Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Thermoanaerobacterium thermosaccharolyticum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3549 KiB  
Article
Two-Stage Bioconversion of Cellulose to Single-Cell Protein and Oil via a Cellulolytic Consortium
by Eric Charles Peterson, Christian Hermansen, Ashriel Yong, Rowanne Siao, Gi Gi Chua, Sherilyn Ho, Coleen Toledo Busran, Megan Teo, Aaron Thong, Melanie Weingarten and Nic Lindley
Fermentation 2025, 11(2), 72; https://doi.org/10.3390/fermentation11020072 - 2 Feb 2025
Cited by 1 | Viewed by 1608
Abstract
A novel approach for converting non-edible plant biomass into single-cell protein and oil (SCPO) via consolidated bioprocessing has been established, leveraging aerotolerant thermophilic cellulolytic consortia consisting mainly of Thermoanaerobacterium thermosaccharolyticum, Sporolactobacillus spp. and Clostridium sensu stricto to achieve the rapid and complete [...] Read more.
A novel approach for converting non-edible plant biomass into single-cell protein and oil (SCPO) via consolidated bioprocessing has been established, leveraging aerotolerant thermophilic cellulolytic consortia consisting mainly of Thermoanaerobacterium thermosaccharolyticum, Sporolactobacillus spp. and Clostridium sensu stricto to achieve the rapid and complete conversion of crystalline cellulose into a consistent cocktail of lactate, acetate and ethanol. This cocktail is an excellent substrate for cultivating organisms for SCPO production and food and feed applications, including Cyberlindnera jadinii, Yarrowia lipolytica and Corynebacterium glutamicum. Cultivation on this cocktail resulted in yields (YX/S) of up to 0.43 ± 0.012 g/g, indicating a yield from cellulose (YX/Cellulose) of up to 0.27 ± 0.007 g/g (dwb). The resulting SCPO was rich in protein (42.5% to 57.9%), essential amino acids (27.8% to 43.2%) and lipids (7.9% to 8.4%), with unsaturated fatty acid fractions of up to 89%. Unlike fermentation feedstocks derived from easily digested feedstocks (i.e., food waste), this approach has been applied to cellulosic biomass, and this mixed-culture bioconversion can be carried out without adding expensive enzymes. This two-stage cellulosic bioconversion can unlock non-edible plant biomass as an untapped feedstock for food and feed production, with the potential to strengthen resiliency and circularity in food systems. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass Valorization)
Show Figures

Figure 1

14 pages, 1865 KiB  
Article
Structural Comparison of a Promiscuous and a Highly Specific Sucrose 6F-Phosphate Phosphorylase
by Jorick Franceus, Nikolas Capra, Tom Desmet and Andy-Mark W.H. Thunnissen
Int. J. Mol. Sci. 2019, 20(16), 3906; https://doi.org/10.3390/ijms20163906 - 11 Aug 2019
Cited by 14 | Viewed by 4723
Abstract
In family GH13 of the carbohydrate-active enzyme database, subfamily 18 contains glycoside phosphorylases that act on α-sugars and glucosides. Because their phosphorolysis reactions are effectively reversible, these enzymes are of interest for the biocatalytic synthesis of various glycosidic compounds. Sucrose 6F-phosphate [...] Read more.
In family GH13 of the carbohydrate-active enzyme database, subfamily 18 contains glycoside phosphorylases that act on α-sugars and glucosides. Because their phosphorolysis reactions are effectively reversible, these enzymes are of interest for the biocatalytic synthesis of various glycosidic compounds. Sucrose 6F-phosphate phosphorylases (SPPs) constitute one of the known substrate specificities. Here, we report the characterization of an SPP from Ilumatobacter coccineus with a far stricter specificity than the previously described promiscuous SPP from Thermoanaerobacterium thermosaccharolyticum. Crystal structures of both SPPs were determined to provide insight into their similarities and differences. The residues responsible for binding the fructose 6-phosphate group in subsite +1 were found to differ considerably between the two enzymes. Furthermore, several variants that introduce a higher degree of substrate promiscuity in the strict SPP from I. coccineus were designed. These results contribute to an expanded structural knowledge of enzymes in subfamily GH13_18 and facilitate their rational engineering. Full article
Show Figures

Graphical abstract

21 pages, 2867 KiB  
Article
Effects of Two-Stage Operation on Stability and Efficiency in Co-Digestion of Food Waste and Waste Activated Sludge
by Xinyuan Liu, Ruying Li and Min Ji
Energies 2019, 12(14), 2748; https://doi.org/10.3390/en12142748 - 18 Jul 2019
Cited by 25 | Viewed by 4992
Abstract
The two-stage anaerobic digestion (AD) technology attracts increasing attention due to its ability to collect both hydrogen and methane. A two-stage AD system feeding with food waste and waste activated sludge was investigated in order to achieve higher energy yield and organics removal. [...] Read more.
The two-stage anaerobic digestion (AD) technology attracts increasing attention due to its ability to collect both hydrogen and methane. A two-stage AD system feeding with food waste and waste activated sludge was investigated in order to achieve higher energy yield and organics removal. The two-stage process consists of a thermophilic H2-reactor and a mesophilic CH4-reactor, achieved the highest hydrogen and methane yields of 76.8 mL/g-VS and 147.6 mL/g-VS at hydraulic retention times (HRTs) of 0.8 d and 6 d, respectively. The co-digestion process in this study required much less external alkalinity to maintain the pH values than sole food waste digestion in the literature. Compared with the single-stage mesophilic methane AD process, the two-stage AD system had better performance on operation stability, biogas and energy yields, organics removal and chemical oxygen demand (COD) conversion at high organic loading rates (OLRs). According to the TA-cloning analysis, the dominant bacteria in H2-reactor was closely related to Clostridium sp. strain Z6 and species Thermoanaerobacterium thermosaccharolyticum. The dominant methanogens in two-stage and single-stage CH4-reactor were recognized as acetotrophic methanogens and hydrogenotrophic methanogens, respectively. The presence of the genus Nitrososphaera in the two CH4-reactors might contribute to the low NH4+-N concentration in digestate and low CO2 content in biogas. Full article
(This article belongs to the Special Issue Anaerobic Digestion for the Production of Energy and Chemicals)
Show Figures

Figure 1

Back to TopTop