Chemical Analysis and Antioxidant Capacity of the Stages of Lignocellulosic Ethanol Production from Amazonian Fruit Industrial Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock
2.2. Hydrothermal Pretreatment with Diluted H2SO4
2.3. Enzymatic Hydrolysis
2.4. Inoculum Preparation
2.5. Fermentation of Liqueurs (Liquid Fraction) and Hydrolysates
2.6. Chemical Composition and Chromatographic Analysis
2.7. Phenolic Compounds
2.8. Antioxidant Capacity (DPPH)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Broda, M.; Yelle, D.J.; Serwańska, K. Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions. Molecules 2022, 27, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Freitas, E.N.d.; Salgado, J.C.S.; Alnoch, R.C.; Contato, A.G.; Habermann, E.; Michelin, M.; Martínez, C.A.; Polizeli, M.d.L.T.M. Challenges of Biomass Utilization for Bioenergy in a Climate Change Scenario. Biology 2021, 10, 12–77. [Google Scholar] [CrossRef] [PubMed]
- Maurya, D.P.; Singla, A.; Negi, S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 2015, 5, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Ojo, A.O. An Overview of Lignocellulose and Its Biotechnological Importance in High-Value Product Production. Fermentation 2023, 9, 79–90. [Google Scholar] [CrossRef]
- IBGE. Multidimensional Statistics Bank. Available online: https://www.bme.ibge.gov.br/index.jsp?url=https%3A%2F%2Fwww.bme.ibge.gov.br%2Fapp%2Findex.jsp (accessed on 12 January 2023).
- Oliveira, J.A.R.; Conceição, A.C.; Silva Martins, L.H.; Moreira, D.K.T.; Passos, M.F.; Komesu, A. Evaluation of the technological potential of four wastes from Amazon fruit industry in glucose and ethanol production. J. Food Process Eng. 2020, 44, e3610. [Google Scholar] [CrossRef]
- Martins, M.R.S.F.; Viana, L.F.; Cappato, L.P. Food waste profile in Brazilian Food and Nutrition Units and the implemented corrective actions (a review). Food Sci. Technol. Campinas 2022, 42, 1–9. [Google Scholar]
- Rocha, J.H.A.; de Siqueira, A.A.; de Oliveira, M.A.B.; Castro, L.d.S.; Caldas, L.R.; Monteiro, N.B.R.; Toledo Filho, R.D. Circular Bioeconomy in the Amazon Rainforest: Evaluation of Açaí Seed Ash as a Regional Solution for Partial Cement Replacement. Sustainability 2022, 14, 14436. [Google Scholar] [CrossRef]
- Abramovay, R.; Ferreira, J.; Costa, F.A.; Ehrlich, M.; Euler, A.M.C.; Young, C.E.F.; Kaimowitz, D.; Moutinho, P.; Nobre, I.; Rogez, H.; et al. Chapter 30: The New Bioeconomy in the Amazon: Opportunities and Challenges for a Healthy Standing Forest and Flowing Rivers. In Amazon Assessment Report 2021; Nobre, C., Encalada, A., Anderson, E., Roca Alcazar, F.H., Bustamante, M., Mena, C., PeñaClaros, M., Poveda, G., Rodriguez, J.P., Saleska, S., et al., Eds.; United Nations Sustainable Development Solutions Network: New York, NY, USA, 2021. [Google Scholar]
- Oliveira, J.A.R.; Komesu, A.; Maciel Filho, R. hydrothermal pretreatment for enhancing enzymatic hydrolysis of seeds of açaí (Euterpe oleracea) and sugar recovery. Chem. Eng. Trans. 2014, 37, 787–792. [Google Scholar]
- Wang, Y.; Zhang, Y.; Cui, Q.; Feng, Y.; Xuan, J. Composition of Lignocellulose Hydrolysate in Different Biorefinery Strategies: Nutrients and Inhibitors. Molecules 2024, 29, 22–75. [Google Scholar] [CrossRef]
- Benatti, A.L.T.; Polizeli, M.L.T.M. Lignocellulolytic Biocatalysts: The Main Players Involved in Multiple Biotechnological Processes for Biomass Valorization. Microorganisms 2023, 8, 152–162. [Google Scholar] [CrossRef]
- Kucharska, K.; Rybarczyk, P.; Hołowacz, I.; Łukajtis, R.; Glinka, M.; Kamiński, M. Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes. Molecules 2018, 23, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Wang, W.; Yu, Q.; Qi, W.; Wang, Q.; Tan, X.; Yuan, Z. Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour. Technol. 2016, 199, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Avila-Sosa, R.; Montero-Rodríguez, A.F.; Aguilar-Alonso, P.; Vera-López, O.; Lazcano-Hernández, M.; Morales-Medina, J.C.; Navarro-Cruz, A.R. Antioxidant Properties of Amazonian Fruits: A Mini Review of In Vivo and In Vitro Studies. Oxid. Med. Cell. Longev. 2019, 17, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Sadowska-Bartosz, I.; Bartosz, G. Evaluation of The Antioxidant Capacity of Food Products: Methods, Applications and Limitations. Processes 2022, 10, 20–31. [Google Scholar] [CrossRef]
- Silvestrini, A.; Meucci, E.; Ricerca, B.M.; Mancini, A. Total Antioxidant Capacity: Biochemical Aspects and Clinical Significance. Int. J. Mol. Sci. 2023, 13, 69–78. [Google Scholar] [CrossRef]
- Bradu, P.; Biswas, A.; Nair, C.; Sreevalsakumar, S.; Patil, M.; Kannampuzha, S.; Mukherjee, A.G.; Wanjari, U.R.; Renu, K.; Vellingiri, B.; et al. Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future. Environ. Sci. Pollut. Res. Int. 2023, 30, 124488–124519. [Google Scholar] [CrossRef]
- Quevedo-Amador, R.A.; Escalera-Velasco, B.P.; Arias, A.M.R.; Reynel-Ávila, H.E.; Moreno-Piraján, J.C.; Giraldo, L.; Bonilla-Petriciolet, A. Application of waste biomass for the production of biofuels and catalysts: A review. Clean Techn. Environ. Policy 2024, 26, 943–997. [Google Scholar] [CrossRef]
- Oliveira, J. Investigation of the Steps for the Second Generation Ethanol Production Process from Açaí Seed Biomass (Euterpe oleracea). Ph.D. Thesis, State University of Campinas/UNICAMP, Campinas, Brazil, 2014. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 16th ed.; AOAC: Gaithersburg, MD, USA, 1997. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Total Solids in Biomass; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2005; pp. 1–6. [Google Scholar]
- Sluiter, A.; Ruiz, R.; Scarla, T.A.C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass; Technical Report, NREL/TP-510-42619.7; National Renewable Energy Laboratory, U.S. Department of Energy: Golden, CO, USA, 2008. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; Technical Report National Renewable Energy Laboratory NREL/TP-510-42618; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2008; p. 196. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of toltal phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Vitic. 1996, 16, 144–158. [Google Scholar] [CrossRef]
- Macedo, J.A.; Battestin, V.; Ribeiro, M.L.; Macedo, G.A. Increasing the antioxidant power of tea extracts by biotransformation of polyphenols. Food Chem. 2011, 126, 491–497. [Google Scholar] [CrossRef]
- Oliveira, J.A.R.; Barbosa, P.D.P.M.; Macêdo, G.A. High Concentrate Flavonoids Extract from Citrus Pomace Using Enzymatic and Deep Eutectic Solvents Extraction. Foods 2022, 14, 11–20. [Google Scholar] [CrossRef]
- Eixenberger, D.; Carballo-Arce, A.F.; Vega-Baudrit, J.R. Tropical agroindustrial biowaste revalorization through integrative biorefineries—Review part II: Pineapple, sugarcane and banana by-products in Costa Rica. Biomass Conv. Bioref. 2024, 14, 4391–4418. [Google Scholar] [CrossRef]
- Shyam, K.R.; Gandhi, M.; Rajeshwari, R.; Harikrishnan, H. Utilization of waste ripe banana and peels for bioethanol production using Saccharomyces cerevisiae. J. Biosci. Res. 2011, 2, 67–71. [Google Scholar]
- Murillo-Franco, S.L.; Galvis-Nieto, J.D.; Orrego, C.E. Physicochemical characterization of açaí seeds (Euterpe oleracea) from Colombian pacific and their potential of mannan-oligosaccharides and sugar production via enzymatic hydrolysis. Biomass Conv. Bioref. 2023. [Google Scholar] [CrossRef]
- Souza, M.A.d.; Vilas-Boas, I.T.; Leite-da-Silva, J.M.; Abrahão, P.d.N.; Teixeira-Costa, B.E.; Veiga-Junior, V.F. Polysaccharides in Agro-Industrial Biomass Residues. Polysaccharides 2022, 3, 95–120. [Google Scholar] [CrossRef]
- Haldar, D.; Dey, P.; Patel, A.K. A Critical Review on the Effect of Lignin Redeposition on Biomass in Controlling the Process of Enzymatic Hydrolysis. Bioenerg. Res. 2022, 15, 863–874. [Google Scholar] [CrossRef]
- Melo, P.S.; Massarioli, A.P.; Lazarini, J.G.; Soares, J.C.; Franchin, M.; Rosalen, P.L.; Alencar, S.M. Simulated gastrointestinal digestion of Brazilian açaí seeds affects the content of flavan-3-ol derivatives, and their antioxidant and anti-inflammatory activities. Heliyon 2020, 6, 12–24. [Google Scholar] [CrossRef]
- Safdar, M.N.; Kausar, T.; Nadeem, M.; Murtaza, M.; Sohail, S.; Mumtaz, A.; Siddiqui, N.; Jabbar, S.; Afzal, S. Extraction of phenolic compounds from (Mangifera indica L.) and kinnow (Citrus reticulate L.) peels for the development of functional fruit bars. Food Sci. Technol. 2022, 42, 13–25. [Google Scholar] [CrossRef]
- Adeboye, P.T.; Bettiga, M.; Olsson, L. The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates. AMB Express 2014, 4, 34–46. [Google Scholar] [CrossRef]
- De Souza Mesquita, L.M.; Casagrande, B.P.; Santamarina, A.B.; Sertorio, M.N.; de Souza, D.V.; Mennitti, L.V.; Pisani, L.P. Carotenoids obtained from an ionic liquid-mediated process display anti-inflammatory response in the adipose tissue-liver axis. Food Funct. 2021, 8, 56–68. [Google Scholar] [CrossRef]
- Guaragnella, N.; Bettiga, M. Acetic acid stress in budding yeast: From molecular mechanisms to applications. Yeast 2021, 38, 391–400. [Google Scholar] [CrossRef]
- Taherzadeh, M.; Gustafsson, L.; Niklasson, V.; Liden, G. Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2000, 53, 701–708. [Google Scholar] [CrossRef]
- Zhao, Y.S.; Eweys, A.S.; Zhang, J.Y.; Zhu, Y.; Bai, J.; Darwesh, O.M.; Zhang, H.B.; Xiao, X. Fermentation Affects the Antioxidant Activity of Plant-Based Food Material through the Release and Production of Bioactive Components. Antioxidants 2021, 16, 10–24. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Adhikari, B.; Fang, Z. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnol. Adv. 2021, 49, 107–133. [Google Scholar] [CrossRef] [PubMed]
- Mapelli-Brahm, P.; Barba, F.J.; Remize, F.; Garcia, C.; Fessard, A.; Mousavi, K.A.; Sant’Ana, A.S.; Lorenzo, J.M.; Montesano, D.; Meléndez-Martínez, A.J. The impact of fermentation processes on the production, retention and bioavailability of carotenoids: An overview. Trends Food Sci. Tech. 2020, 99, 389–401. [Google Scholar] [CrossRef]
- Ruchala, J.; Kurylenko, O.O.; Dmytruk, K.V.; Sibirny, A.A. Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha). J. Ind. Microbiol. Biotechnol. 2020, 47, 109–132. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, G.M.; Doran-Peterson, J. A strain of Saccharomyces cerevisiaeevolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds. Biotechnol. Biofuels 2011, 4, 38–49. [Google Scholar] [CrossRef]
- Aranda, A.; del Olmo, M.L. Exposure of Saccharomyces cerevisiae to acetaldehyde induces sulfur amino acid metabolism and polyamine transporter genes, which depend on Met4p and Haa1p transcription factors, respectively. Appl. Environ. Microbiol. 2004, 70, 1913–1922. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, Z.; Liang, L.; Ran, M.; Wu, T.; Wang, B.; Shen, K. Comparative Evaluation of Organic Acid Pretreatment of Eucalyptus for Kraft Dissolving Pulp Production. Materials 2020, 13, 30–42. [Google Scholar] [CrossRef]
- Agbor, V.B.; Cicek, N.; Sparling, R.; Berlin, A.; Levin, D.B. Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv. 2011, 29, 675–685. [Google Scholar] [CrossRef]
- Romero, I.; Ruiz, E.; Castro, E.; Moya, M. Acid hydrolysis of olive tree biomass. Chem. Eng. Res. Des. 2010, 88, 633–640. [Google Scholar] [CrossRef]
- Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M.; et al. Lignin valorization: Improving lignin processing in the biorefinery. Science 2014, 344, 1246843. [Google Scholar] [CrossRef] [PubMed]
- Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Fu, X.; Liu, H.; Gao, Z. Lignocellulose pretreatment: A review of recent development. BioResources 2013, 8, 5891–5907. [Google Scholar]
- Rocha, H.R.; Coelho, M.C.; Gomes, A.M.; Pintado, M.E. Carotenoids Diet: Digestion, Gut Microbiota Modulation, and Inflammatory Diseases. Nutrients 2023, 15, 2265. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Topaloğlu, A.; Esen, Ö.; Turanlı-Yıldız, B.; Arslan, M.; Çakar, Z.P. From Saccharomyces cerevisiae to Ethanol: Unlocking the Power of Evolutionary Engineering in Metabolic Engineering Applications. J. Fungi 2023, 9, 984. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, D. Efficient mannose fermentation for ethanol production by Saccharomyces cerevisiae YJM271. J. Ind. Microbiol. Biotechnol. 2010, 37, 1–7. [Google Scholar]
- Wei, N.; Huang, W.; Wang, Q.; Li, H. Engineering Saccharomyces cerevisiae for efficient mannose fermentation: A review. Microb. Cell Factories 2012, 11, 1–10. [Google Scholar]
- Gancedo, J.M.; Flores, C.L. Alcoholic fermentation of mannose by Saccharomyces cerevisiae: New insights from classic studies. FEMS Yeast Res. 1998, 18, 283–293. [Google Scholar]
- Mussatto, V.S.; Machado, A.F.; Teixeira, J.A.; Silva, J.P. Use of immobilized cells of Kluyveromyces marxianus for detoxification of lignocellulosic hydrolysates prior to bioethanol production. Bioresour. Technol. 2011, 102, 1235–1240. [Google Scholar]
- Jönsson, L.; Palmqvist, E.; Hahn-Hägerdahl, B.; Galbe, M.; Zacchi, G. The influence of pre-treatment on the chemical composition and enzymatic digestibility of oat hulls. Bioresour. Technol. 2009, 100, 1137–1145. [Google Scholar]
- Monteil, C.; Besson, C.; Quemener, B. Effect of pH on ferulic acid and hydroxycinnamic acids released from oat straw by enzymatic hydrolysis. Ind. Crops Prod. 2013, 50, 224–233. [Google Scholar]
- Prado, J.L.; Mussatto, V.S.; Balcão, V.M.; Rodrigues, L.F.; Fontana, R.F.; Silva, J.P.; Roberto, I.C. Evaluation of different yeast strains for ethanol production from sugarcane bagasse hydrolysate: Effect of using immobilized cells. Bioresour. Technol. 2016, 216, 700–706. [Google Scholar]
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation 2020, 6, 97–106. [Google Scholar] [CrossRef]
- Jahid, M.; Gupta, A.; Sharma, D.K. Production of Bioethanol from Fruit Wastes (Banana, Papaya, Pineapple and Mango Peels) Under Milder Conditions. J. Bioprocess Biotech. 2018, 8, 319–327. [Google Scholar] [CrossRef]
- Favaretto, D.C.; Rempel, A.; Lanzini, J.R. Fruit residues as biomass for bioethanol production using enzymatic hydrolysis as pretreatment. World J. Microbiol. Biotechnol. 2023, 39, 144–158. [Google Scholar] [CrossRef]
Component Dry Mass (%) | Peach Palm Peel | Mango Peel | Açaí Seeds |
---|---|---|---|
Celullose | 24.03 ± 1.35 | 29.11 ± 1.47 | 12.01 ± 1.01 |
Hemicelullose | 10.45 ± 1.55 | 13.30 ± 2.01 | 39.03 ± 1.97 |
Lignin | 18.48 ± 2.98 | 5.09 ± 3.08 | 12.99 ± 2.93 |
Extractives (water) | 1.09 ± 0.86 | 6.01 ± 1.33 | 4.35 ± 1.45 |
Extractives (ethanol) | 9.47 ± 2.46 | 11.99 ± 2.66 | 13.01 ± 3.01 |
Lipids | 8.95 ± 0.99 | 6.35 ± 1.09 | 2.38 ± 1.03 |
Moisture | 8.31 ± 0.10 | 9.01 ± 0.08 | 8.45 ± 0.08 |
Protein | 3.11 ± 0.91 | 2.99 ± 0.55 | 4.53 ± 0.45 |
Ash | 4.01 ± 0.02 | 1.98 ± 0.05 | 2.08 ± 0.01 |
Analysis | Peach Palm Peel | Mango Peel | Açaí Seeds | |||
---|---|---|---|---|---|---|
Solid Load (%) | ||||||
5 | 15 | 5 | 15 | 5 | 15 | |
Glucose (g/L) | 0.14 ± 0.01 d | 0.25 ± 0.02 c | 0.17 ± 0.02 d | 0.26 ± 0.02 c | 0.29 ± 0.01 b | 0.34 ± 0.01 a |
Xylose (g/L) | 0.23 ± 0.01 f | 0.29 ± 0.0 e | 0.33 ± 0.02 d | 0.57 ± 0.03 c | 0.81 ± 0.02 b | 1.19 ± 0.03 a |
Mannose (g/L) | Nd | Nd | Nd | Nd | 0.51 ± 0.02 b | 0.94 ± 0.05 a |
TPC (mg EAG/g DM) | 17.54 ± 1.23 e | 43.54 ± 0.61 b | 48.06 ± 1.23 d | 69.31 ± 1.32 a | 14.04 ± 0.73 f | 42.85 ± 1.40 c |
AC (mmol TEAC/g) | 1380.25 ± 263.44 b | 2684.44 ± 37.92 a | 780.74 ± 51.32 d | 983.70 ± 461.88 c | 417.78 ± 55.56 f | 655.31 ± 43.41 e |
Furfural (g/L) | 0.002 ± 0.01 f | 0.005 ± 0.00 d | 0.003 ± 0.00 e | 0.009 ± 0.00 c | 0.011 ± 0.01 b | 0.034 ± 0.00 a |
HMF(g/L) | 0.050 ± 0.00 e | 0.095 ± 0.00 c | 0.082 ± 0.009 d | 0.051 ± 0.010 e | 0.099 ± 0.004 b | 0.125 ± 0.00 a |
Acetic acid (g/L) | 1.233 ± 0.020 f | 1.562 ± 0.002 e | 1.852 ± 0.011 d | 2.011 ± 0.001 c | 2.652 ± 0.001 b | 3.191 ± 0.012 a |
Analysis | Peach Palm Peel | Mango Peel | Açaí Seeds | |||
---|---|---|---|---|---|---|
Solid Load (%) | ||||||
5 | 15 | 5 | 15 | 5 | 15 | |
Glucose (g/L) | 0.02 ± 0.001 | 0.04 ± 0.009 | 0.03 ± 0.002 | 0.07 ± 0.08 | 0.06 ± 0.01 | 0.04 ± 0.017 |
Xylose (g/L) | 0.20 ± 0.01 f | 0.27 ± 0.0 e | 0.31 ± 0.02 d | 0.55 ± 0.03 c | 0.78 ± 0.02 b | 1.08 ± 0.03 a |
Mannose (g/L) | Nd | Nd | Nd | Nd | 0.31 ± 0.02 b | 0.54 ± 0.02 a |
TPC (mg EAG/g DM) | 18.73 ± 0.53 | 44.32 ± 2.63 | 49.58 ± 1.99 | 71.48 ± 1.62 | 15.14 ± 1.07 | 44.77 ± 0.53 |
AC (mmol TEAC/g) | 1581.48 ± 128 | 2774.07 ± 15.67 | 863.33 ± 34.5 | 1005.93 ± 22.22 | 501.41 ± 96.20 | 674.81 ± 16.73 |
Furfural (g/L) | 0.001 ± 0.01 f | 0.005 ± 0.00 d | 0.001 ± 0.00 e | 0.008 ± 0.00 c | 0.01 ± 0.01 b | 0.030 ± 0.00 a |
HMF (g/L) | 0.01 ± 0.00 e | 0.075 ± 0.00 c | 0.034 ± 0.009 d | 0.039 ± 0.010 e | 0.059 ± 0.004 b | 0.101 ± 0.01 a |
Acetic Acid (g/L) | 1.01 ± 0.02 f | 1.31 ± 0.002 e | 1.61 ± 0.011 d | 1.08 ± 0.001 c | 1.74 ± 0.001 b | 1.91 ± 0.012 a |
Ethanol (g/L) | 0.061 ± 0.02 f | 0.114 ± 0.02 d | 0.07 ± 0.001 e | 0.119 ± 0.08 c | 0.183 ± 0.02 b | 0.276 ± 0.02 a |
Component Dry Mass (%) | Peach Palm Peel | Mango Peel | Açaí Seeds | |||
---|---|---|---|---|---|---|
Solid Load (%) | ||||||
5 | 15 | 5 | 15 | 5 | 15 | |
Celullose | 29.22 ± 0.44 c | 32.01 ± 1.01 b | 33.33 ± 2.12 b | 38.01 ± 2.03 a | 11.75 ± 1.02 e | 16.43 ± 1.32 d |
Hemicelullose | 3.62 ± 0.32 d | 5.18 ± 0.34 b | 2.98 ± 0.12 e | 4.32 ± 0.09 c | 9.75 ± 1.00 a | 10.63 ± 1.04 a |
Lignin | 22.01 ± 1.03 b | 26.66 ± 56 a | 5.09 ± 0.09 f | 7.02 ± 0.91 e | 15.95 ± 0.99 d | 19.33 ± 0.88 c |
Extractives (water) | 0.99 ± 0.71 e | 1.33 ± 0.45 d | 3.33 ± 0.07 c | 4.09 ± 0.12 b | 3.35 ± 1.48 c | 5.32 ± 0.76 a |
Extractives (ethanol) | 5.47 ± 0.23 c | 4.99 ± 0.67 e | 5.22 ± 0.21 d | 6.32 ± 0.23 b | 15.44 ± 1.32 a | 14.99 ± 1.11 a |
Lipids | 4.53 ± 0.89 d | 6.32 ± 0.09 a | 4.21 ± 0.45 d | 5.35 ± 0.48 c | 4.57 ± 0.32 e | 5.89 ± 0.43 b |
Moisture | 10.01 ± 0.10 a | 9.54 ± 0.93 b | 9.41 ± 0.13 b | 9.88 ± 0.65 c | 9.77 ± 0.67 c | 10.03 ± 0.77 a |
Protein | 4.23 ± 0.76 c | 4.56 ± 0.98 c | 5.33 ± 0.46 b | 6.21 ± 0.77 a | 5.85 ± 0.45 b | 6.24 ± 0.55 a |
Ash | 5.11 ± 0.54 a | 5.32 ± 0.78 a | 2.58 ± 0.09 d | 3.44 ± 0.54 b | 3.09 ± 0.05 c | 3.98 ± 0.23 b |
Analysis | Peach Palm Peel | Mango Peel | Açaí Seeds | |||
---|---|---|---|---|---|---|
Solid Load (%) | ||||||
5 | 15 | 5 | 15 | 5 | 15 | |
Glucose (g/l) | 10.92 ± 0.17 d | 17.85 ± 0.15 b | 12.95 ± 0.02 c | 25.05 ± 0.05 a | 9.04 ± 0.13 e | 15.87 ± 0.22 b |
Xylose (g/l) | 0.12 ± 0.01 f | 0.20 ± 0.02 e | 0.21 ± 0.08 d | 0.33 ± 0.06 c | 1.42 ± 0.11 b | 3.02 ± 0.21 a |
Mannose (g/l) | 0.09 ± 0.01 d | 0.19 ± 0.03 c | Nd | Nd | 4.95 ± 0.16 b | 9.35 ± 0.12 a |
TPC (mg EAG/g DM) | 27.80 ± 3.45 f | 42.86 ± 1.58 e | 52.14 ± 1.77 d | 63.68 ± 0.88 c | 97.11 ± 0.93 b | 123.57 ± 1.13 a |
AC (mmol TEAC/g) | 1392.98 ± 63.01 a | 1828.07 ± 56.01 a | 807.02 ± 72.1 c | 1074.29 ± 6.03 d | 976.61 ± 92.11 c | 1251.46 ± 138.01 b |
Analysis | Peach Palm Peel | Mango Peel | Açaí Seeds | |||
---|---|---|---|---|---|---|
Solid Load (%) | ||||||
5 | 15 | 5 | 15 | 5 | 15 | |
Glucose (g/L) | 1.63 ± 0.050 c | 2.31 ± 0.003 c | 1.68 ± 0.005 b | 3.25 ± 0.010 a | 1.26 ± 0.006 e | 1.48 ± 0.005 d |
Xylose (g/L) | 0.11 ± 0.01 f | 0.18 ± 0.02 e | 0.20 ± 0.08 d | 0.33 ± 0.06 c | 1.39 ± 0.11 b | 2.98 ± 0.21 a |
Mannose (g/L) | 0.07 ± 0.01 d | 0.11 ± 0.03 c | Nd | Nd | 1.59 ± 0.16 b | 7.57 ± 0.12 a |
TPC (mg EAG/g DM) | 31.11 ± 1.88 f | 48.21 ± 1.71 e | 59.32 ± 1.99 d | 69.01 ± 1.04 c | 99.45 ± 1.25 b | 131.87 ± 2.59 a |
AC (mmol TEAC/g) | 1415.47 ± 63.01 b | 1904.12 ± 56.01 a | 915. 11 ± 51.21 e | 1099.98 ± 52.12 d | 1099.99 ± 85.15 d | 1314.54 ± 99.25 c |
Ethanol (g/100 mL) | 5.58 ± 0.05 d | 9.12 ± 0.15 b | 5.55 ± 0.51 e | 10.62 ± 0.66 a | 4.01 ± 0.13 f | 6.88 ± 0.22 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantoja, G.V.; Oliveira, J.A.R.d. Chemical Analysis and Antioxidant Capacity of the Stages of Lignocellulosic Ethanol Production from Amazonian Fruit Industrial Waste. Fermentation 2024, 10, 496. https://doi.org/10.3390/fermentation10100496
Pantoja GV, Oliveira JARd. Chemical Analysis and Antioxidant Capacity of the Stages of Lignocellulosic Ethanol Production from Amazonian Fruit Industrial Waste. Fermentation. 2024; 10(10):496. https://doi.org/10.3390/fermentation10100496
Chicago/Turabian StylePantoja, Gabriela Vieira, and Johnatt Allan Rocha de Oliveira. 2024. "Chemical Analysis and Antioxidant Capacity of the Stages of Lignocellulosic Ethanol Production from Amazonian Fruit Industrial Waste" Fermentation 10, no. 10: 496. https://doi.org/10.3390/fermentation10100496
APA StylePantoja, G. V., & Oliveira, J. A. R. d. (2024). Chemical Analysis and Antioxidant Capacity of the Stages of Lignocellulosic Ethanol Production from Amazonian Fruit Industrial Waste. Fermentation, 10(10), 496. https://doi.org/10.3390/fermentation10100496