Bio-Driven Sustainable Extraction and AI-Optimized Recovery of Functional Compounds from Plant Waste: A Comprehensive Review
Abstract
:1. Introduction
2. Plant Waste as a Source of Functional Compounds
Compound | Source | Properties and Functions | References |
---|---|---|---|
Bioactive Peptides | Cakes, meals, and plant by-products | Protein fragments (<20 amino acid residues) with diverse impacts on body functions. Antioxidant, antihypertensive, anti-inflammatory activities, and immune-modulating functions. When applied directly to food, they mitigate oxidation reactions, resulting in a safer alternative to synthetic antioxidants. | Velliquette et al. [16] Hemker et al. [17] |
Phenolic Compounds | Cereal bran, fruit and vegetable waste, complex carbohydrates | Antioxidant, antihypertensive, antimicrobial, and anti-carcinogenic effects. Widely used in the food industry to control lipid oxidation and microbial growth. Used in pharmaceutical and cosmetic industries, including mouthwashes, eye creams, and herbal cosmetics. They enhance the shelf-life of food products. | Huang et al. [18] |
Carbohydrates: Lignocellulose, β-glucans | Starch, oat bran, and other cereal waste | Vital energy sources. Starch has widespread industrial applications. Lignocellulose (cellulose, hemicellulose, and lignin) can be converted into high-value products, contributing to waste reduction. β-Glucans, found in cereal waste, have scientifically proven health benefits with cholesterol-lowering and immune-modulating properties. | Lovegrove et al. [19] Fortunati et al. [20] Tosh et al. [21] |
Lycopene (Carotenoids) | Tomato and by-products (skin and seeds) Carrots | Natural pigment and antioxidant, suitable for food coloration and cellular protection. It prevents cellular components’ degradation, including DNA. β-Carotenoids are antioxidants and anti-inflammatory. | Anarjan and Jouyban [22] Caseiro et al. [23] |
Poly-unsaturated fatty acids (PUFAs): omega-3 and omega-6 | Vegetable oils, nuts, and their by-products | Anti-inflammatory agents. | Dave and Routray [24] |
3. Conventional vs. Advanced Methods
4. Biological Methods
4.1. Microorganism-Driven Recovery of Bioactive Compounds
4.2. Microbial Enzymes
4.3. Enzyme-Assisted Extraction (EAE)
5. Artificial Intelligence for the Digitization of Extraction Processes
5.1. Integration of AI/ML in the Recovery Process
- Pre-extraction stage: AI-based process design is a crucial component at this stage. Artificial intelligence models examine and screen historical data to determine the optimal solvent type, concentration, and temperature for a specific plant waste, microbe, enzyme, and target molecule. This analysis results in a customized extraction plan that maximizes yield and quality, establishing the conditions for a more efficient process [3]. Moreover, predictive modeling can anticipate the yield and titer of the extracted compounds by combining historical data and real-time sensor data [3,59].
- During the extraction process: At this phase, AI models can handle enormous amounts of data and assist in real-time monitoring and process control. Sensors continuously monitor critical parameters like pressure, temperature, and solvent flow rate [60,61], while AI algorithms examine real-time data and autonomously adjust conditions to maintain efficiency and consistency [61], correcting deviations from expected patterns [59,62]. A related area of potential application for AI models is continuous and adaptive optimization. Here, the algorithm learns from new data, identifying patterns and suggesting process refinements and efficiency enhancements in the extraction process [63]. Finally, machine learning methods can be used in large-scale extraction/production plants in processes of predictive maintenance of equipment, limiting downtime and ensuring continuous output [60,64].
- Post-extraction stage: AI can help to interpret extraction data and assist in decision-making for additional processing, purification, and quality control processes at the final phase of bioactive molecule recovery, providing data-driven decision support and processing [59]. Moreover, AI models may assist in quality control and regulatory compliance. They ensure that the final compound satisfies safety, quality, or regulatory requirements and reduce the need for manual examinations [65].
5.2. Standard Workflow of Machine Learning
- (a)
- Data collection
- (b)
- Data preprocessing
- (c)
- Data splitting
- (d)
- Model selection
- (e)
- Model development and optimization
- (f)
- Model Evaluation
6. Forthcoming Directions
Author Contributions
Funding
Conflicts of Interest
References
- Chauhan, C.; Dhir, A.; Akram, M.U.; Salo, J. Food Loss and Waste in Food Supply Chains. A Systematic Literature Review and Framework Development Approach. J. Clean. Prod. 2021, 295, 126438. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-Industrial Wastes and Their Utilization Using Solid State Fermentation: A Review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef]
- Alloun, W.; Berkani, M.; Benaissa, A.; Shavandi, A.; Gares, M.; Danesh, C.; Lakhdari, D.; Ghfar, A.A.; Chaouche, N.K. Waste Valorization as Low-Cost Media Engineering for Auxin Production from the Newly Isolated Streptomyces Rubrogriseus AW22: Model Development. Chemosphere 2023, 326, 138394. [Google Scholar] [CrossRef]
- do Prado, D.M.F.; de Almeida, A.B.; de Oliveira Filho, J.G.; Alves, C.C.F.; Egea, M.B.; Lemes, A.C. Extraction of Bioactive Proteins from Seeds (Corn, Sorghum, and Sunflower) and Sunflower Byproduct: Enzymatic Hydrolysis and Antioxidant Properties. Curr. Nutr. Food Sci. 2020, 17, 310–320. [Google Scholar] [CrossRef]
- Lopes, F.C.; Ligabue-Braun, R. Agro-Industrial Residues: Eco-Friendly and Inexpensive Substrates for Microbial Pigments Production. Front. Sustain. Food Syst. 2021, 5, 589414. [Google Scholar] [CrossRef]
- Ferri, M.; Rodríguez, Ó.; Tassoni, A. Editorial: New Green Extraction Methods for the Sustainable Recovery of Functional Plant Secondary Metabolites. Front. Plant Sci. 2023, 14, 1186180. [Google Scholar] [CrossRef] [PubMed]
- Heemann, A.C.W.; Heemann, R.; Kalegari, P.; Spier, M.R.; Santin, E. Enzyme-Assisted Extraction of Polyphenols from Green Yerba Mate. Braz. J. Food Technol. 2019, 22, e2017222. [Google Scholar] [CrossRef]
- Wang, T.; Lü, X. Overcome Saccharification Barrier. In Advances in 2nd Generation of Bioethanol Production; Elsevier: Amsterdam, The Netherlands, 2021; pp. 137–159. ISBN 9780128188620. [Google Scholar]
- Marathe, S.J.; Jadhav, S.B.; Bankar, S.B.; Kumari Dubey, K.; Singhal, R.S. Improvements in the Extraction of Bioactive Compounds by Enzymes. Curr. Opin. Food Sci. 2019, 25, 62–72. [Google Scholar] [CrossRef]
- Lemes, A.C.; Egea, M.B.; de Oliveira Filho, J.G.; Gautério, G.V.; Ribeiro, B.D.; Coelho, M.A.Z. Biological Approaches for Extraction of Bioactive Compounds from Agro-Industrial By-Products: A Review. Front. Bioeng. Biotechnol. 2022, 9, 802543. [Google Scholar] [CrossRef]
- Shishodia, A.; Kumar, K.; Manna, M.S. Modeling for the Efficient Separation of Bio-Active Catechins from Green Tea Leaves. Sep. Sci. Technol. 2017, 52, 671–678. [Google Scholar] [CrossRef]
- Guimarães, R.M.; Pimentel, T.C.; de Rezende, T.A.M.; de Silva, J.S.; Falcão, H.G.; Ida, E.I.; Egea, M.B. Gluten-Free Bread: Effect of Soy and Corn Co-Products on the Quality Parameters. Eur. Food Res. Technol. 2019, 245, 1365–1376. [Google Scholar] [CrossRef]
- Nogueira, G.F.; de Oliveira, R.A.; Velasco, J.I.; Fakhouri, F.M. Methods of Incorporating Plant-Derived Bioactive Compounds into Films Made with Agro-Based Polymers for Application as Food Packaging: A Brief Review. Polymers 2020, 12, 2518. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Filho, J.G.; Braga, A.R.C.; de Oliveira, B.R.; Gomes, F.P.; Moreira, V.L.; Pereira, V.A.C.; Egea, M.B. The Potential of Anthocyanins in Smart, Active, and Bioactive Eco-Friendly Polymer-Based Films: A Review. Food Res. Int. 2021, 142, 110202. [Google Scholar] [CrossRef] [PubMed]
- Alongi, M.; Anese, M. Re-Thinking Functional Food Development through a Holistic Approach. J. Funct. Foods 2021, 81, 104466. [Google Scholar] [CrossRef]
- Velliquette, R.A.; Fast, D.J.; Maly, E.R.; Alashi, A.M.; Aluko, R.E. Enzymatically Derived Sunflower Protein Hydrolysate and Peptides Inhibit NFκB and Promote Monocyte Differentiation to a Dendritic Cell Phenotype. Food Chem. 2020, 319, 126563. [Google Scholar] [CrossRef]
- Hemker, A.K.; Nguyen, L.T.; Karwe, M.; Salvi, D. Effects of Pressure-Assisted Enzymatic Hydrolysis on Functional and Bioactive Properties of Tilapia (Oreochromis niloticus) by-Product Protein Hydrolysates. LWT 2020, 122, 109003. [Google Scholar] [CrossRef]
- Huang, M.; Wang, H.; Xu, X.; Lu, X.; Song, X.; Zhou, G. Effects of Nanoemulsion-Based Edible Coatings with Composite Mixture of Rosemary Extract and ε-Poly-L-Lysine on the Shelf Life of Ready-to-Eat Carbonado Chicken. Food Hydrocoll. 2020, 102, 105576. [Google Scholar] [CrossRef]
- Lovegrove, A.; Edwards, C.H.; De Noni, I.; Patel, H.; El, S.N.; Grassby, T.; Zielke, C.; Ulmius, M.; Nilsson, L.; Butterworth, P.J.; et al. Role of Polysaccharides in Food, Digestion, and Health. Crit. Rev. Food Sci. Nutr. 2017, 57, 237–253. [Google Scholar] [CrossRef]
- Fortunati, E.; Luzi, F.; Puglia, D.; Torre, L. Extraction of Lignocellulosic Materials from Waste Products. In Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements; William Andrew Publishing: Norwich, NY, USA, 2016; pp. 1–38. ISBN 9780323442480. [Google Scholar]
- Tosh, S.M.; Brummer, Y.; Miller, S.S.; Regand, A.; Defelice, C.; Duss, R.; Wolever, T.M.S.; Wood, P.J. Processing Affects the Physicochemical Properties of β-Glucan in Oat Bran Cereal. J. Agric. Food Chem. 2010, 58, 7723–7730. [Google Scholar] [CrossRef]
- Anarjan, N.; Jouyban, A. Preparation of Lycopene Nanodispersions from Tomato Processing Waste: Effects of Organic Phase Composition. Food Bioprod. Process. 2017, 103, 104–113. [Google Scholar] [CrossRef]
- Caseiro, M.; Ascenso, A.; Costa, A.; Creagh-Flynn, J.; Johnson, M.; Simões, S. Lycopene in Human Health. LWT 2020, 127, 109323. [Google Scholar] [CrossRef]
- Dave, D.; Routray, W. Current Scenario of Canadian Fishery and Corresponding Underutilized Species and Fishery Byproducts: A Potential Source of Omega-3 Fatty Acids. J. Clean. Prod. 2018, 180, 617–641. [Google Scholar] [CrossRef]
- Carrasco-Sandoval, J.; Rebolledo, P.; Peterssen-Fonseca, D.; Fischer, S.; Wilckens, R.; Aranda, M.; Henríquez-Aedo, K. A Fast and Selective Method to Determine Phenolic Compounds in Quinoa (Chenopodium Quinoa Will) Seeds Applying Ultrasound-Assisted Extraction and High-Performance Liquid Chromatography. Chem. Pap. 2021, 75, 431–438. [Google Scholar] [CrossRef]
- Hikal, W.M.; Said-Al Ahl, H.A.H.; Tkachenko, K.G.; Bratovcic, A.; Szczepanek, M.; Rodriguez, R.M. Sustainable and Environmentally Friendly Essential Oils Extracted from Pineapple Waste. Biointerface Res. Appl. Chem. 2022, 12, 6833–6844. [Google Scholar]
- Ranjha, M.M.A.N.; Amjad, S.; Ashraf, S.; Khawar, L.; Safdar, M.N.; Jabbar, S.; Nadeem, M.; Mahmood, S.; Murtaza, M.A. Extraction of Polyphenols from Apple and Pomegranate Peels Employing Different Extraction Techniques for the Development of Functional Date Bars. Int. J. Fruit Sci. 2020, 20, S1201–S1221. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Zhu, X.; Wang, G.; Zhuang, K.; Wang, Y.; Ding, W. Optimization of Extrusion and Ultrasound-Assisted Extraction of Phenolic Compounds from Jizi439 Black Wheat Bran. Processes 2020, 8, 1153. [Google Scholar] [CrossRef]
- Kaleem, M.; Ahmad, A.; Amir, R.M.; Raja, G.K. Ultrasound-Assisted Phytochemical Extraction Condition Optimization Using Response Surface Methodology from Perlette Grapes (Vitis vinifera). Processes 2019, 7, 749. [Google Scholar] [CrossRef]
- Gbashi, S.; Adebo, O.A.; Piater, L.; Madala, N.E.; Njobeh, P.B. Subcritical Water Extraction of Biological Materials. Sep. Purif. Rev. 2017, 46, 21–34. [Google Scholar] [CrossRef]
- Beya, M.M.; Netzel, M.E.; Sultanbawa, Y.; Smyth, H.; Hoffman, L.C. Plant-Based Phenolic Molecules as Natural Preservatives in Comminuted Meats: A Review. Antioxidants 2021, 10, 263. [Google Scholar] [CrossRef]
- Kathiman, M.N.; Mudalip, S.K.A.; Gimbun, J. Effect of Encapsulation Agents on Antioxidant Activity and Moisture Content of Spray Dried Powder from Mahkota Dewa Fruit Extract. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 991, p. 012040. Available online: https://iopscience.iop.org/article/10.1088/1757-899X/991/1/012040 (accessed on 31 December 2023).
- Anton, I.; Húth, B.; Füller, I.; Rózsa, L.; Holló, G.; Zsolnai, A. Effect of Single Nucleotide Polymorphisms on Intramuscular Fat Content in Hungarian Simmental Cattle. Asian-Australasian J. Anim. Sci. 2018, 31, 1415–1419. [Google Scholar] [CrossRef]
- Vinatoru, M.; Mason, T.J.; Calinescu, I. Ultrasonically Assisted Extraction (UAE) and Microwave Assisted Extraction (MAE) of Functional Compounds from Plant Materials. TrAC Trends Anal. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Costa, J.R.; Tonon, R.V.; Cabral, L.; Gottschalk, L.; Pastrana, L.; Pintado, M.E. Valorization of Agricultural Lignocellulosic Plant Byproducts through Enzymatic and Enzyme-Assisted Extraction of High-Value-Added Compounds: A Review. ACS Sustain. Chem. Eng. 2020, 8, 13112–13125. [Google Scholar] [CrossRef]
- Prokopov, T.; Nikolova, M.; Dobrev, G.; Taneva, D. Enzyme-Assisted Extraction of Carotenoids from Bulgarian Tomato Peels. Acta Aliment. 2017, 46, 84–91. [Google Scholar] [CrossRef]
- Kainat, S.; Arshad, M.S.; Khalid, W.; Zubair Khalid, M.; Koraqi, H.; Afzal, M.F.; Noreen, S.; Aziz, Z.; Al-Farga, A. Sustainable Novel Extraction of Bioactive Compounds from Fruits and Vegetables Waste for Functional Foods: A Review. Int. J. Food Prop. 2022, 25, 2457–2476. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y.; Pang, H.; Yuan, S.; Wang, X.; Hu, Z.; Zhou, Q.; He, Y.; Yan, Y.; Xu, L. Codisplay of Rhizopus Oryzae and Candida Rugosa Lipases for Biodiesel Production. Catalysts 2021, 11, 421. [Google Scholar] [CrossRef]
- Reshmitha, T.R.; Thomas, S.; Geethanjali, S.; Arun, K.B.; Nisha, P. DNA and Mitochondrial Protective Effect of Lycopene Rich Tomato (Solanum lycopersicum L.) Peel Extract Prepared by Enzyme Assisted Extraction against H2O2 Induced Oxidative Damage in L6 Myoblasts. J. Funct. Foods 2017, 28, 147–156. [Google Scholar] [CrossRef]
- Begić, S.; Horozić, E.; Alibašić, H.; Bjelić, E.; Seferović, S.; Kozarević, E.C.; Ibišević, M.; Zukić, A.; Karić, E.; Softić, M. Antioxidant Capacity and Total Phenolic and Flavonoid Contents of Methanolic Extracts of Urtica Dioica L. by Different Extraction Techniques. Int. Res. J. Pure Appl. Chem. 2020, 21, 207–214. [Google Scholar] [CrossRef]
- Mena-García, A.; Ruiz-Matute, A.I.; Soria, A.C.; Sanz, M.L. Green Techniques for Extraction of Bioactive Carbohydrates. TrAC Trends Anal. Chem. 2019, 119, 115612. [Google Scholar] [CrossRef]
- Pocha, C.K.R.; Chia, W.Y.; Chew, K.W.; Munawaroh, H.S.H.; Show, P.L. Current Advances in Recovery and Biorefinery of Fucoxanthin from Phaeodactylum tricornutum. Algal Res. 2022, 65, 102735. [Google Scholar] [CrossRef]
- Hernández Becerra, E.; De Jesús Pérez López, E.; Zartha Sossa, J.W. Recovery of Biomolecules from Agroindustry by Solid-Liquid Enzyme-Assisted Extraction: A Review. Food Anal. Methods 2021, 14, 1744–1777. [Google Scholar] [CrossRef]
- Gulsunoglu, Z.; Purves, R.; Karbancioglu-Guler, F.; Kilic-Akyilmaz, M. Enhancement of Phenolic Antioxidants in Industrial Apple Waste by Fermentation with Aspergillus Spp. Biocatal. Agric. Biotechnol. 2020, 25, 101562. [Google Scholar] [CrossRef]
- Sinha, S.; Singh, G.; Arora, A.; Paul, D. Carotenoid Production by Red Yeast Isolates Grown in Agricultural and “Mandi” Waste. Waste Biomass Valorization 2021, 12, 3939–3949. [Google Scholar] [CrossRef]
- Bhanja Dey, T.; Chakraborty, S.; Jain, K.K.; Sharma, A.; Kuhad, R.C. Antioxidant Phenolics and Their Microbial Production by Submerged and Solid State Fermentation Process: A Review. Trends Food Sci. Technol. 2016, 53, 60–74. [Google Scholar] [CrossRef]
- Bagewadi, Z.K.; Mulla, S.I.; Ninnekar, H.Z. Optimization of Endoglucanase Production from Trichoderma Harzianum Strain HZN11 by Central Composite Design under Response Surface Methodology. Biomass Convers. Biorefinery 2018, 8, 305–316. [Google Scholar] [CrossRef]
- Shin, H.Y.; Kim, S.M.; Lee, J.H.; Lim, S.T. Solid-State Fermentation of Black Rice Bran with Aspergillus awamori and Aspergillus oryzae: Effects on Phenolic Acid Composition and Antioxidant Activity of Bran Extracts. Food Chem. 2019, 272, 235–241. [Google Scholar] [CrossRef]
- Doria, E.; Buonocore, D.; Marra, A.; Bontà, V.; Gazzola, A.; Dossena, M.; Verri, M.; Calvio, C. Bacterial-Assisted Extraction of Bioactive Compounds from Cauliflower. Plants 2022, 11, 816. [Google Scholar] [CrossRef] [PubMed]
- Amorim, C.; Silvério, S.C.; Rodrigues, L.R. One-Step Process for Producing Prebiotic Arabino-Xylooligosaccharides from Brewer’s Spent Grain Employing Trichoderma Species. Food Chem. 2019, 270, 86–94. [Google Scholar] [CrossRef]
- Amorim, C.; Silvério, S.C.; Silva, S.P.; Coelho, E.; Coimbra, M.A.; Prather, K.L.J.; Rodrigues, L.R. Single-Step Production of Arabino-Xylooligosaccharides by Recombinant Bacillus Subtilis 3610 Cultivated in Brewers’ Spent Grain. Carbohydr. Polym. 2018, 199, 546–554. [Google Scholar] [CrossRef]
- Yang, G.; Tan, H.; Li, S.; Zhang, M.; Che, J.; Li, K.; Chen, W.; Yin, H. Application of Engineered Yeast Strain Fermentation for Oligogalacturonides Production from Pectin-Rich Waste Biomass. Bioresour. Technol. 2020, 300, 122645. [Google Scholar] [CrossRef]
- Abdeshahian, P.; Ascencio, J.J.; Philippini, R.R.; Antunes, F.A.F.; dos Santos, J.C.; da Silva, S.S. Utilization of Sugarcane Straw for Production of β-Glucan Biopolymer by Lasiodiplodia Theobromae CCT 3966 in Batch Fermentation Process. Bioresour. Technol. 2020, 314, 123716. [Google Scholar] [CrossRef]
- Acosta, S.B.P.; Marchioro, M.L.K.; Santos, V.A.Q.; Calegari, G.C.; Lafay, C.B.B.; Barbosa-Dekker, A.M.; Dekker, R.F.H.; da Cunha, M.A.A. Valorization of Soybean Molasses as Fermentation Substrate for the Production of Microbial Exocellular β-Glucan. J. Polym. Environ. 2020, 28, 2149–2160. [Google Scholar] [CrossRef]
- Zanutto-Elgui, M.R.; Vieira, J.C.S.; do Prado, D.Z.; Buzalaf, M.A.R.; de Padilha, P.M.; Elgui de Oliveira, D.; Fleuri, L.F. Production of Milk Peptides with Antimicrobial and Antioxidant Properties through Fungal Proteases. Food Chem. 2019, 278, 823–831. [Google Scholar] [CrossRef]
- Nadar, S.S.; Rao, P.; Rathod, V.K. Enzyme Assisted Extraction of Biomolecules as an Approach to Novel Extraction Technology: A Review. Food Res. Int. 2018, 108, 309–330. [Google Scholar] [CrossRef]
- Picot-Allain, C.; Mahomoodally, M.F.; Ak, G.; Zengin, G. Conventional versus Green Extraction Techniques—A Comparative Perspective. Curr. Opin. Food Sci. 2021, 40, 144–156. [Google Scholar] [CrossRef]
- Basso, A.; Serban, S. Industrial Applications of Immobilized Enzymes—A Review. Mol. Catal. 2019, 479, 110607. [Google Scholar] [CrossRef]
- Khanal, S.K.; Tarafdar, A.; You, S. Artificial Intelligence and Machine Learning for Smart Bioprocesses. Bioresour. Technol. 2023, 375, 128826. [Google Scholar] [CrossRef] [PubMed]
- Caudai, C.; Galizia, A.; Geraci, F.; Le Pera, L.; Morea, V.; Salerno, E.; Via, A.; Colombo, T. AI Applications in Functional Genomics. Comput. Struct. Biotechnol. J. 2021, 19, 5762–5790. [Google Scholar] [CrossRef] [PubMed]
- Rai, R.; Tiwari, M.K.; Ivanov, D.; Dolgui, A. Machine Learning in Manufacturing and Industry 4.0 Applications. Int. J. Prod. Res. 2021, 59, 4773–4778. [Google Scholar] [CrossRef]
- Sarker, K.U.; Saqib, M.; Hasan, R.; Mahmood, S.; Hussain, S.; Abbas, A.; Deraman, A. A Ranking Learning Model by K-Means Clustering Technique for Web Scraped Movie Data. Computers 2022, 11, 158. [Google Scholar] [CrossRef]
- Mowbray, M.; Savage, T.; Wu, C.; Song, Z.; Cho, B.A.; Del Rio-Chanona, E.A.; Zhang, D. Machine Learning for Biochemical Engineering: A Review. Biochem. Eng. J. 2021, 172, 108054. [Google Scholar] [CrossRef]
- Kavasidis, I.; Lallas, E.; Gerogiannis, V.C.; Charitou, T.; Karageorgos, A. Predictive Maintenance in Pharmaceutical Manufacturing Lines Using Deep Transformers. In Procedia Computer Science; Elsevier: Amsterdam, The Netherlands, 2023; Volume 220, pp. 576–583. [Google Scholar]
- Wainaina, S.; Taherzadeh, M.J. Automation and Artificial Intelligence in Filamentous Fungi-Based Bioprocesses: A Review. Bioresour. Technol. 2023, 369, 128421. [Google Scholar] [CrossRef]
- Al-Sammarraie, M.A.J.; Gierz, Ł.; Przybył, K.; Koszela, K.; Szychta, M.; Brzykcy, J.; Baranowska, H.M. Predicting Fruit’s Sweetness Using Artificial Intelligence—Case Study: Orange. Appl. Sci. 2022, 12, 8233. [Google Scholar] [CrossRef]
- Gomes, V.; Reis, M.S.; Rovira-Más, F.; Mendes-Ferreira, A.; Melo-Pinto, P. Prediction of Sugar Content in Port Wine Vintage Grapes Using Machine Learning and Hyperspectral Imaging. Processes 2021, 9, 1241. [Google Scholar] [CrossRef]
- Taşpınar, H.; Elik, A.; Kaya, S.; Altunay, N. Optimization of Green and Rapid Analytical Procedure for the Extraction of Patulin in Fruit Juice and Dried Fruit Samples by Air-Assisted Natural Deep Eutectic Solvent-Based Solidified Homogeneous Liquid Phase Microextraction Using Experimental Design And Computational Chemistry Approach. Food Chem. 2021, 358, 129817. [Google Scholar] [CrossRef] [PubMed]
- Kumbhar, A.; Dhawale, P.G.; Kumbhar, S.; Patil, U.; Magdum, P. A Comprehensive Review: Machine Learning and Its Application in Integrated Power System. Energy Rep. 2021, 7, 5467–5474. [Google Scholar] [CrossRef]
- Hertel, L.; Collado, J.; Sadowski, P.; Ott, J.; Baldi, P. Sherpa: Robust Hyperparameter Optimization for Machine Learning. SoftwareX 2020, 12, 100591. [Google Scholar] [CrossRef]
Category | Traditional Approaches | Advanced Approaches | Target Bioactive Compounds | References |
---|---|---|---|---|
Solvent Extraction | Maceration | Supercritical CO2 Extraction | Phenolic compounds from grape pomace (resveratrol) | Carrasco-Sandoval et al. [25] |
Soxhlet Extraction | Subcritical Water Extraction using pressurized hot water | Flavonoids from citrus peels (hesperidin) | Carrasco-Sandoval et al. [25] | |
Hydro-distillation by steam | Ionic Liquid Extraction | Volatile compounds such as essential oils from aromatic herbs | Hikal et al. [26] | |
Maceration | Graphene Oxide-Based Extraction to adsorbs compounds | Oligosaccharides from fruit peels (inositol) | Ranjha et al. [27] | |
Mechanical Methods | Physical pressure | Ultrasound-Assisted Extraction | Essential oils from citrus peels (limonene) | Chen et al. [28] |
Grinding/Milling | Pulsed Electric Field Extraction | Antioxidants from fruit peels (quercetin) | Kaleem et al. [29] | |
Shaking during maceration to boost extraction yield | Subcritical Water Extraction | Phenolic compounds from various food sources | Gbashi et al. [30], Beya et al. [31] and Kathiman et al. [32] | |
Heat-Based Methods | Heat Soxhlet Extraction by combining heat with solvents | Microwave-Assisted Extraction (Heating) | Carotenoids from vegetable waste (lycopene) | Anton et al. [33] and Vinatoru et al. [34] |
Steam Distillation | Ohmic Heating Extraction | Volatile compounds Capsaicinoids from pepper waste (capsaicin) | Hikal et al. [26] | |
Chemical Methods | Acid/Base Hydrolysis | Enzyme-Assisted Extraction | Peptides (antioxidant peptides) | Costa et al. [35] and Prokopov et al. [36] |
Aqueous Two-Phase for two immiscible liquids | Ionic Liquid Extraction | Alkaloids from agricultural waste (caffeine) | Costa et al. [35] | |
Solid-Phase Methods | Solid-Phase Microextraction to absorbs compounds | Molecularly Imprinted Polymers (MIPs) for selective binding. | Polysaccharides from plant residues (β-glucans) | Gbashi et al. [30], Beya et al. [31] and Kathiman et al. [32] |
Solid-Phase Extraction for compound adsorption | Graphene Oxide-Based Extraction for compound adsorption | Oligosaccharides from fruit peels (inositol) | Ranjha et al. [27] | |
Other Methods | Steam Distillation and condensation | Supercritical Fluid Extraction (SFE) | Essential oils from various plant sources | Hikal et al. [26] and Kainat et al. [37] |
Pressurized Liquid Extraction (PLE) or Accelerated Solvent Extraction (ASE) Combines solvent, high pressure, and temperature | Enzyme-Assisted Extraction | Proteins and enzymes from agricultural waste | Costa et al. [35] | |
Liquid–liquid extraction Separation of immiscible liquids | Instant Controlled Pressure Drop Technology for auto-vaporization and organic product development | Heat-sensitive food granule powder extraction | Kainat et al. [37] | |
Solid-Phase Microextraction | Enzyme-Assisted Extraction | Active compounds from plant matter | Yang et al. [38] and Reshmitha et al. [39] | |
Pressurized Liquid Extraction | Supercritical Fluids | Replacing organic solvents in various procedures | Kainat et al. [37] and Begić et al. [40] |
Bioactive Compound | Substrate | Microorganism | Fermentation Process 1 | References |
---|---|---|---|---|
Phenolic Compounds | Black rice bran | Aspergillus awamori and Aspergillus oryzae | SSF | Shin et al. [48] |
Apple peels | Aspergillus spp. (A. niger ZDM2 and A. tubingensis ZDM1) | SSF | Gulsunoglu et al. [44] | |
Cauliflower | Bacillus subtilis | SmF | Doria et al. [49] | |
Prebiotic Oligomers | Brewer’s spent grain | Trichoderma reesei B. subtilis (engineered strain) | SmF | Amorim et al. [50,51] |
Pectin | Citrus peel waste | Pichia pastoris (engineered strain) | SmF | Yang et al. [52] |
β-Glucan | Sugarcane straw | Lasiodiplodia Theobromae CCT 3966 | SmF | Abdeshahian et al. [53] |
Soybean molasses | Lasiodiplodia theobromae MMPI | SmF | Acosta et al. [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alloun, W.; Calvio, C. Bio-Driven Sustainable Extraction and AI-Optimized Recovery of Functional Compounds from Plant Waste: A Comprehensive Review. Fermentation 2024, 10, 126. https://doi.org/10.3390/fermentation10030126
Alloun W, Calvio C. Bio-Driven Sustainable Extraction and AI-Optimized Recovery of Functional Compounds from Plant Waste: A Comprehensive Review. Fermentation. 2024; 10(3):126. https://doi.org/10.3390/fermentation10030126
Chicago/Turabian StyleAlloun, Wiem, and Cinzia Calvio. 2024. "Bio-Driven Sustainable Extraction and AI-Optimized Recovery of Functional Compounds from Plant Waste: A Comprehensive Review" Fermentation 10, no. 3: 126. https://doi.org/10.3390/fermentation10030126
APA StyleAlloun, W., & Calvio, C. (2024). Bio-Driven Sustainable Extraction and AI-Optimized Recovery of Functional Compounds from Plant Waste: A Comprehensive Review. Fermentation, 10(3), 126. https://doi.org/10.3390/fermentation10030126