Biotechnological Potential of Lignocellulosic Biomass as Substrates for Fungal Xylanases and Its Bioconversion into Useful Products: A Review
Abstract
:1. Introduction
2. Categorisation and Action Mechanism of Xylanases
3. Xylanolytic Enzymes
3.1. Endo-1-4-β-Xylanases
3.2. β-Xylosidases
3.3. α-Arabinofuranosidases
3.4. Acetyl-Xylan Esterases
3.5. α-Glucuronidases
4. Xylanases Production
4.1. Culture Conditions for Xylanase Production
4.2. Statistical Optimisation for Improving Production of Xylanases
4.3. Characteristics of Fungal Xylanases Useful for Bioconversion of Lignocellulosic Biomass
5. Molecular Strategies for Improving Efficiency of Fungal Xylanases for Lignocellulose Conversion
5.1. Expression of Fungal Xylanases in Different System for Improved Production
5.1.1. Pichia pastoris
5.1.2. Escherichia coli
5.1.3. Other Expression Systems
5.2. Genetic Engineering of Fungal Xylanases for Improved Catalysis
6. Applications of Fungal Xylanases for Lignocellulose Bioconversion into Useful Products
6.1. Bioconversion of Lignocellulosic Biomass to Biofuel
6.2. Bioconversion of Ligocellulosic Biomass to Prebiotics
6.3. Bio-Bleaching of Paper and Kraft Pulp
6.4. Nutritional Enhancement in Plant-Based Diets
Enzyme | Microorganism | Substrate | Biofuel | Temp. (°C) | Production Rate (g/L) | References |
---|---|---|---|---|---|---|
Xylanase | Irpex lacteus | Corn stover | Ethanol | 50 | 13.5 | [82] |
Xylanase | Irpex lacteus | Wheat straw | Ethanol | 50 | 12.5 | [83] |
Xylanase | Irpex lacteus | Barley straw | Ethanol | 50 | 10.8 | [83] |
Xylanase | Irpex lacteus | Corncob | Ethanol | 50 | 11.5 | [83] |
Xylanase | Candida tropicalis HNMA-1 | Sugarcane bagasse | Ethanol | 30 | 2.93 | [84] |
Xylanase Cellulse | Penicillium oxalicum RGXyl | NaOH-pretreated corn stover | Ethanol | 50 | 14.9 | [85] |
Xylanase Cellulse | Penicillium oxalicum RGXyl | Ammonium sulphate-pretreated corn stover | Ethanol | 50 | 16.95 | [85] |
Xylanase | Trichoderma koningiopsis TM3 | Oil palm trunk residues | Ethanol | 50 | 4.15 | [15] |
Xylanase Cellulase | Aspergillus tubingensis NKBP-55 | Sugarcane bagasse | Ethanol | 45 | 41.5 | [86] |
Xylanase | Aspergillus fumigatus XC6 | Rice straw | Ethanol | 40 | 11.2 | [87] |
Xylanase | Malbranchea flava | Cotton stalk | Ethanol | 50 | 46 | [88] |
Microorganism | Pulp Type | Dose of Xylanase (U/g) | Increase in Brightness (%) | Decrease in Kappa No. (%) | References |
---|---|---|---|---|---|
Penicillium crustosum FP 11 | Eucalyptus kraft pulp | 25 | - | 9.77 | [89] |
Trichoderma longibrachiatum MDU-6 | Paper pulp | 7.5 | 52 | - | [90] |
Aspergillus niger DX-23 | Paper pulp | 50 | 34.5 | - | [91] |
Aspergillus oryzae MDU-4 | Newspaper pulp | 500 | 57.9 | 66.7 | [92] |
Trichoderma asperellum | Paper pulp | 20–40 | 43.2 | 4.0 | [93] |
Trichoderma viride | Newspaper pulp | 30% | 11 | - | [94] |
Penicillium sp. | Home-made paper pulp | - | 30.6 | - | [95] |
Thermomyces lanuginosus | Mixed hardwood pulp | 20 | 70.4 | 4.7 | [96] |
A. terreus S9 | Paper pulp | - | - | 11.8 | [18] |
Enzyme | Source | Flour Type | Enzyme Dose (U/Kg) | Improved Quality Parameter | References |
---|---|---|---|---|---|
Xylanase | Penicillium citrinum MTCC9620 | Whole-wheat flour | 59.9 | Increase in specific volume (3.99 ± 0.035 mL/g), reduction in staling rate, along with softer crumb and brighter bread colour | [97] |
Xylanase | Penicillum citrinum | Wheat flour | 59.9 | Reduction in water absorption, softer dough, greater extensibility, and less resistance to extension | [98] |
Xylanase (XYL) Amylase (AML) Lipase (LIP) | Fungal alpha-amylase Fungamyl® 2500 SG (Fungamyl), Maltogenic alpha-amylase Novamyl® 10,000 BG (Novamyl), Xylanase Panzea® BG (Panzea), Lipase Lipopan® Xtra BG (Lipopan) and | Wheat flour and fermented cassava flour | LIP-25 * AML-10 *-75 * XYL-40 * | Increased loaf volume, softer texture and larger pore size correlated to higher loaf volume (1151 mL) and specific loaf volume (2.66 mL/g) | [99] |
α-amylase (AML) Xylanase (XYL) Cellulase (CEL) Glucose oxidase (GOX) | α-amylase- (EC 3.2.1.1, Fungamyl FI 2500 BG), Xylanase-(Pentopan Mono BG), Cellulase- (EC 3.2.1.4, Celluclast BG), Glucose oxidase (Gluzyme Mono 10,000 BG), by Novozymes Investment Co. Ltd., Beijiing, China | Wheat flour | AML-30 XYL-150 CEL-42 GOX-100 | Maximum height of frozen dough increased by 33.2, 19.7, and 7.4%, respectively, with xylanase, cellulase, and lipase; increased stability of the gluten network; dough with smoother surface, improved softness, and elasticity of the bread crumb; and increased dough volume | [100] |
Xylanase, Endoglucanase, Exoglucanase, β-glucosidase | Trametes trogii | Corn stover | - | Improved corn stover fibre degradability and high release of reducing sugars | [13] |
Xylanase Phytase | - | Pig feed | 2500–5000 10,000 | Increased crude protein digestibility, pig performance, enhancement in detectable total tract digestibility of calcium and phosphorus, increased digestibility of neutral detergent fibre, increased average daily gain, improved feed–gain ratio | [101] |
Xylanase | - | Broiler feed | 300 | Significant increase in average daily gain and ileal digestibility of apparent metabolizable energy corrected to zero nitrogen retention, crude protein | [102] |
Xylanase Mannanase | Hostazym X 100, Huvepharma USA, Peachtree City, GA, USA and CTCZYME, CTC Bio Inc., Seoul, Republic of Korea | Pigs feed | 100 and 500 | Increased expression of tight junction proteins (claudin and zona occludens), Decreased concentration of manolaldehyde indicating antioxidative capacity of pigs, increased digestibility of total non-starch polysaccharides and arabinoxylan | [103] |
Xylanase | Kerry Ingredients and Flavours, Osberstown, Naas, Co., Kildare, Ireland | Broilers feed | - | 35% higher (p < 0.05) N-corrected apparent metabolisable energy, higher (p < 0.001) coefficients of dry matter and nitrogen retention | [104] |
Xylanase Phytase | Trichoderma reesei Escherichia coli | Turkeys’s feed | 16,000 500 | Increased prececal phosphorus digestibility, lower proportions of InsP5 and higher proportions of InsP4, improved digestibility of feed | [11] |
7. Conclusions and Future Development in the Field of Commercial Xylanase Production
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dahiya, S.; Kumar, A.; Malik, V.; Kumar, V.; Singh, B. Biochemical characterization and enhanced production of endoxylanase from thermophilic mould Myceliophthora thermophila. Bioprocess Biosyst. Eng. 2021, 44, 1539–1555. [Google Scholar] [CrossRef]
- Singh, N.; Singhania, R.R.; Nigam, P.S.; Dong, C.D.; Patel, A.K.; Puri, M. Global status of lignocellulosic biorefinery: Challenges and perspectives. Bioresour. Technol. 2022, 344, 126415. [Google Scholar] [CrossRef]
- Satpathy, P.; Pradhan, C. Biogas as an alternative to stubble burning in India. Biomass Convers. Biorefin. 2023, 13, 31–42. [Google Scholar] [CrossRef]
- Datta, A.; Emmanuel, M.A.; Ram, N.K.; Dhingra, S. Crop Residue Management: Solution to Achieve Better Air Quality; TERI: New Delhi, India, 2020; p. 9. [Google Scholar]
- Miranda, N.T.; Motta, I.L.; Maciel Filho, R.; Maciel, M.R.W. Sugarcane bagasse pyrolysis: A review of operating conditions and products properties. Renew. Sustain. Energy Rev. 2021, 149, 111394. [Google Scholar] [CrossRef]
- Konde, K.S.; Nagarajan, S.; Kumar, V.; Patil, S.V.; Ranade, V.V. Sugarcane bagasse based biorefineries in India: Potential and challenges. Sustain. Energy Fuels 2021, 5, 52–78. [Google Scholar] [CrossRef]
- Rani, P.; Bansal, M.; Pathak, V.V. Experimental and kinetic studies for improvement of biogas production from KOH pretreated wheat straw. Curr. Res. Green Sustain. Chem. 2022, 5, 100283. [Google Scholar] [CrossRef]
- Schmitz, E.; Leontakianakou, S.; Norlander, S.; Karlsson, E.N.; Adlercreutz, P. Lignocellulose degradation for the bioeconomy: The potential of enzyme synergies between xylanases, ferulic acid esterase and laccase for the production of arabinoxylo-oligosaccharides. Bioresour. Technol. 2022, 343, 126114. [Google Scholar] [CrossRef]
- Alokika; Singh, B. Production, characteristics, and biotechnological applications of microbial xylanases. Appl. Microbol. Biotechnol. 2019, 103, 8763–8784. [Google Scholar] [CrossRef] [PubMed]
- Geng, W.; Narron, R.; Jiang, X.; Pawlak, J.J.; Cheng, S.; Park, S.; Jameel, S.; Venditi, R.A. The influence of lignin content and structure on hemicellulose alkaline extraction for non-wood and hardwood lignocellulosic biomass. Cellulose 2019, 26, 3219–3230. [Google Scholar] [CrossRef]
- Ingelmann, C.J.; Witzig, M.; Möhring, J.; Schollenberger, M.; Kühn, I.; Rodehutscord, M. Effect of supplemental phytase and xylanase in wheat-based diets on prececal phosphorus digestibility and phytate degradation in young turkeys. Poult. Sci. 2018, 97, 2011–2020. [Google Scholar] [CrossRef]
- Bala, A.; Singh, B. Concomitant production of cellulase and xylanase by thermophilic mould Sporotrichum thermophile in solid state fermentation and their applicability in bread making. World J. Microbiol. Biotechnol. 2017, 33, 109. [Google Scholar] [CrossRef] [PubMed]
- Tirado-González, D.N.; Jáuregui-Rincón, J.; Tirado-Estrada, G.G.; Martínez-Hernández, P.A.; Guevara-Lara, F.; Miranda-Romero, L.A. Production of cellulases and xylanases by white-rot fungi cultured in corn stover media for ruminant feed applications. Anim. Feed Sci. Technol. 2016, 221, 147–156. [Google Scholar] [CrossRef]
- Suryawanshi, R.K.; Jana, U.K.; Prajapati, B.P.; Kango, N. Immobilization of Aspergillus quadrilineatus RSNK-1 multi-enzymatic system for fruit juice treatment and mannooligosaccharide generation. Food Chem. 2019, 289, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Nutongkaew, T.; Prasertsan, P.; Leamdum, C.; Sattayasamitsathit, S.; Noparat, P. Bioconversion of oil palm trunk residues hydrolyzed by enzymes from newly isolated fungi and use for ethanol and acetic acid production under two-stage and simultaneous fermentation. Waste Biomass Valori. 2020, 11, 1333–1347. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Zaky, A.A.; Liu, L.; Chen, Y.; Li, S.; Jia, Y. Characterization of a novel xylanase from Aspergillus flavus with the unique properties in production of xylooligosaccharides. J. Basic Microbiol. 2019, 59, 351–358. [Google Scholar] [CrossRef]
- Hasanin, M.S.; Hashem, A.H.; Abd El-Sayed, E.S.; El-Saied, H. Green ecofriendly bio-deinking of mixed office waste paper using various enzymes from Rhizopus microsporus AH3: Efficiency and characteristics. Cellulose 2020, 27, 4443–4453. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, V.; Nargotra, P.; Bajaj, B.K. Bioprocess development for production of a process-apt xylanase with multifaceted application potential for a range of industrial processes. SN Appl. Sci. 2020, 2, 739. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Z.; Cheng, L.; Duan, S.; Feng, X.; Zheng, K.; Cheng, Y.; Zeng, J. A novel endo-β-1, 4-xylanase GH30 from Dickeya dadantii DCE-01: Clone, expression, characterization, and ramie biological degumming function. Text. Res. J. 2019, 89, 463–472. [Google Scholar] [CrossRef]
- Alokika; Singh, B. Enhanced production of bacterial xylanase and its utility in saccharification of sugarcane bagasse. Bioprocess Biosyst. Eng. 2020, 43, 1081–1091. [Google Scholar] [CrossRef]
- Rosmine, E.; Edassery Sainjan, N.C.; Silvester, R. Utilisation of agrowaste xylan for the production of industrially important enzyme xylanase from aquatic Streptomyces sp. and potential role of xylanase in deinking of newsprint. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2061–2076. [Google Scholar] [CrossRef]
- Dhiman, S.; Mukherjee, G. Recent Advances and Industrial Applications of Microbial Xylanases: A Review. In Fungi and Their Role in Sustainable Development: Current Perspectives; Gehlot, P., Singh, J., Eds.; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Patipong, T.; Lotrakul, P.; Padungros, P.; Punnapayak, H.; Bankeeree, W.; Prasongsuk, S. Enzymatic hydrolysis of tropical weed xylans using xylanase from Aureobasidium melanogenum PBUAP46 for xylooligosaccharide production. 3 Biotech 2019, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, N.; Kumar, B.; Agrawal, K.; Verma, P. Bioconversion of rice straw by synergistic effect of in-house produced ligno-hemicellulolytic enzymes for enhanced bioethanol production. Bioresour. Technol. Rep. 2019, 10, 100352. [Google Scholar] [CrossRef]
- Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014, 42, D490–D495. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, S.; Singh, B. Enhanced endoxylanase production by Myceliophthora thermophila with applicability in saccharification of agricultural substrates. 3 Biotech 2019, 9, 214. [Google Scholar] [CrossRef]
- Long, C.; Liu, J.; Gan, L.; Zeng, B.; Long, M. Optimization of xylanase production by Trichoderma orientalis using corn cobs and wheat bran via statistical strategy. Waste Biomass Valori. 2019, 10, 1277–1284. [Google Scholar] [CrossRef]
- Abdella, A.; Segato, F.; Wilkins, M.R. Optimization of nutrient medium components for production of a client endo-β-1, 4-xylanase from Aspergillus fumigatus var. niveus using a recombinant Aspergillus nidulans strain. Biocatal. Agric. Biotechnol. 2019, 20, 101267. [Google Scholar] [CrossRef]
- Ravindran, R.; Williams, G.A.; Jaiswal, A.K. Spent coffee waste as a potential media component for xylanase production and potential application in juice enrichment. Foods 2019, 8, 585. [Google Scholar] [CrossRef]
- Bala, A.; Singh, B. Cost-effective production of biotechnologically important hydrolytic enzymes by Sporotrichum thermophile. Bioprocess Biosyst. Eng. 2016, 39, 181–191. [Google Scholar] [CrossRef]
- Hu, H.; Dai, S.; Wen, A.; Bai, X. Efficient expression of xylanase by codon optimization and its effects on the growth performance and carcass characteristics of broiler. Animals 2019, 9, 65. [Google Scholar] [CrossRef]
- Long, L.; Zhang, Y.; Ren, H.; Sun, H.; Sun, F.F.; Qin, W. Recombinant expression of Aspergillus niger GH10 endo-xylanase in Pichia pastoris by constructing a double-plasmid co-expression system. J. Chem. Technol. Biotechnol. 2020, 95, 535–543. [Google Scholar] [CrossRef]
- Niderhaus, C.; Garrido, M.; Insani, M.; Campos, E.; Wirth, S. Heterologous production and characterization of a thermostable GH10 family endo-xylanase from Pycnoporus sanguineus BAFC 2126. Process Biochem. 2018, 67, 92–98. [Google Scholar] [CrossRef]
- Espinoza, K.; Eyzaguirre, J. Identification, heterologous expression and characterization of a novel glycoside hydrolase family 30 xylanase from the fungus Penicillium purpurogenum. Carbohydr. Res. 2018, 468, 45–50. [Google Scholar] [CrossRef]
- Pereira, G.F.; de Bastiani, D.; Gabardo, S.; Squina, F.; Ayub, M.A.Z. Solid-state cultivation of recombinant Aspergillus nidulans to co-produce xylanase, arabinofuranosidase, and xylooligosaccharides from soybean fibre. Biocatal. Agric. Biotechnol. 2018, 15, 78–85. [Google Scholar] [CrossRef]
- Ariaeenejad, S.; Hosseini, E.; Maleki, M.; Kavousi, K.; Moosavi-Movahedi, A.A.; Salekdeh, G.H. Identification and characterization of a novel thermostable xylanase from camel rumen metagenome. Int. J. Biol. Macromol. 2019, 126, 1295–1302. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Verma, V.K.; Chaturvedi, V.; Verma, P. Cloning, expression and characterization of a thermo-alkali-stable xylanase from Aspergillus oryzae LC1 in Escherichia coli BL21 (DE3). Protein Expr. Purif. 2020, 168, 105551. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, J. High-level expression and characterization of Aspergillus niger ATCC 1015 xylanase B in Komagataella phaffii. Appl. Biol. Chem. 2018, 61, 373–381. [Google Scholar] [CrossRef]
- Zhan, F.X.; Wang, Q.H.; Jiang, S.J.; Zhou, Y.L.; Zhang, G.M.; Ma, Y.H. Developing a xylanase XYNZG from Plectosphaerella cucumerina for baking by heterologously expressed in Kluyveromyces lactis. BMC Biotechnol. 2014, 14, 107. [Google Scholar] [CrossRef] [PubMed]
- Ouephanit, C.; Boonvitthya, N.; Theerachat, M.; Bozonnet, S.; Chulalaksananukul, W. Efficient expression and secretion of endo-1, 4-β-xylanase from Penicillium citrinum in non-conventional yeast Yarrowia lipolytica directed by the native and the preproLIP2 signal peptides. Protein Expr. Purif. 2019, 160, 1–6. [Google Scholar] [CrossRef]
- Verma, D.; Satyanarayana, T. Xylanolytic extremozymes retrieved from environmental metagenomes: Characteristics, genetic engineering, and applications. Front. Microbiol. 2020, 11, 551109. [Google Scholar] [CrossRef]
- Boonyapakron, K.; Jaruwat, A.; Liwnaree, B.; Nimchua, T.; Champreda, V.; Chitnumsub, P. Structure-based protein engineering for thermostable and alkaliphilic enhancement of endo-β-1, 4-xylanase for applications in pulp bleaching. J. Biotechnol. 2017, 259, 95–102. [Google Scholar] [CrossRef]
- Wu, X.; Tian, Z.; Jiang, X.; Zhang, Q.; Wang, L. Enhancement in catalytic activity of Aspergillus niger XynB by selective site-directed mutagenesis of active site amino acids. Appl. Microbiol. Biotechnol. 2018, 102, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Denisenko, Y.A.; Gusakov, A.V.; Rozhkova, A.M.; Osipov, D.O.; Zorov, I.N.; Matys, V.Y.; Uporov, I.V.; Sinitsyn, A.P. Site-directed mutagenesis of GH10 xylanase A from Penicillium canescens for determining factors affecting the enzyme thermostability. Int. J. Biol. Macromol. 2017, 104, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.; Jiang, Y.; Xu, Y.; Li, Q.; Li, X.; Fan, G.; Xiong, K.; Yang, R.; Zhang, C.; Ma, R.; et al. Improving the thermostability and catalytic efficiency of GH11 xylanase PjxA by adding disulfide bridges. Int. J. Biol. Macromol. 2019, 128, 354–362. [Google Scholar] [CrossRef]
- Papzan, Z.; Javan-Nikkhah, M.; Kowsari, M.; Gihari, A.M.; Limon, M.C. Enhancement of Xylanase Production by Protoplast Fusion of Trichoderma spp. Mycol. Iran. 2018, 5, 53–61. [Google Scholar]
- Damis, S.I.R.; Murad, A.M.A.; Diba Abu Bakar, F.; Rashid, S.A.; Jaafar, N.R.; Illias, R.M. Protein engineering of GH11 xylanase from Aspergillus fumigatus RT-1 for catalytic efficiency improvement on kenaf biomass hydrolysis. Enzyme Microb. Technol. 2019, 131, 109383. [Google Scholar] [CrossRef]
- Watanabe, T.; Nasukawa, M.; Yoshida, Y.; Kogo, T.; Ogihara, J.; Kasumi, T. Generation of Trichoderma reesei mutant with enhanced xylanase activity by using disparity mutagenesis. J. Appl. Glycosci. 2019, 66, 59–64. [Google Scholar] [CrossRef]
- Dar, F.M.; Dar, P.M. Fungal xylanases for different industrial applications. In Industrially Important Fungi for Sustainable Development: Volume 2: Bioprospecting for Biomolecules; Springer: Berlin/Heidelberg, Germany, 2021; pp. 515–539. [Google Scholar]
- Chaudhary, R.; Kuthiala, T.; Singh, G.; Rarotra, S.; Kaur, A.; Arya, S.K.; Kumar, P. Current status of xylanase for biofuel production: A review on classification and characterization. Biomass Convers. Biorefin. 2021, 13, 8773–8791. [Google Scholar] [CrossRef]
- Pandey, A.K.; Edgard, G.; Negi, S. Optimization of concomitant production of cellulase and xylanase from Rhizopus oryzae SN5 through EVOP-factorial design technique and application in Sorghum Stover based bioethanol production. Renew. Energy 2016, 98, 51–56. [Google Scholar] [CrossRef]
- Sherpa, K.C.; Ghangrekar, M.M.; Banerjee, R. Optimization of saccharification of enzymatically pretreated sugarcane tops by response surface methodology for ethanol production. Biofuels 2019, 10, 73–80. [Google Scholar] [CrossRef]
- Xiao, W.; Li, H.; Xia, W.; Yang, Y.; Hu, P.; Zhou, S.; Hu, Y.; Liu, X.; Dai, Y.; Jiang, Z. Co-expression of cellulase and xylanase genes in Saccharomyces cerevisiae toward enhanced bioethanol production from corn stover. Bioengineered 2019, 10, 513–521. [Google Scholar] [CrossRef]
- Qi, G.; Xiong, L.; Li, H.; Huang, Q.; Luo, M.; Tian, L.; Chen, X.; Huang, C.; Chen, X. Hydrotropic pretreatment on wheat straw for efficient biobutanol production. Biomass Bioenergy 2019, 122, 76–83. [Google Scholar] [CrossRef]
- Ding, C.; Li, M.; Hu, Y. High-activity production of xylanase by Pichia stipitis: Purification, characterization, kinetic evaluation and xylooligosaccharides production. Int. J. Biol. Macromol. 2018, 117, 72–77. [Google Scholar] [CrossRef]
- Hong, S.; Kyung, M.; Jo, I.; Kim, Y.R.; Ha, N.C. Structure-based protein engineering of bacterial β-xylosidase to increase the production yield of xylobiose from xylose. Biochem. Biophys. Res. Commun. 2018, 501, 703–710. [Google Scholar] [CrossRef]
- Chen, Z.; Zaky, A.A.; Liu, Y.; Chen, Y.; Liu, L.; Li, S.; Jia, Y. Purification and characterization of a new xylanase with excellent stability from Aspergillus flavus and its application in hydrolyzing pretreated corncobs. Protein Expr. Purif. 2019, 154, 91–97. [Google Scholar] [CrossRef]
- Chang, S.; Guo, Y.; Wu, B.; He, B. Extracellular expression of alkali tolerant xylanase from Bacillus subtilis Lucky9 in E. coli and application for xylooligosaccharides production from agro-industrial waste. Int. J. Biol. Macromol. 2017, 96, 249–256. [Google Scholar] [CrossRef]
- de Sousa Gomes, K.; Maitan-Alfenas, G.P.; de Andrade, L.G.A.; Falkoski, D.L.; Guimarães, V.M.; Alfenas, A.C.; de Rezende, S.T. Purification and characterization of xylanases from the fungus Chrysoporthe cubensis for production of xylooligosaccharides and fermentable sugars. Appl. Biochem. Biotechnol. 2017, 182, 818–830. [Google Scholar] [CrossRef]
- Nieto-Domínguez, M.; de Eugenio, L.I.; York-Durán, M.J.; Rodríguez-Colinas, B.; Plou, F.J.; Chenoll, E.; Pardo, E.; Codoñer, F.; Jesús Martínez, M. Prebiotic effect of xylooligosaccharides produced from birchwood xylan by a novel fungal GH11 xylanase. Food Chem. 2017, 232, 105–113. [Google Scholar] [CrossRef] [PubMed]
- da Silva Menezes, B.; Rossi, D.M.; Ayub, M.A. Screening of filamentous fungi to produce xylanase and xylooligosaccharides in submerged and solid-state cultivations on rice husk, soybean hull, and spent malt as substrates. World J. Microbiol. Biotechnol. 2017, 33, 58. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Fan, G.; Yu, T.; Sun, B.; Tang, H.; Teng, C.; Yang, R.; Li, X. Biochemical characteristics of the mutant xylanase T-XynC (122) C (166) and production of xylooligosaccharides from corncobs. Ind. Crops Prod. 2019, 142, 111848. [Google Scholar] [CrossRef]
- Carvalho, A.F.; de Figueiredo, F.C.; Campioni, T.S.; Pastore, G.M.; Neto, P.O. Improvement of some chemical and biological methods for the efficient production of xylanases, xylooligosaccharides and lignocellulose from sugar cane bagasse. Biomass Bioenergy 2020, 143, 105851. [Google Scholar] [CrossRef]
- Gauterio, G.V.; da Silva, L.G.; Hübner, T.; Ribeiro, T.R.; Kalil, S.J. Xylooligosaccharides production by crude and partially purified xylanase from Aureobasidium pullulans: Biochemical and thermodynamic properties of the enzymes and their application in xylan hydrolysis. Process Biochem. 2021, 104, 161–170. [Google Scholar] [CrossRef]
- Hamedi, J.; Vaez Fakhri, A.; Mahdavi, S. Biobleaching of mechanical paper pulp using Streptomyces rutgersensis UTMC 2445 isolated from a lignocellulose-rich soil. J. Appl. Microbiol. 2020, 128, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Boruah, P.; Dowarah, P.; Hazarika, R.; Yadav, A.; Barkakati, P.; Goswami, T. Xylanase from Penicillium meleagrinum var. viridiflavum—A potential source for bamboo pulp bleaching. J. Clean. Prod. 2016, 116, 259–267. [Google Scholar] [CrossRef]
- Sridevi, A.; Sandhya, A.; Ramanjaneyulu, G.; Narasimha, G.; Devi, P.S. Biocatalytic activity of Aspergillus niger xylanase in paper pulp biobleaching. 3 Biotech 2016, 6, 165. [Google Scholar] [CrossRef] [PubMed]
- Campioni, T.S.; de Jesus Moreira, L.; Moretto, E.; Nunes, N.S.S.; Neto, P.O. Biobleaching of Kraft pulp using fungal xylanases produced from sugarcane straw and the subsequent decrease of chlorine consumption. Biomass Bioenergy 2019, 121, 22–27. [Google Scholar] [CrossRef]
- Cunha, L.; Martarello, R.; de Souza, P.M.; de Freitas, M.M.; Barros, K.V.G.; Ferreira Filho, E.X.; Homem-de-Mello, M.; Magalhães, P.O. Optimization of xylanase production from Aspergillus foetidus in soybean residue. Enzym. Res. 2018, 2018, 6597017. [Google Scholar] [CrossRef]
- Li, C.; Kumar, A.; Luo, X.; Shi, H.; Liu, Z.; Wu, G. Highly alkali-stable and cellulase-free xylanases from Fusarium sp. 21 and their application in clarification of orange juice. Int. J. Biol. Macromol. 2020, 155, 572–580. [Google Scholar] [CrossRef]
- Carvalho, E.A.; Dos Santos Góes, L.M.; Uetanabaro, A.P.T.; da Silva, E.G.P.; Rodrigues, L.B.; Pirovani, C.P.; da Costa, A.M. Thermoresistant xylanases from Trichoderma stromaticum: Application in bread making and manufacturing xylo-oligosaccharides. Food Chem. 2017, 221, 1499–1506. [Google Scholar] [CrossRef]
- Yegin, S.; Altinel, B.; Tuluk, K. A novel extremophilic xylanase produced on wheat bran from Aureobasidium pullulans NRRL Y-2311-1: Effects on dough rheology and bread quality. Food Hydrocoll. 2018, 81, 389–397. [Google Scholar] [CrossRef]
- Zhang, B.; Wendan, Y.; Wang, F.; Omedi, J.O.; Liu, R.; Huang, J.; Zhang, L.; Zou, Q.; Huang, W.; Li, S. Use of Kluyveromyces marxianus prefermented wheat bran as a source of enzyme mixture to improve dough performance and bread biochemical properties. Cereal Chem. 2019, 96, 142–153. [Google Scholar] [CrossRef]
- Liu, W.; Brennan, M.A.; Serventi, L.; Brennan, C.S. Effect of cellulase, xylanase and α-amylase combinations on the rheological properties of Chinese steamed bread dough enriched in wheat bran. Food Chem. 2017, 234, 93–102. [Google Scholar] [CrossRef] [PubMed]
- da Silva, P.O.; de Alencar Guimarães, N.C.; Serpa, J.D.; Masui, D.C.; Marchetti, C.R.; Ruller, R.; Giannesi, G.C. Application of an endo-xylanase from Aspergillus japonicus in the fruit juice clarification and fruit peel waste hydrolysis. Biocatal. Agric. Biotechnol. 2019, 21, 101312. [Google Scholar] [CrossRef]
- Elegbede, J.A.; Lateef, A. Valorization of corn-cob by fungal isolates for production of xylanase in submerged and solid state fermentation media and potential biotechnological applications. Waste Biomass Valori. 2018, 9, 1273–1287. [Google Scholar] [CrossRef]
- Bandikari, R.; Mannepula, S.; Poludasu, R.M.; Obulam, V.S. Supplementation of fruit processing waste for endoxylanase production by Trichoderma koeningi isolate and its optimization using central composite design: Application of produced endoxylanase in mango juice clarification. J. Microbiol. Biotechnol. Food Sci. 2015, 5, 162. [Google Scholar] [CrossRef]
- Franco, J.R.; Huerta, A.G.; Lopez, D.D.; Cueves, R.S.; Salem, M.; Gonzalez-Ronquillo, C.M. Effect of xylanase, cellulase and natural maguey extract on the chemical composition of corn silage and in vitro rumen gas production. Cienc. Investig. Agrar. 2020, 47, 23–34. [Google Scholar]
- Yousuf, M.B.; Kolade, I.O.; Adetitun, D.O.; Arekemase, M.O. Effect of laboratory produced xylanase from Aspergillus niger on fibre digestibility of rice husk and guinea grass. Ethiop. J. Environ. Stud. Manag. 2017, 10, 668–674. [Google Scholar]
- da Costa, A.C.; Cavalheiro, G.F.; de Queiroz Vieira, E.R.; Gandra, J.R.; Fossa Da Paz, M.; Fonseca, G.G.; Leite, R.S.R. Catalytic properties of xylanases produced by Trichoderma piluliferum and Trichoderma viride and their application as additives in bovine feeding. Biocatal. Agric. Biotechnol. 2019, 19, 101161. [Google Scholar] [CrossRef]
- Marques, S.F.; Minafra, C.S.; Café, M.B.; Jose, S.H.; Cirano, U.J. Production and characterization of a Trichoderma harzianum multienzyme complex and its application in broiler Chicks’ diets. Curr. Biotechnol. 2018, 7, 26–33. [Google Scholar] [CrossRef]
- Azzaz, H.H.; Aboamer, A.A.; Alzahar, H.; Abdo, M.M.; Murad, H.A. Effect of xylanase and phytase supplementation on goat’s performance in early lactation. Pak. J. Biol. Sci. 2019, 22, 265–272. [Google Scholar] [CrossRef]
- Metreveli, E.; Kachlishvili, E.; Singer, S.W.; Elisashvili, V. Alteration of white-rot basidiomycetes cellulase and xylanase activities in the submerged co-cultivation and optimization of enzyme production by Irpex lacteus and Schizophyllum commune. Bioresour. Technol. 2017, 241, 652–660. [Google Scholar] [CrossRef]
- Nouri, H.; Azin, M.; Mousavi, M.L. Xylan-hydrolyzing thermotolerant Candida tropicalis HNMA-1 for bioethanol production from sugarcane bagasse hydrolysate. Ann. Microbiol. 2017, 67, 633–641. [Google Scholar] [CrossRef]
- Ye, Y.; Li, X.; Cao, Y.; Du, J.; Chen, S.; Zhao, J. A β-xylosidase hyper-production Penicillium oxalicum mutant enhanced ethanol production from alkali-pretreated corn stover. Bioresour. Technol. 2017, 245, 734–742. [Google Scholar] [CrossRef]
- Prajapati, B.P.; Jana, U.K.; Suryawanshi, R.K.; Kango, N. Sugarcane bagasse saccharification using Aspergillus tubingensis enzymatic cocktail for 2G bio-ethanol production. Renew. Energy 2020, 152, 653–663. [Google Scholar] [CrossRef]
- Jin, X.; Song, J.; Ma, J.; Liu, G.Q. Thermostable β-xylosidase from Aspergillus fumigatus: Purification, characterization and potential application in lignocellulose bioethanol production. Renew. Energy 2020, 155, 1425–1431. [Google Scholar] [CrossRef]
- Sharma, M.; Mahajan, C.; Bhatti, M.S.; Chadha, B.S. Profiling and production of hemicellulases by thermophilic fungus Malbranchea flava and the role of xylanases in improved bioconversion of pretreated lignocellulosics to ethanol. 3 Biotech 2016, 6, 30. [Google Scholar] [CrossRef]
- Silva, N.F.; Simões, M.R.; Knob, A.; Schmidt, S.; Luis, J.; Garcia, R.C.; Alexendre, M.; Kimiko, M. Improvement in the bleaching of kraft pulp with xylanase from Penicillium crustosum FP 11 isolated from the Atlantic forest. Biocatal. Biotransform. 2016, 34, 119–127. [Google Scholar] [CrossRef]
- Chutani, P.; Sharma, K.K. Concomitant production of xylanases and cellulases from Trichoderma longibrachiatum MDU-6 selected for the deinking of paper waste. Bioprocess Biosyst. Eng. 2016, 39, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Desai, D.I.; Iyer, B.D. Biodeinking of old newspaper pulp using a cellulase-free xylanase preparation of Aspergillus niger DX-23. Biocatal. Agric. Biotechnol. 2016, 5, 78–85. [Google Scholar] [CrossRef]
- Chutani, P.; Sharma, K.K. Biochemical evaluation of xylanases from various filamentous fungi and their application for the deinking of ozone treated newspaper pulp. Carbohydr. Polym. 2015, 127, 54–63. [Google Scholar] [CrossRef]
- Sridevi, A.; Ramanjaneyulu, G.; Suvarnalatha Devi, P. Biobleaching of paper pulp with xylanase produced by Trichoderma asperellum. 3 Biotech 2017, 7, 266. [Google Scholar] [CrossRef]
- Nathan, V.K.; Rani, M.E.; Rathinasamy, G.; Dhiraviam, K.N. Low molecular weight xylanase from Trichoderma viride VKF3 for bio-bleaching of newspaper pulp. BioResources 2017, 12, 5264–5278. [Google Scholar] [CrossRef]
- Lu, Q.; Lu, J.; Ma, H.; Zhang, H.; Wang, L. The effect of lanthanum (III) on the activity of xylanase by Penicillium and its influence on brightness in the paper pulp bleaching. 3 Biotech 2019, 9, 452. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Kumar, A.; Chhabra, D.; Shukla, P. Improved biobleaching of mixed hardwood pulp and process optimization using novel GA-ANN and GA-ANFIS hybrid statistical tools. Bioresour. Technol. 2019, 271, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Ghoshal, G.; Shivhare, U.S.; Banerjee, U.C. Rheological properties and microstructure of xylanase containing whole wheat bread dough. J. Food Sci. Technol. 2017, 54, 1928–1937. [Google Scholar] [CrossRef] [PubMed]
- Serventi, L.; Jensen, S.; Skibsted, L.H.; Kidmose, U. Addition of enzymes to improve sensory quality of composite wheat–cassava bread. Eur. Food Res. Technol. 2016, 242, 1245–1252. [Google Scholar] [CrossRef]
- Wang, X.; Pei, D.; Teng, Y.; Liang, J. Effects of enzymes to improve sensory quality of frozen dough bread and analysis on its mechanism. J. Food Sci. Technol. 2018, 55, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.M.; Afshar, M. Effects of feed form and xylanase supplementation on performance and ileal nutrients digestibility of heat-stressed broilers fed wheat–soybean diet. J. Appl. Anim. Res. 2017, 45, 550–556. [Google Scholar] [CrossRef]
- Tiwari, U.P.; Chen, H.; Kim, S.W.; Jha, R. Supplemental effect of xylanase and mannanase on nutrient digestibility and gut health of nursery pigs studied using both in vivo and in vitro models. Anim. Feed Sci. Technol. 2018, 245, 77–90. [Google Scholar] [CrossRef]
- Abdulla, J.M.; Rose, S.P.; Pirgozliev, V. The effect of novel xylanase on feeding value of diet containing cereal by-products for broilers. Agric. Sci. Technol. 2018, 10, 34–36. [Google Scholar] [CrossRef]
- Boonrung, S.; Katekaew, S.; Mongkolthanaruk, W.; Aimi, T.; Boonlue, S. Purification and characterization of low molecular weight extreme alkaline xylanase from the thermophilic fungus Myceliophthora thermophila BF1-7. Mycoscience 2016, 57, 408–416. [Google Scholar] [CrossRef]
- Basit, A.; Liu, J.; Miao, T.; Zheng, F.; Rahim, K.; Lou, H.; Jiang, W. Characterization of two endo-β-1, 4-xylanases from Myceliophthora thermophila and their saccharification efficiencies, synergistic with commercial cellulase. Front. Microbiol. 2018, 9, 233. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahiya, S.; Rapoport, A.; Singh, B. Biotechnological Potential of Lignocellulosic Biomass as Substrates for Fungal Xylanases and Its Bioconversion into Useful Products: A Review. Fermentation 2024, 10, 82. https://doi.org/10.3390/fermentation10020082
Dahiya S, Rapoport A, Singh B. Biotechnological Potential of Lignocellulosic Biomass as Substrates for Fungal Xylanases and Its Bioconversion into Useful Products: A Review. Fermentation. 2024; 10(2):82. https://doi.org/10.3390/fermentation10020082
Chicago/Turabian StyleDahiya, Seema, Alexander Rapoport, and Bijender Singh. 2024. "Biotechnological Potential of Lignocellulosic Biomass as Substrates for Fungal Xylanases and Its Bioconversion into Useful Products: A Review" Fermentation 10, no. 2: 82. https://doi.org/10.3390/fermentation10020082
APA StyleDahiya, S., Rapoport, A., & Singh, B. (2024). Biotechnological Potential of Lignocellulosic Biomass as Substrates for Fungal Xylanases and Its Bioconversion into Useful Products: A Review. Fermentation, 10(2), 82. https://doi.org/10.3390/fermentation10020082