for the Spherical Oil Agglomeration of Coal. Fuel 2006, 85, 289–297. [Google Scholar] [CrossRef]
- Gnanasambandam, R.; Proctor, A. Determination of Pectin Degree of Esterification by Diffuse Reflectance. Food Chem. 2000, 68, 327–332. [Google Scholar] [CrossRef]
- Çavdaroğlu, E.; Yemenicioğlu, A. Utilization of Stalk Waste Separated during Processing of Sun-Dried Figs (Ficus carica) as a Source of Pectin: Extraction and Determination of Molecular and Functional Properties. LWT 2022, 154, 112624. [Google Scholar] [CrossRef]
- Fellah, A.; Anjukandi, P.; Waterland, M.R.; Williams, M.A.K. Determining the Degree of Methylesterification of Pectin by ATR/FT-IR: Methodology Optimisation and Comparison with Theoretical Calculations. Carbohydr. Polym. 2009, 78, 847–853. [Google Scholar] [CrossRef]
- Thummajitsakul, S.; Paensanit, P.; Saeieo, T.; Sirirat, J.; Silprasit, K. FTIR and Multivariate Analysis of Total Phenolic Content, Antioxidant and Anti-Amylase Activities of Extracts and Milk of Glycine max L. and Phaseolus vulgaris L. Electron. J. Biotechnol. 2023, 64, 69–75. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, S.; Kaur, A. Structural Changes in Amide I and Amide II Regions of PCOS Women Analyzed by ATR-FTIR Spectroscopy. Heliyon 2024, 10, e33494. [Google Scholar] [CrossRef]
- Wachenheim, D.E.; Patterson, J.A.; Ladisch, M.R. Analysis of the Logistic Function Model: Derivation and Applications Specific to Batch Cultured Microorganisms. Bioresour. Technol. 2003, 86, 157–164. [Google Scholar] [CrossRef]
- Jiang, Y.; Guo, D.; Lu, J.; Dürre, P.; Dong, W.; Yan, W.; Zhang, W.; Ma, J.; Jiang, M.; Xin, F. Consolidated Bioprocessing of Butanol Production from Xylan by a Thermophilic and Butanologenic thermoanaerobacterium sp. M5. Biotechnol. Biofuels 2018, 11, 89. [Google Scholar] [CrossRef] [PubMed]
- Bhandiwad, A.; Guseva, A.; Lynd, L. Metabolic Engineering of Thermoanaerobacterium thermosaccharolyticum for Increased n-Butanol Production. Adv. Microbiol. 2013, 03, 46–51. [Google Scholar] [CrossRef]
- Scully, S.M.; Orlygsson, J. Biotransformation of Carboxylic Acids to Alcohols: Characterization of Thermoanaerobacter Strain Ak152 and 1-Propanol Production via Propionate Reduction. Microorganisms 2020, 8, 945. [Google Scholar] [CrossRef] [PubMed]
- Milessi, T.S.; Sandri, J.P.; Arruda, P.V.; Esteves, T.D.; Pinheiro, L.P.; Kumar, V.; Chandel, A.K. Role of Non-Genetically Modified or Native Pentose Fermenting Microorganisms in Establishing Viable Lignocellulosic Biorefineries in the Brazilian Context. Crit. Rev. Biotechnol. 2025, 45, 1287–1305. [Google Scholar] [CrossRef]
- Li, T.; Zhang, C.; Yang, K.L.; He, J. Unique Genetic Cassettes in a Thermoanaerobacterium Contribute to Simultaneous Conversion of Cellulose and Monosugars into Butanol. Sci. Adv. 2018, 4, e1701475. [Google Scholar] [CrossRef]
- Peña, R.; Alvarez, D.; Egoburo, D.; Ruiz, J.; Pettinari, M. Genomic and Metabolic Insights into Solvent Production by Thermoanaerobacterium thermosaccharolyticum GSU5. Biofuel Res. J. 2020, 7, 1149–1158. [Google Scholar] [CrossRef]
Parameter | Content (%, w/w) |
---|---|
Total sugar | 57 |
Total organic carbon | 30.80 |
Total Kjeldahl nitrogen | 3.55 |
Total phosphorus | 1.24 |
Lignin (Acid detergent lignin) | 7.68 |
Cellulose | 0.45 |
Hemicellulose | 5.49 |
MODEL SUMMARY | |||||||||||
R | R2 | R2adj | Std. Error | F | df1 | df2 | p | ||||
0.962 | 0.925 | 0.850 | 0.03074 | −0.0004 | −0.043 | 0.90 | 0.008 | ||||
ANOVA | |||||||||||
Model | Sum of Squares | df | Mean Square | F | p | ||||||
Regression | 0.058 | 5 | 0.012 | 12.314 | 0.008 | ||||||
Residual | 0.005 | 5 | 0.001 | ||||||||
Total | 0.063 | 10 | |||||||||
COEFFICIENTS | |||||||||||
Model | Unstandardized Coefficients | Std. Error | Standardized Coefficients Beta | t | p | ||||||
(Constant) | 0.230 (ao) | 0.047 | 4.929 | 0.004 | |||||||
X1 | 0.006 (a1) | 0.004 | 0.715 | 1.446 | 0.208 | ||||||
X2 | 0.112 (a2) | 0.031 | 1.789 | 3.612 | 0.015 | ||||||
X1×X1 | −0.0004 (a11) | 0.000 | −1.649 | −3.820 | 0.012 | ||||||
X2×X2 | −0.042 (a22) | 0.006 | −2.821 | −6.530 | 0.001 | ||||||
X1×X2 | 0.003 (a12) | 0.001 | 0.955 | 2.603 | 0.048 |
Bacterial Strain | Genotype | Substrate | Substrate Concentration, g/L | Temperature, °C | Butanol Concentration, g/L | Ref. |
---|---|---|---|---|---|---|
T. thermosaccharolyticum DSM571 | non-GM strain | Starch | 20 | 58 | 1.24 | [37] |
T. thermosaccharolyticum strain 021 | non-GM strain | Starch | 20 | 58 | 1.98 | [37] |
T. thermosaccharolyticum TG57 | non-GM strain | Cellulose | 30 | 53 | 1.93 | [62] |
T. thermosaccharolyticum TG57 | non-GM strain | Xylose | 30 | 53 | 3.63 | [62] |
T. thermosaccharolyticum GSU5 | GM strain | Glucose | 10 | 60 | 0.33 | [63] |
T. thermosaccharolyticum GSU5 | GM strain | Xylose | 10 | 60 | 0.26 | [63] |
T. thermosaccharolyticum DSM571 | non-GM strain | Waste Fig | 16 | 55 | 0.32 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özkan, E.; Argun, H. Improvement of Thermophilic Butanol Production by Thermoanaerobacterium thermosaccharolyticum from Waste Figs Through the Gradual Addition of Butyric Acid. Fermentation 2025, 11, 548. https://doi.org/10.3390/fermentation11100548
Özkan E, Argun H. Improvement of Thermophilic Butanol Production by Thermoanaerobacterium thermosaccharolyticum from Waste Figs Through the Gradual Addition of Butyric Acid. Fermentation. 2025; 11(10):548. https://doi.org/10.3390/fermentation11100548
Chicago/Turabian StyleÖzkan, Ebru, and Hidayet Argun. 2025. "Improvement of Thermophilic Butanol Production by Thermoanaerobacterium thermosaccharolyticum from Waste Figs Through the Gradual Addition of Butyric Acid" Fermentation 11, no. 10: 548. https://doi.org/10.3390/fermentation11100548
APA StyleÖzkan, E., & Argun, H. (2025). Improvement of Thermophilic Butanol Production by Thermoanaerobacterium thermosaccharolyticum from Waste Figs Through the Gradual Addition of Butyric Acid. Fermentation, 11(10), 548. https://doi.org/10.3390/fermentation11100548