Screening Dietary Fat Sources and Concentrations Included in Low- and High-Forage Diets Using an In Vitro Gas Production System
Abstract
1. Introduction
2. Materials and Methods
2.1. Treatments and Experimental Design
2.2. Module Culture Conditions
2.3. Sample Collection and Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Diet Composition and Nutrient Inputs
3.2. Digestibility of Nutrients
3.2.1. Forage Effect
3.2.2. Fat Effect
3.2.3. Source Effect
3.3. Characteristics of Fermentation
3.3.1. Forage Effects
3.3.2. Fat Effects
3.3.3. Source Effects
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azain, M.J. Role of fatty acids in adipocyte growth and development. J. Anim. Sci. 2004, 82, 916–924. [Google Scholar] [CrossRef]
- Ostergaard, V.; Danfaer, A.; Dangaard, J.; Hindhede, J.; Thysen, I. The Effect of Dietary Lipids on Milk Production in Dairy Cows; Berenting Fra Statens Hudyrbrugs Forsog, Eurekamag No. 508; Eurekamag: Copenhagen, Denmark, 1981. [Google Scholar]
- Ruesseger, G.J.; Schultz, L.H. Response of high producing cows in early lactation to the feeding of heat treated whole soybeans. J. Dairy Sci. 1985, 68, 3272. [Google Scholar] [CrossRef]
- Jenkins, T.C.; McGuire, M.A. Major advances in nutrition: Impact on milk composition. J. Dairy Sci. 2006, 89, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.K.; Tyrrell, H.F.; Reynolds, P.J. Effects of diet forage-to-concentrate ratio and intake on energy metabolism in growing beef heifers: Whole body energy and nitrogen balance and visceral heat production. J. Nutr. 1991, 121, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Zanton, G.I.; Heinrichs, A.J. The effects of controlled feeding of a high-forage or high-concentrate ration on heifer growth and first-lactation milk production. J. Dairy Sci. 2007, 90, 3388–3396. [Google Scholar] [CrossRef]
- Naik, P.K.; Saijpaul, S.; Kaur, K. Effect of supplementation of indigenously prepared rumen protected fat on rumen fermentation in buffaloes. Indian J. Anim. Sci. 2010, 80, 902–990. [Google Scholar]
- Zanton, G.I.; Heinrichs, A.J. Digestion and nitrogen utilization in dairy heifers limit-fed a low or high forage ration at four levels of nitrogen intake. J. Dairy Sci. 2009, 92, 2078–2094. [Google Scholar] [CrossRef]
- Lascano, G.J.; Heinrichs, A.J. Rumen fermentation pattern of dairy heifers fed restricted amounts of low, medium, and high concentrate diets without and with yeast culture. Livest. Sci. 2009, 124, 48–57. [Google Scholar] [CrossRef]
- Lascano, G.J.; Zanton, G.I.; Suarez-Mena, F.X.; Heinrichs, A.J. Effect of limit feeding high- and low-concentrate diets with Saccharomyces cerevisiae on digestibility and on dairy heifer growth and first-lactation performance. J. Dairy Sci. 2009, 92, 5100–5110. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Jenkins, T.C. Fat in lactation rations: Review. J. Dairy Sci. 1980, 63, 1–14. [Google Scholar] [CrossRef]
- Nocek, J.E. Bovine acidosis: Implications on laminitis. J. Dairy Sci. 1997, 80, 1005–1028. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, T.C. Lipid metabolism in the rumen. J. Dairy Sci. 1993, 76, 3851–3863. [Google Scholar] [CrossRef] [PubMed]
- Pantoja, J.; Firkins, J.L.; Eastridge, M.L.; Hull, B.L. Effects of fat saturation and source of fiber on site of nutrient digestion and milk production by lactating dairy cows. J. Dairy Sci. 1994, 77, 2341–2356. [Google Scholar] [CrossRef]
- Machmuller, A.; Soliva, C.R.; Kreuzer, M. Effect of coconut oil and defaunation treatment on methanogenesis in sheep. Repro. Nutr. Dev. 2003, 43, 41–55. [Google Scholar] [CrossRef]
- Pilajun, R.; Wanapat, M. Microbial population in the rumen of swamp buffalo (Bubalus bubalis) as influenced by coconut oil and mangosteen peel supplementation. J. Anim. Physiol. Anim. Nutr. 2013, 97, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Eastridge, M.L. Effects of Feeding Fats on Rumen Fermentation and Milk Composition. In Proceedings of the 37th Annual Pacific Northwest Animal Nutrition Conference, Vancouver, Canada, 1–10 October 2002; pp. 47–57. [Google Scholar]
- Rico, D.E.; Ying, Y.; Harvatine, K.J. Effect of a high-palmitic acid fat supplement on milk production and apparent total-tract digestibility in high- and low-milk yield dairy cows. J. Dairy Sci. 2014, 97, 3739–3751. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Jenkins, T.C. Calcium soaps as fat supplement in dairy cattle. In Proceedings of the XII World Congress of Diseases of Cattle, Amsterdam, The Netherlands, 7–10 September 1982; pp. 477–481. [Google Scholar]
- Jenkins, T.C.; Harvatine, K.J. Lipid feeding and milk fat depression. Vet. Clin. North Am. Food Anim. Pract. 2014, 30, 623–642. [Google Scholar] [CrossRef]
- Jenkins, T.C.; Jenny, B.F. Effect of hydrogenated fat on feed intake, nutrient digestion, and lactation performance of dairy cows. J. Dairy Sci. 1989, 72, 2316. [Google Scholar] [CrossRef]
- Elliott, J.P.; Drackley, J.K.; Aldrich, C.G.; Merchen, N.R. Effects of saturation and esterification of fat sources on site and extent of digestion in steers: Ruminal fermentation and digestion of organic matter, fiber, and nitrogen. J. Anim. Sci. 1997, 75, 2803–2812. [Google Scholar] [CrossRef]
- Palmquist, D.L. Influence of source and amount of dietary fat on digestibility in lactating cows. J. Dairy Sci. 1991, 74, 1354–1360. [Google Scholar] [CrossRef]
- Drackley, J.K.; Elliott, J.P. Milk composition, ruminal characteristics, and nutrient utilization in dairy cows fed partially hydrogenated tallow. J. Dairy Sci. 1993, 76, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Oldick, B.S.; Firkins, J.L. Effects of degree of fat saturation on fiber digestion and microbial protein synthesis when diets are fed twelve times daily. J. Anim. Sci. 2000, 78, 2412–2420. [Google Scholar] [CrossRef] [PubMed]
- Rabiee, A.R.; Breinhild, K.; Scott, W.; Golder, H.M.; Block, E.; Lean, I.J. Effect of fat additions to diets of dairy cattle on milk production and components: A meta-analysis and metaregression. J. Dairy Sci. 2012, 95, 3225–3247. [Google Scholar] [CrossRef] [PubMed]
- Hussein, S.M. Simulated and Applied Precision Feeding System of High and Low Forage Diets with Different Fat Sources and Sequences of Dietary Fat Concentration in In-Vitro and In-Vivo Studies. All Dissertations 2020, 2736. Available online: https://tigerprints.clemson.edu/all_dissertations/2736 (accessed on 30 September 2024).
- NRC. National Research Council. In The Nutrient Requirements of Dairy Cattle, 7th revised ed.; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Cone, J.W. The Development Use and Application of the Gas Production Technique at the DLO Institute for Animal Science and Health (IO-DOL), Lelystad, The Netherlands, Occasional Publication No. 22; British Society of Animal Science: London, UK, 1998; p. 65. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; AOAC: Arlington, VA, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Moody, M.L.; Zanton, G.I.; Daubert, J.M.; Heinrichs, A.J. Nutrient utilization of differing forage to concentrate ratios by growing Holstein heifers. J. Dairy Sci. 2007, 90, 5580–5586. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef]
- Yang, C.M.J.; Varga, G.A. Effect of three concentrate feeding frequencies on rumen protozoa, rumen digesta kinetics, and milk yield in dairy cows. J. Dairy Sci. 1989, 72, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Lascano, G.J.; Heinrichs, A.J. Effects of feeding different levels of dietary fiber through the addition of corn stover on nutrient utilization of dairy heifers precision-fed high and low concentrate diets. J. Dairy Sci. 2011, 94, 3025–3036. [Google Scholar] [CrossRef]
- Lascano, G.J.; Koch, L.E.; Heinrichs, A.J. Precision feeding dairy heifers a high rumen-degradable protein diet with different proportions of dietary fiber and forage-to concentrate ratios. J. Dairy Sci. 2016, 99, 7175–7190. [Google Scholar] [CrossRef]
- Suarez-Mena, F.X.; Lascano, G.J.; Rico, D.E.; Heinrichs, A.J. Effect of forage level and replacing canola meal with dry distillers grains with solubles in precision-fed heifer diets: Digestibility and rumen fermentation. J. Dairy Sci. 2015, 98, 8054–8065. [Google Scholar] [CrossRef] [PubMed]
- Colucci, P.E.; Macleod, G.K.; Grovum, W.L.; Cahill, L.W.; McMillan, I. Comparative digestion in sheep and cattle fed different forage to concentrate ratios at high and low intakes. J. Dairy Sci. 1989, 72, 1774–1785. [Google Scholar] [CrossRef] [PubMed]
- Murphy, T.A.; Fluharty, F.L.; Loerch, S.C. The influence of intake level and corn processing on digestibility and ruminal metabolism in steers fed all-concentrate diets. J. Anim. Sci. 1994, 72, 1608–1615. [Google Scholar] [CrossRef] [PubMed]
- Koch, L.E.; Gomez, N.A.; Bowyer, A.; Lascano, G.J. Precision-feeding dairy heifers a high rumen-undegradable protein diet with different proportions of dietary fiber and forage-to-concentrate ratios. J. Anim. Sci. 2017, 95, 5617–5628. [Google Scholar] [CrossRef] [PubMed]
- Ranathunga, S.D.; Abdelqader, M.M.; Kalscheur, K.F.; Hippen, A.R.; Schingoethe, D.J.; Casper, D.P. Production performance and ruminal fermentation of dairy cows fed diets replacing starch from corn with non-forage fiber from distillers grains. J. Dairy Sci. 2012, 95 (Suppl. 2), 604. [Google Scholar]
- Russell, J.B.; Wilson, D.B. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J. Dairy Sci. 1996, 79, 1503–1509. [Google Scholar] [CrossRef]
- Kim, S.H.; Mamuad, L.L.; Kim, E.; Sung, H.; Bae, G.; Cho, K.; Lee, C.; Lee, S. Effect of different concentrate diet levels on rumen fluid inoculum used for determination of in vitro rumen fermentation, methane concentration, and methanogen abundance and diversity. Ital. J. Anim. Sci. 2018, 17, 359–367. [Google Scholar] [CrossRef]
- Pilajun, R.; Wanapat, M. Effect of roughage to concentrate ratio and plant oil supplementation on in vitro fermentation end-products. Pak. J. Nutr. 2014, 13, 492–499. [Google Scholar] [CrossRef]
- Anderson, J.L.; Kalscheur, K.F.; Garcia, A.D.; Schingoethe, D.J. Feeding fat from distillers dried grains with solubles to dairy heifers: I. Effects on growth performance and total-tract digestibility of nutrients. J. Dairy Sci. 2015, 98, 5699–5708. [Google Scholar] [CrossRef]
- Lascano, G.J.; Alende, M.; Koch, L.E.; Jenkins, T.C. Changes in fermentation and biohydrogenation intermediates in continuous cultures fed low and high levels of fat with increasing rates of starch degradability. J. Dairy Sci. 2016, 99, 6334–6341. [Google Scholar] [CrossRef]
- Koch, L.E. Interrelationships Between Carbohydrate Fractions, Starch Degradability, and Unsaturated Fatty Acids in the Rumen and the Effects on Milk Fat Depressing Conditions. All Dissertations 2017, 2058. Available online: https://tigerprints.clemson.edu/all_dissertations/2058 (accessed on 28 July 2024).
- Ashour, E.A.; Kamal, M.; Altaie, H.A.; Swelum, A.A.; Suliman, G.M.; Tellez-Isaias, G.; Abd El-Hack, M.E. Effect of different energy, protein levels and their interaction on productive performance, egg quality, digestibility coefficient of laying Japanese quails. Poult. Sci. 2024, 103, 103170. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J. Nutritional Ecology of the Ruminan; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Abd El-Hack, M.E.; Kamal, M.; Altaie, H.A.; Youssef, I.M.; Algarni, E.H.; Almohmadi, N.H.; Abukhalil, M.H.; Khafaga, A.F.; Alqhtani, A.H.; Swelum, A.A. Peppermint essential oil and its nano-emulsion: Potential against aflatoxigenic fungus Aspergillus flavus in food and feed. Toxicon 2023, 234, 107309. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Ismail, I.E.; Khalaf, Q.A.; Khafaga, A.F.; Khalifa, N.E.; Khojah, H.; Abusudah, W.F.; Qadhi, A.; Almohmadi, N.H.; Imam, M.S. Chamomile: Functional properties and impacts on poultry/small ruminant health and production. Rev. Ann. Anim. Sci. 2024, 24, 349–365. [Google Scholar] [CrossRef]
- Manthey, A.K.; Anderson, J.L. Growth performance, rumen fermentation, nutrient utilization, and metabolic profile of dairy heifers limit-fed distillers dried grains with ad libitum forage. J. Dairy Sci. 2018, 101, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Palmquist, D.L. The role of dietary fats in efficiency of ruminants. J. Nutr. 1994, 124, 1377S–1382S. [Google Scholar]
- Bock, B.J.; Harmon, D.L.; Brandt, R.T., Jr.; Schneider, J.E. Fat source and calcium level effects on finishing steer performance, digestion, and metabolism. J. Anim. Sci. 1991, 69, 2211. [Google Scholar] [CrossRef]
- Zali, A.; Ramezani-Afarani, O.; Azimzadeh, V.; Alaee, S.; Nasrollahi, S.M. Short term effects of feeding calcium salts of poultry oil as fat supplement on feed intake, total-tract digestibility, chewing activity, and milk production of dairy cows. J. Saudi Soc. Agric. Sci. 2020, 19, 76–80. [Google Scholar] [CrossRef]
- Jenkins, T.C. Rendered Products in Ruminant Nutrition. In Essential Rendering: All about the Animal by-Products Industry; Meeker, D.L., Ed.; National Renderers Association: Alexandria, VA, USA, 2006. [Google Scholar]
- Ngidi, M.E.; Loerch, S.C.; Fluharty, F.L.; Palmquist, D.L. Effect of calcium soaps of long chain fatty acids on feedlot performance, carcass characteristics and ruminal metabolism of steers. J. Anim. Sci. 1990, 68, 2555–2565. [Google Scholar] [CrossRef]
- Chouinard, P.Y.; Girard, V.; Brisson, G.J. Fatty acid profile and physical properties of milk fat from cows fed calcium salts of fatty acids with varying unsaturation. J. Dairy Sci. 1998, 81, 471–481. [Google Scholar] [CrossRef]
- Naik, P.K.; Saijpaul, S.; Rani, N. Effect of ruminally protected fat on in vitro fermentation and apparent nutrient digestibility in buffaloes (Bubalus bubalis). Anim. Feed. Sci. Technol. 2009, 153, 68–76. [Google Scholar] [CrossRef]
- Thakur, S.S.; Shelke, S.K. Effect of supplementing bypass fat prepared from soybean acid oil on milk yield and nutrient utilization in Murrah buffaloes. Indian J. Anim. Sci. 2010, 80, 354–357. [Google Scholar]
- Sirohi, S.K.; Wali, T.K.; Mohanta, R. Supplementation effect of bypass fat on production performance of lactating crossbred cow. Indian J. Anim. Sci. 2010, 80, 733–736. [Google Scholar]
- Schauff, D.J.; Clark, J.H. Effects of feeding diets containing calcium salts of long-chain fatty acids to lactating dairy cows. J. Dairy Sci. 1992, 75, 2990–3002. [Google Scholar] [CrossRef]
- Naik, P.K.; Saijpaul, S.; Rani, N. Preparation of rumen protected fat and its effect on nutrient utilization in buffaloes. Indian J. Anim. Nutr. 2007, 24, 212–215. [Google Scholar]
- Erickson, P.S.; Murphy, M.R.; Clark, J.H. Supplementation of dairy cow diets with calcium salts of long-chain fatty acids and nicotinic acid in early lactation. J. Dairy Sci. 1992, 75, 1078–1089. [Google Scholar] [CrossRef] [PubMed]
- Machmuller, A. Medium-chain fatty acids and their potential to reduce methanogenesis in domestic ruminants. Agric. Ecosyst. Environ. 2006, 112, 107–114. [Google Scholar] [CrossRef]
- Fuentes, M.C.; Calsamiglia, S.; Cardozo, P.W.; Vlaeminck, B. Effect of pH and level of concentrate in the diet on the production of biohydrogenation intermediates in a dual-flow continuous culture. J. Dairy Sci. 2009, 92, 4456–4466. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Cardozo, P.W.; Ferret, A.; Bach, A. Changes in rumen microbial fermentation are due to a combined effect of type of diet and pH. J. Anim. Sci. 2008, 86, 702–711. [Google Scholar] [CrossRef]
- Martínez, M.E.; Ranilla, M.J.; Tejido, M.L.; Ramos, S.; Carro, M.D. Comparison of fermentation of diets of variable composition and microbial populations and in the rumen of sheep and Rusitec fermenters. I. Digestibility, fermentation paramenters, and microbial growth. J. Dairy Sci. 2010, 93, 3684–3698. [Google Scholar] [CrossRef]
- Gudla, P.; AbuGhazaleh, A.A.; Ishlak, A.; Jones, K. The effect of level of forage and oil supplement on biohydrogenation intermediates and bacteria in continuous cultures. Anim. Feed Sci. Technol. 2012, 171, 108–116. [Google Scholar] [CrossRef]
- Martin, S.A.; Fonty, G.; Michalet-Doreau, B. Factors affecting the fibrolytic activity of the digestive microbial ecosystems in ruminants. In Gastrointestinal Microbiology in Animals; Martin, S.S., Ed.; Research Signpost: Trivandrum, India, 2002; pp. 1–17. [Google Scholar]
- Rodríguez-Prado, M.; Calsamiglia, S.; Ferret, A. Effects of fiber content and particle size of forage on the flow of microbial amino acids from continuous culture fermenters. J. Dairy Sci. 2004, 87, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Mena, F.X.; Lascano, G.J.; Heinrichs, A.J. Chewing activities and particle size of rumen digesta and feces of precision-fed dairy heifers fed different forage levels with increasing levels of distillers grains. J. Dairy Sci. 2013, 96, 5184–5193. [Google Scholar] [CrossRef] [PubMed]
- Manthey, A.K.; Anderson, J.L.; Perry, G.A. Feeding distillers dried grains in replacement of forage in limit-fed dairy heifer rations: Effects on growth performance, rumen fermentation, and total-tract digestibility of nutrients. J. Dairy Sci. 2016, 99, 7206–7215. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.L.; Bu, D.P.; Wang, J.Q.; Hu, Z.Y.; Li, D.; Wei, H.Y.; Zhou, L.Y.; Loor, J.J. Soybean oil and linseed oil supplementation affect profiles of ruminal microorganism in dairy cows. Animal. 2009, 3, 1562–1569. [Google Scholar] [CrossRef]
- Tjardes, K.E.; Faulkner, D.B.; Buskirk, D.D.; Parrett, D.F.; Berger, L.L.; Merchen, N.R.; Ireland, F.A. The influence of processed corn and supplemental fat on digestion of limit-fed diets and performance of beef cows. J. Anim. Sci. 1998, 76, 8–17. [Google Scholar] [CrossRef]
- Weisbjerg, M.R.; Børsting, C.F.; Hvelplund, T. The influence of tallow on rumen metabolism, microbial biomass synthesis and fatty acid composition of bacteria and protozoa. Acta Agric. Scand. Sect. A. 1991, 42, 138–147. [Google Scholar] [CrossRef]
- Elliott, J.P.; Drackley, J.K.; Schauff, D.J.; Jaster, E.H. Diets containing high oil corn and tallow for dairy cows during early lactation. J. Dairy Sci. 1993, 76, 775–789. [Google Scholar] [CrossRef]
- Fahey, G.C.; Berger, L.L. Carbohydrate nutrition of ruminants. In The Ruminant Animal: Digestive Physiology and Nutrition; Church, D.C., Ed.; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 1988; pp. 269–295. [Google Scholar]
- Chibisa, G.E.; Gorka, P.; Penner, G.B.; Berthiaume, R.; Mutsvangwa, T. Effects of partial replacement of dietary starch from barley or corn with lactose on ruminal function, short-chain fatty acid absorption, nitrogen utilization, and production performance of dairy cows. J. Dairy Sci. 2015, 98, 2627–2640. [Google Scholar] [CrossRef]
- Doreau, M.; Ferlay, A. Effect of dietary lipids on nitrogen metabolism in the rumen: A review. Livest. Prod. Sci. 1995, 43, 97–110. [Google Scholar] [CrossRef]
- Pantoja, J.; Firkins, J.L.; Eastridge, M.L. Site of digestion and milk production by cows fed fats differing in saturation, esterification, and chain length. J. Dairy Sci. 1995, 78, 2247–2258. [Google Scholar] [CrossRef] [PubMed]
Fat % in the Diet | ||||
---|---|---|---|---|
Ingredient, 1 % | Forage | 3% | 6% | 9% |
Coastal hay | LF | 5.00 | 5.00 | 5.00 |
HF | 20.0 | 20.0 | 20.0 | |
Corn silage | LF | 30.0 | 30.0 | 30.0 |
HF | 50.0 | 50.0 | 50.0 | |
Ground corn | LF | 51.8 | 46.4 | 40.8 |
HF | 24.4 | 18.6 | 12.6 | |
Soybean meal (SBM) | LF | 11.2 | 13.7 | 16.4 |
HF | 3.60 | 6.33 | 9.20 | |
Mineral mix | LF | 2.00 | 2.00 | 2.00 |
HF | 2.00 | 2.00 | 2.00 | |
Fat inclusion | LF | 0.00 | 2.80 | 5.79 |
HF | 0.00 | 3.04 | 6.19 | |
Chemical composition | ||||
DM % | LF | 91.1 | 90.9 | 92.0 |
HF | 91.9 | 91.7 | 92.0 | |
OM, % | LF | 95.3 | 95.5 | 95.1 |
HF | 93.9 | 94.1 | 94.0 | |
CP, % | LF | 12.0 | 13.8 | 14.1 |
HF | 9.4 | 11.2 | 12.0 | |
NDF, % | LF | 22.7 | 20.2 | 20.5 |
HF | 37.2 | 34.3 | 35.2 | |
ADF, % | LF | 11.4 | 11.4 | 12.0 |
HF | 20.4 | 19.8 | 21.9 | |
EE, % | LF | 3.32 | 5.58 | 8.59 |
HF | 3.08 | 5.48 | 8.21 | |
NFC, 2 % | LF | 57.2 | 55.9 | 52.0 |
HF | 44.2 | 43.1 | 38.6 | |
Ash, % | LF | 4.63 | 4.50 | 4.86 |
HF | 6.04 | 5.90 | 5.95 | |
TDN | LF | 77.1 | 80.7 | 83.8 |
HF | 69.4 | 72.7 | 74.8 | |
ME, 3 Mcal/Kg | LF | 2.81 | 2.94 | 3.06 |
HF | 2.53 | 2.65 | 2.73 |
Forage | Fat % | p-Value | |||||
---|---|---|---|---|---|---|---|
Digestibility, % | LF | HF | 6% | 9% | SE | F:C | Fat |
DM | 54.6 | 47.3 | 51.2 | 50.8 | 0.39 | <0.01 | 0.10 |
TDMD | 80.3 | 66.7 | 73.4 | 73.6 | 0.49 | <0.01 | 0.31 |
OM | 78.9 | 64.6 | 71.7 | 71.9 | 0.21 | <0.01 | 0.21 |
NDF | 66.2 | 49.9 | 58.1 | 58.2 | 0.54 | <0.01 | 0.78 |
ADF | 62.6 | 42.5 | 53.1 | 52.2 | 0.73 | <0.01 | 0.17 |
GP 1 mL | 111 | 101 | 109 | 103 | 2.09 | 0.01 | 0.03 |
Fat Type * | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|
Digestibility, % | CON | CO | PF | PO | PKO | MG | SOY | SE | Type |
DM | 50.6 c | 54.5 a | 50.6 c | 49.5 d | 50.1 cd | 49.7 d | 51.8 b | 0.48 | <0.01 |
TDMD | 72.7 d | 76.8 a | 73.0 cd | 72.9 cd | 71.2 e | 74.5 b | 73.6 c | 0.56 | <0.01 |
OM | 71.0 d | 75.4 a | 71.2 cd | 71.2 cd | 69.4 e | 72.7 b | 71.8 c | 0.35 | <0.01 |
NDF | 58.1 b | 59.2 ab | 58.0 b | 59.7 ab | 52.2 c | 60.8 a | 58.9 ab | 0.86 | <0.01 |
ADF | 53.1 a | 53.6 a | 53.1 a | 54.4 a | 45.7 b | 55.0 a | 53.5 a | 1.08 | <0.01 |
GP 1 mL | 110 ab | 114 a | 109 ab | 101 ab | 99.1 b | 100 b | 113 a | 5.07 | 0.03 |
Forage | Fat % | p-Value | |||||
---|---|---|---|---|---|---|---|
Culture Fermentation | LF | HF | 6% | 9% | SE | F:C | Fat |
Total VFA, mM | 73.1 | 77.7 | 80.9 | 69.9 | 0.66 | <0.01 | <0.01 |
VFA, mol/100 mol | |||||||
Acetate | 56.3 | 66.1 | 60.9 | 61.4 | 0.32 | <0.01 | 0.19 |
Propionate | 27.9 | 21.9 | 24.9 | 24.9 | 0.24 | <0.01 | 0.94 |
Butyrate | 15.9 | 11.9 | 14.2 | 13.7 | 0.27 | <0.01 | 0.17 |
Acetate:propionate | 2.09 | 3.06 | 2.59 | 2.56 | 0.03 | <0.01 | 0.37 |
pH | 6.60 | 6.61 | 6.62 | 6.59 | 0.01 | 0.84 | 0.01 |
NH3-N, mg/dL | 8.70 | 12.3 | 10.1 | 10.9 | 0.33 | <0.01 | 0.04 |
Fat Type * | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|
Culture Fermentation | CON | CO | PF | PO | PKO | MG | SOY | SE | Type |
Total VFA, Mm | 89.6 a | 82.8 b | 68.9 c | 69.4 c | 69.1 c | 70.3 c | 71.2 c | 1.20 | <0.01 |
VFA, mol/100 mol | |||||||||
Acetate | 67.7 a | 56.5 e | 58.2 d | 60.3 c | 61.5 bc | 62.2 b | 62.0 b | 0.58 | <0.01 |
Propionate | 20.8 d | 29.0 a | 26.8 b | 24.4 c | 24.8 c | 23.9 c | 24.5 c | 0.45 | <0.01 |
Butyrate | 11.5 c | 14.5 ab | 15.0 a | 15.2 a | 13.7 b | 14.0 ab | 13.5 b | 0.52 | <0.01 |
Acetate:propionate | 3.29 a | 2.00 d | 2.25 c | 2.56 b | 2.63 b | 2.69 b | 2.60 b | 0.06 | <0.01 |
pH | 6.56 b | 6.62 a | 6.63 a | 6.61 ab | 6.62 a | 6.59 ab | 6.61 ab | 0.02 | 0.29 |
NH3-N, mg/Dl | 10.6 b | 10.8 b | 10.1 b | 10.2 b | 10.3 b | 11.6 a | 10.2 b | 0.44 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussein, S.M.; Aguerre, M.J.; Jenkins, T.C.; Bridges, W.C.; Lascano, G.J. Screening Dietary Fat Sources and Concentrations Included in Low- and High-Forage Diets Using an In Vitro Gas Production System. Fermentation 2024, 10, 506. https://doi.org/10.3390/fermentation10100506
Hussein SM, Aguerre MJ, Jenkins TC, Bridges WC, Lascano GJ. Screening Dietary Fat Sources and Concentrations Included in Low- and High-Forage Diets Using an In Vitro Gas Production System. Fermentation. 2024; 10(10):506. https://doi.org/10.3390/fermentation10100506
Chicago/Turabian StyleHussein, Saad M., Matias J. Aguerre, Thomas C. Jenkins, William C. Bridges, and Gustavo J. Lascano. 2024. "Screening Dietary Fat Sources and Concentrations Included in Low- and High-Forage Diets Using an In Vitro Gas Production System" Fermentation 10, no. 10: 506. https://doi.org/10.3390/fermentation10100506
APA StyleHussein, S. M., Aguerre, M. J., Jenkins, T. C., Bridges, W. C., & Lascano, G. J. (2024). Screening Dietary Fat Sources and Concentrations Included in Low- and High-Forage Diets Using an In Vitro Gas Production System. Fermentation, 10(10), 506. https://doi.org/10.3390/fermentation10100506