The Effect of a Leaf Fertilization Method Using Humic Acids on the Minerality and Chemical Composition of Sauvignon Blanc Wine from the Slovak Wine Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vineyard Parameters and Growth and Climatic Conditions
2.2. Leaf Mineral Content Determination
2.3. Chemical Analysis of Wine
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ciampa, A.; Dell’Abate, M.T.; Florio, A.; Tarricone, L.; Di Gennaro, D.; Picone, G.; Trimigno, A.; Capozzi, F.; Benedetti, A. Combined magnetic resonance imaging and high resolution spectroscopy approaches to study the fertilization on metabolome, morphology and yeast community of wine grape berries, cultivar Nero di Troia. Food Chem. 2019, 274, 831–839. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Mattii, G.B. Biostimulants in Viticulture: A sustainable approach against biotic and abiotic Stresses. Plants 2022, 11, 162. [Google Scholar] [CrossRef]
- Webb, L.; Whetton, P.H.; Barlow, E.W.R. Modelled impact of future climate change on the phenology of winegrapes in Australia. Aust. J. Grape Wine Res. 2007, 13, 165–175. [Google Scholar] [CrossRef]
- Potort, A.G.; Turco, V.L.; Saitta, M.; Bua, G.D.; Tropea, A.; Dugo, G.; Di Bella, G. Chemometric analysis of minerals and trace elements in Sicilian wines from two different grape cultivars. Nat. Prod. Res. 2017, 31, 1000–1005. [Google Scholar] [CrossRef]
- Moreno, J.; Peinado, R. Enological Chemistry, 1st ed.; Academic Press Inc.: Madrid, Spain, 2012; pp. 1–442. [Google Scholar]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology: The Chemistry of Wine Stabilization and Treatments, 2nd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2006; Volume 2, pp. 1–441. [Google Scholar]
- Almeida, C.M.R.; Vasconcelos, M.T.S.D. Multielement composition of wines and their precursors including provenance soil and their potentialities as fingerprints of wine origin. J. Agric. Food Chem. 2003, 51, 4788–4798. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, H.; Akamatsu, F.; Kamada, A.; Koyama, K.; Iwashita, K.; Goto-Yamamoto, N. Variation in the mineral composition of wine produced using different winemaking techniques. J. Biosci. Bioeng. 2020, 130, 166–172. [Google Scholar] [CrossRef]
- Ferrara, G.; Brunetti, G. Effects of the times of application of a soil humic acid on berry quality of table grapes (Vitis vinifera L.) cv Italia. Span. J. Agric. Res. 2010, 8, 817–822. [Google Scholar] [CrossRef]
- Islam, M.A.; Morton, D.W.; Johnson, B.B.; Angove, M.J. Adsorption of humic and fulvic acids onto a range of adsorbents in aqueous systems, and their effect on the adsorption of other species: A review. Sep. Purif. Technol. 2020, 247, 116949. [Google Scholar] [CrossRef]
- Abd EL-Rahman, M.M.A.; Khodair, O.A.; Hamed, M.H. Impact of organic bio fertilization and humic acid on growth and fruiting on flame seedles grapevines under sandy soil conditions. J. Plant Prod. 2021, 12, 171–177. [Google Scholar]
- Aljabary, A.M.O.; Al-Baytie, M.R.S.; Ahmed, Z.S. Effect of number eyes left after pruning, fertilization with humic acid and spraying with gibberellic acid in some mineral content of vineyards thompson cv. Vitis vinifera L. Plant Arch. 2018, 18, 2061–2067. [Google Scholar]
- Lasa, B.; Menendez, S.; Sagastizabal, K.; Cervantes, M.E.; Irigoyen, I.; Muro, J.; Aparicio-Tejo, P.M.; Ariz, I. Foliar application of urea to Sauvignon blanc and Merlot vines: Doses and time application. Plant Growth Regul. 2012, 67, 73–81. [Google Scholar] [CrossRef]
- Popescu, G.C.; Popescu, M. Yield, berry quality and physiological response of grapevine to foliar humic acid application. Bragantia Camp. 2018, 77, 273–282. [Google Scholar] [CrossRef]
- Asgharzade, A.; Babaeian, M. Investigating the effects of humic acid and acetic acid foliar application on yield and leaves nutrient content of grape (Vitis vinifera). Afr. J. Microbiol. Res. 2012, 6, 6049–6054. [Google Scholar] [CrossRef]
- Derrien, M.; Lee, Y.K.; Park, J.E.; Li, P.; Chen, M.; Lee, S.H.; Lee, S.H.; Lee, J.B.; Hur, J. Spectroscopic and molecular characterization of humic substances (HS) from soils and sediments in a watershed: Comparative study of HS chemical fractions and the origins. Environ. Sci. Pollut. Res. 2017, 24, 16933–16945. [Google Scholar] [CrossRef] [PubMed]
- El-Boray, M.S.; Mostafa, M.F.; Shaltout, A.D.; Hassan, K.H. Influence of fulvic acid plus some microelements and microorganisms on yield and quality characteristics of Superior Seedles grapevines. J. Plant Prod. 2015, 6, 287–305. [Google Scholar]
- Abdel-Fattah, M.E.S.; Moamen, M.A.W.; El-Nopy, H.S.; Osama, G.E.M.A. Minimizing mineral N Fertilization Superior Seedless Grapevines by Using Humic and Fulvic acids. Assiut J. Agric. Sci. 2023, 54, 227–238. [Google Scholar]
- Eman, A.A.; Abd El-Monem, M.; Saleh, R.M.; Mostafa, E.A.M. Minimizing the quantity of mineral nitrogen fertilizers on grapevine by using humic acid, organic and bio fertilizers. Res. J. Agric. Biol. Sci. 2008, 4, 46–50. [Google Scholar]
- Horneck, D.A.; Miller, R.O. Determination of total nitrogen in plant tissue. In Handbook of Reference Methods for Plant Analysis; CRC Press: Boca Raton, FL, USA, 1998; pp. 75–83. [Google Scholar]
- Pérez-Álvarez, E.P.; García, R.; Barrulas, P.; Dias, C.; Cabrita, M.J.; Garde-Cerdán, T. Classification of wines according to several factors by ICP-MS multielement analysis. Food Chem. 2019, 270, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Asendorf, S. Thermo Fisher Scientific Application Note 44392.: Analysis of Infant Formulae and Milk Powders Using the Thermo Scientific iCAP 7400 ICP-OES Duo; Thermo Fisher Scientific: Waltham, MA, USA, 2018. [Google Scholar]
- Ciotta, M.N.; Ceretta, C.A.; Ferreira, P.A.; Stefanello, L.O.; Couto, R.R.; Tassianri, A.; Marchezan, C.; Girotto, E.; de Conti, L.; Lourenzi, C.R.; et al. Phosphorus fertilization for young grapevines of Chardonnay and Pinot Noir in sandy soil. Idesia 2018, 36, 27–34. [Google Scholar] [CrossRef]
- Greenough, J.D.; Lengerich, H.P.; Jackson, S.E. Element fingerprinting of Okanagan Valley wines using ICP-MS: Relationships between wine composition, vineyard and wine colour. Aust. J. Grape Wine Res. 1997, 3, 75–83. [Google Scholar] [CrossRef]
- James, A.; Mahinda, A.; Mwamahonje, A.; Rweyemamu, E.W.; Mrena, E.; Aloys, K.; Massawe, C. A review on the influence of fertilizers application on grape yield and quality in tropics. J. Plant Nutr. 2022, 46, 2936–2957. [Google Scholar] [CrossRef]
- Available online: https://www.oiv.int/standards/international-code-of-oenological-practices/annexes/maximum-acceptable-limits (accessed on 12 November 2024).
- Yang, Y.; Duan, C.; Du, H.; Tian, J.; Pan, Q. Trace elements and rare earth element profiles in berry tissues of three grape cultivars. Am. J. Enol. Vitic. 2010, 61, 401–407. [Google Scholar] [CrossRef]
- Minoia, C.; Sabbioni, E.; Ronchi, A.; Gatti, A.; Pietra, R.; Nicolotti, A.; Fortaner, S.; Balducci, C.; Fonte, A.; Roggi, C. Trace element reference values in tissues from inhabitants of the European Community. Sci. Total Environ. 1994, 141, 181–195. [Google Scholar] [CrossRef]
- Stafilov, T.; Karadjova, I. Atomic absorption spectrometry in wine analysis—A review. Maced. J. Chem. Chem. Eng. 2009, 28, 17–31. [Google Scholar] [CrossRef]
- Peršurić Palčić, A.; Jeromel, A.; Pecina, M.; Palčić, I.; Gluhić, D.; Petek, M.; Herak Ćustić, M. Decreased Leaf Potassium Content Affects the Chemical Composition of Must for Sparkling Wine Production. Horticulturae 2022, 8, 512. [Google Scholar] [CrossRef]
- Peršurić Palčić, A.; Jeromel, A.; Pecina, M.; Palčić, I.; Gluhić, D.; Herak Ćustić, M. Effect of foliar fertilization on cv. Istrian Malvasia (Vitis vinifera L.) must on basic chemical composition. Glas. Zašt. Bilja 2020, 4, 32–38. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 2002. [Google Scholar]
- Fardossi, A. Aspekte der Rabenährung (Aspects of Grapevine Nutrition). Der Winz. 2001, 57, 6–13. [Google Scholar]
- Schmitt, D.E.; Borghezan, M.; Ambrosini, V.G.; Comin, J.J. Yield and must composition of grapevines subjected to phosphate fertilization in Southern Brasil. Pesqui. Agropecu. Bras. 2020, 55, 11–67. [Google Scholar] [CrossRef]
- Stefanello, L.; Schwalbert, R.; Schwalbert, R.; Tassinari, A.; Garlet, L.; De Conti, L.; Ciotta, M.; Ceretta, C.; Ciampitti, I.; Brunetto, G. Phosphorus critical levels in soil and grapevine leaves for South Brazil vineyards: A Bayesian approach. Eur. J. Agron. 2023, 144, 126752. [Google Scholar] [CrossRef]
- Kostič, D.; Mitič, S.; Miletič, G.; Despotovič, S.; Zarubica, A. The concentrations of Fe, Cu and Zn in selected wines from South-East Serbia. J. Serbian Chem. Soc. 2010, 75, 1701–1709. [Google Scholar] [CrossRef]
- Ali, M.R.; Mehraj, H.; Uddin, A.F.J. Effects of foliar application of zinc and boron on growth and yield of summer tomato. J. Biosci. Agric. Res. 2015, 6, 512–517. [Google Scholar] [CrossRef]
- Gupta, K.; Abhijit, D.; Gupta, B. Plant polyaminases in abiotic stress responses. Acta Physiol. Plant 2013, 35, 2015–2036. [Google Scholar] [CrossRef]
- Cabrita, M.J.; Martins, N.; Barrulas, P.; Garcia, R.; Dias, C.B.; Perez-Alvarez, E.P.; Freitas, A.M.C.; Garde-Cerdán, T. Multi-element composition of red, white and palhete amphora wines from Alentejo. Food Control 2018, 92, 80–85. [Google Scholar] [CrossRef]
- Fernández, V.; Sotiropoulos, T.; Brown, P.H. Foliar Fertilization: Scientific Principles and Field Practices; International Fertilizer Industry Association: Paris, France, 2013. [Google Scholar]
- Garde-Cedran, T.; López, R.; Portu, J.; González-Arenzana, L.; López-Alfaro, I.; Santamaria, P. Study of the effects of proline phenylalanine and urea foliar application to Tempranillo vineyards on grape amino acid content. Comparison with commercial nitrogen fertilisers. Food Chem. 2014, 163, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Sabit, A.; Yazar, K.; Sabir, F.; Kara, Z.; Yazici, M.A.; Goksu, N. Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Sci. Hortic. 2014, 175, 1–8. [Google Scholar]
- Catarino, S.; Madeira, M.; Monteiro, F.; Rocha, F.; Curvelo-Garcia, A.S.; De Sousa, R.B. Effect of bentonite characteristics on the elemental composition of wine. J. Agric. Food Chem. 2008, 56, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Akamatsu, F.; Shimizu, H.; Kamada, A.; Igi, Y.; Fujii, T.; Goto-Yamamoto, N. Increase in the oxygen stable isotopic composition of water in wine with low ethanol yield. Sci. Rep. 2019, 9, 1103. [Google Scholar] [CrossRef]
- Dienes-Nagy, Á.; Marti, G.; Breant, L.; Lorenzini, F.; Fuchsmann, P.; Baumgartner, D.; Zufferey, V.; Spring, J.-L.; Gindro, K.; Viret, O.; et al. Identification of putative chemical markers in white wine (Chasselas) related to nitrogen deficiencies in vineyards. Oeno One 2020, 54, 583–599. [Google Scholar] [CrossRef]
- Casassaa, L.F.; Cejaa, G.M.; Vega-Osornoa, A.; Fresne, F.; Llodrac, D. Detailed chemical composition of Cabernet Sauvignon wines aged in French oak barrels coopered with three different stave bending techniques. Food Chem. 2021, 340, 127573. [Google Scholar] [CrossRef]
- García-Escudero, E.; Romero, I.; Benito, A.; Domínguez, N.; Martín, I. Reference Levels for Leaf Nutrient Diagnosis of cv. Tempranillo Grapevine in the Rioja Appellation. Commun. Soil Sci. Plant Anal. 2013, 44, 645–654. [Google Scholar] [CrossRef]
- Plotka-Wasylka, J.; Rutkowska, M.; Cieslik, B.; Tyburcy, A.; Namiesnik, J. Determination of selected metals in fruit wines by spectroscopic techniques. J. Anal. Methods Chem. 2017, 2017, 5283917. [Google Scholar] [CrossRef]
- Niimi, J.; Liland, K.H.; Tomic, O.; Jeffery, D.W.; Bastian, S.E.P.; Boss, P.K. Prediction of wine sensory properties using mid infrared spectra of Cabernet Sauvignon and Chardonnay grape berries and wines. Food Chem. 2021, 344, 128634. [Google Scholar] [CrossRef]
- Rossano, E.C.; Szilágyi, Z.; Malorni, A.; Pocsfalyi, G. Influence of winemaking practices on the concentration of rare earth elements in white wines studied by inductively coupled plasma mass spectrometry. J. Agric. Food Chem. 2007, 55, 311–317. [Google Scholar] [CrossRef]
- Hopfer, H.; Nelson, J.; Collins, T.S.; Heymann, H.; Ebeler, S.E. The combined impact of vineyard origin and processing winery on the elemental profile of red wines. Food Chem. 2015, 172, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Saquib, R.U.; Qasim, M.; Saleem, M.; Khan, A.S.; Yaseen, M. Humic acid and cultivar effects on growth, yield, vase life, and corm characterictics of gladiolus. Chil. J. Agric. Res. 2013, 73, 339–344. [Google Scholar] [CrossRef]
- Blotevogel, S.; Schreck, E.; Laplanche, C.; Besson, P.; Saurin, N.; Audry, S.; Viers, J.; Oliva, P. Soil chemistry and meteorological conditions influence the elemental profiles of Westeuropean wines. Food Chem. 2019, 298, 125033. [Google Scholar] [CrossRef]
- Lošák, T.; Zezulová, T.; Baroň, M.; Elbl, J.; Kintl, A.; Ducsay, L.; Varga, L.; Torma, S.; Petek, M. Foliar application of potassium to grapevine (Vitis vinifera L.). Agrochémia 2020, 1, 23–27. [Google Scholar]
- Daudt, C.E.; Fogaça, A. Effect of tartaric acid upon potassium, total acidity and pH, during the vinification of Cabernet Sauvignon grapes. Ciênc. Rural 2008, 38, 2345–2350. [Google Scholar] [CrossRef]
- Dequin, S.; Escudier, J.L.; Bely, M.; Noble, J.; Albertin, W.; Masneuf-Pomarède, I.; Marullo, P.; Salmon, J.M.; Sablayrolles, J.M. How to adapt winemaking practices to modified grape composition under climate change conditions. Oeno One 2017, 51, 205–214. [Google Scholar] [CrossRef]
- Torres, R.L.; De La Fuente Lloreda, M.; Gonzalez, P.J.; Lissarrague García-Gutierrez, J.R.; Baeza Trujillo, P. Effect of soil management strategies on the characteristics of the grapevine root system in irrigated vineyards under semi-arid conditions. Aust. J. Grape Wine Res. 2018, 24, 439–449. [Google Scholar] [CrossRef]
- Thiel, G.; Geisler, G.; Blechschmidt, I.; Danzer, K. Determination of trace elements in wines and classification according to their provenance. Anal. Bioanal. Chem. 2004, 378, 1630–1636. [Google Scholar] [CrossRef] [PubMed]
- Parr, W.V.; Valentin, D.; Breitmeyer, J.; Peyron, D.; Darriet, P.; Sherlock, R.; Robinson, B.; Grose, C.; Ballester, J. Perceived minerality in sauvingon blanc wine: Chemical reality of cultural construct? Food Res. Int. 2016, 87, 168–179. [Google Scholar] [CrossRef] [PubMed]
Foliar Fertilizer Composition | |
---|---|
Boron (mg/kg) | 31,200 |
Cobalt (mg/kg) | <2.50 |
Copper (mg/kg) | <2.50 |
Iron (mg/kg) | 17.8 |
Manganese (mg/kg) | <2.50 |
Molybdenum (mg/kg) | <0.50 |
Zinc (mg/kg) | <2.50 |
Potassium (K2O) (mg/kg) | 0.29 |
Total nitrogen (%) | 4.32 |
Humic acids (%) | 8.59 |
Soil Measurement Spring 2021 | Soil After Standard Fertilization | Leaves from the Control Group After Standard Fertilization | Leaves from the Experimental Group After Standard Fertilization | Leaves from the Experimental Group After Leaf Fertilization | Post-Harvest Soil Control Group | |
---|---|---|---|---|---|---|
N (kg/ha) | 116.59 ± 12.19 b | 170.75 ± 11.71 a | 128.98 ± 8.11 c | 127.05 ± 7.56 c | 131.29 ± 6.54 c | 118.44 ± 8.48 b |
P (mg/kg) | 86.46 ± 3.96 b | 116.24 ± 4.93 a | 106.56 ± 1.77 c | 106.86 ± 2.38 c | 109.24 ± 1.96 c | 95.86 ± 1.28 b |
K (mg/kg) | 124.59 ± 3.98 b | 280.96 ± 6.05 a | 181.14 ± 1.94 c | 182.24 ± 2.47 c | 192.54 ± 3.42 c | 141.17 ± 2.82 d |
Ca (mg/kg) | 1012.64 ± 3.34 b | 2653.88 ± 24.79 a | 1662.29 ± 13.29 c | 1678.98 ± 6.58 c | 1724.21 ± 2.54 c | 2295.25 ± 23.79 a |
Mg (mg/kg) | 97.95 ± 0.27 b | 250.95 ± 1.83 a | 158.07 ± 6.38 c | 159.01 ± 5.54 c | 174.84 ± 1.95 d | 135.25 ± 1.92 c |
Fe (mg/kg) | 6.25 ± 0.19 | 7.53 ± 0.06 b | 6.53 ± 0.04 | 6.47 ± 1.56 | 7.02 ± 1.53 b | 5.25 ± 0.02 a |
Cu (mg/kg) | 0.95 ± 0.04 b | 2.47 ± 0.15 a | 2.40 ± 0.01 a | 2.12 ± 0.01 a | 2.34 ± 0.02 a | 1.78 ± 0.01 c |
Zn (mg/kg) | 1.11 ± 0.02 b | 1.71 ± 0.12 | 1.69 ± 0.01 | 1.72 ± 0.01 | 1.91 ± 0.02 a | 1.41 ± 0.01 b |
B (mg/kg) | 0.64 ± 0.02 b | 0.91 ± 0.10 b | 1.12 ± 0.02 b | 1.95 ± 0.01 c | 2.34 ± 0.01 a | 0.99 ± 0.02 b |
pH | 5.98 ± 0.01 | 6.32 ± 0.04 | 6.33 ± 0.01 | 6.34 ± 0.01 | 6.41 ± 0.01 | 6.09 ± 0.01 |
OM (%) | 2.55 ± 0.02 a | 2.64 ± 0.06 a | 2.65 ± 0.08 a | 1.84 ± 0.05 b | 1.91 ± 0.02 b | 1.27 ± 0.01 c |
Blooming | Veraison | |||
---|---|---|---|---|
Control | Experimental | Control | Experimental | |
Ca | 70.41 ± 1.89 b | 90.45 ± 0.79 a | 110.18 ± 1.72 b | 139.76 ± 4.35 a |
P | 165.25 ± 1.63 b | 262.82 ± 13.52 a | 114.80 ± 1.20 a | 90.22 ± 1.52 b |
K | 659.87 ± 14.78 b | 785.42 ± 13.22 a | 569.90 ± 13.82 b | 643.91 ± 5.08 a |
Mg | 101.42 ± 2.06 | 103.64 ± 2.44 | 91.24 ± 2.60 b | 98.95 ± 1.74 a |
Fe | 69.21 ± 6.85 | 62.28 ± 2.81 | 77.08 ± 8.68 | 71.26 ± 4.95 |
Zn | 52.27 ± 0.73 | 53.36 ± 1.80 | 42.59 ± 1.93 b | 49.78 ± 1.29 a |
Cu | 5.93 ± 0.05 b | 6.19 ± 0.14 a | 8.38 ± 0.35 | 8.32 ± 1.17 |
B | 25.13 ± 0.82 b | 27.66 ± 0.49 a | 28.86 ± 1.02b a | 31.12 ± 1.23 a |
(mg/kg) | Grapes | Must | Wine | |||
---|---|---|---|---|---|---|
Control | Experimental | Control | Experimental | Control | Experimental | |
Ca | 79.91 ± 1.86 b | 96.20 ± 2.34 a | 94.97 ± 1.34 | 94.21 ± 4.54 | 86.02 ± 0.52 a | 82.86 ± 0.29 b |
P | 155.05 ± 1.63 b | 215.32 ± 2.12 a | 152.39 ± 2.39 b | 173.18 ± 3.52 a | 149.34 ± 0.37 b | 161.77 ± 0.49 a |
K | 519.87 ± 1.72 b | 672.92 ± 25.30 a | 274.09 ± 11.97 b | 321.46 ± 4.47 a | 238.85 ± 0.24 b | 284.08 ± 0.44 a |
Mg | 93.92 ± 3.28 | 95.14 ± 1.70 | 85.45 ± 1.05 | 85.77 ± 3.19 | 74.81 ± 0.18 | 74.35 ± 0.33 |
Fe | 64.41 ± 1.49 | 62.03 ± 1.70 | 5.89 ± 0.43 | 5.67 ± 0.21 | 5.33 ± 0.07 | 5.23 ± 0.08 |
Zn | 72.27 ± 0.73 | 68.36 ± 4.95 | 4.02 ± 0.03 b | 5.02 ± 0.14 a | 3.76 ± 0.19 | 3.83 ± 0.12 |
Cu | 6.68 ± 0.45 | 6.61 ± 0.36 | 3.42 ± 0.05 | 3.48 ± 0.09 | 0.37 ± 0.01 | 0.38 ± 0.01 |
B | 18.13 ± 0.70 a | 14.36 ± 2.35 b | 0.38 ± 0.02 b | 0.71 ± 0.06 a | 0.36 ± 0.01 b | 0.61 ± 0.06 a |
Must | Sugar (g/L) | TA (g/L) | pH | NC (mg/L) | ||
Control | 22.12 ± 0.47 | 11.98 ± 0.16 a | 3.21 ± 0.01 b | 168.36 ± 0.01 b | ||
Experimental | 21.52 ± 0.77 | 11.73 ± 0.20 b | 3.23 ± 0.01 a | 176.24 ± 0.02 a | ||
Wine | pH | AV (%) | Sugar (g/L) | TA (g/L) | VA (g/L) | TAD (g/L) |
Control | 3.16 ± 0.01 b | 12.82 ± 0.05 a | 4.02 ± 0.04 | 7.45 ± 0.04 | 0.82 ± 0.02 | 2.31 ± 0.02 a |
Experimental | 3.21 ± 0.02 a | 12.71 ± 0.03 b | 4.27 ± 0.01 | 7.47 ± 0.02 | 0.79 ± 0.07 | 2.26 ± 0.05b a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartkovský, M.; Semjon, B.; Regecová, I.; Baričičová, V.; Očenáš, P.; Šuľáková, L.; Marcinčák, S. The Effect of a Leaf Fertilization Method Using Humic Acids on the Minerality and Chemical Composition of Sauvignon Blanc Wine from the Slovak Wine Region. Fermentation 2024, 10, 651. https://doi.org/10.3390/fermentation10120651
Bartkovský M, Semjon B, Regecová I, Baričičová V, Očenáš P, Šuľáková L, Marcinčák S. The Effect of a Leaf Fertilization Method Using Humic Acids on the Minerality and Chemical Composition of Sauvignon Blanc Wine from the Slovak Wine Region. Fermentation. 2024; 10(12):651. https://doi.org/10.3390/fermentation10120651
Chicago/Turabian StyleBartkovský, Martin, Boris Semjon, Ivana Regecová, Viera Baričičová, Peter Očenáš, Lucia Šuľáková, and Slavomír Marcinčák. 2024. "The Effect of a Leaf Fertilization Method Using Humic Acids on the Minerality and Chemical Composition of Sauvignon Blanc Wine from the Slovak Wine Region" Fermentation 10, no. 12: 651. https://doi.org/10.3390/fermentation10120651
APA StyleBartkovský, M., Semjon, B., Regecová, I., Baričičová, V., Očenáš, P., Šuľáková, L., & Marcinčák, S. (2024). The Effect of a Leaf Fertilization Method Using Humic Acids on the Minerality and Chemical Composition of Sauvignon Blanc Wine from the Slovak Wine Region. Fermentation, 10(12), 651. https://doi.org/10.3390/fermentation10120651