Arsenic, Iron, and Manganese Adsorption in Single and Trinary Heavy Metal Solution Systems by Bamboo-Derived Biochars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulated Water Solution
2.2. Bamboo-Derived Biochars and Characterization
2.3. Adsorption Equilibration Time Study
2.4. Isotherm Study
2.5. Fractionation Analysis
3. Results
3.1. Biochar Characteristics
3.2. Adsorption Equilibration Time
3.3. Single Heavy Metal Solution Adsorption
3.4. Trinary Heavy Metal Solution Adsorption
3.5. Fraction of Heavy Metal Adsorption onto Bamboo Biochar and Activated Carbon
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Q.; Yang, N.; Li, Y.; Ren, B.; Ding, X.; Bian, H.; Yao, X. Total Concentrations and Sources of Heavy Metal Pollution in Global River and Lake Water Bodies from 1972 to 2017. Glob. Ecol. Conserv. 2020, 22, e00925. [Google Scholar] [CrossRef]
- Shaji, E.; Santosh, M.; Sarath, K.V.; Prakash, P.; Deepchand, V.; Divya, B.V. Arsenic Contamination of Groundwater: A Global Synopsis with Focus on the Indian Peninsula. Geosci. Front. 2021, 12, 101079. [Google Scholar] [CrossRef]
- Chakraborty, T.K.; Chandra Ghosh, G.; Hossain, M.R.; Islam, M.S.; Habib, A.; Zaman, S.; Bosu, H.; Nice, S.; Haldar, M.; Khan, A.S. Human Health Risk and Receptor Model-Oriented Sources of Heavy Metal Pollution in Commonly Consume Vegetable and Fish Species of High Ganges River Floodplain Agro-Ecological Area, Bangladesh. Heliyon 2022, 8, e11172. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, C.; Adeyeye, O.; Yang, W.; Liang, X. Source and Mobilization Mechanism of Iron, Manganese and Arsenic in Groundwater of Shuangliao City, Northeast China. Water 2020, 12, 534. [Google Scholar] [CrossRef]
- Santha, N.; Sangkajan, S.; Saenton, S. Arsenic Contamination in Groundwater and Potential Health Risk in Western Lampang Basin, Northern Thailand. Water 2022, 14, 465. [Google Scholar] [CrossRef]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on Iron and Its Importance for Human Health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar] [PubMed]
- Li, L.; Yang, X. The Essential Element Manganese, Oxidative Stress, and Metabolic Diseases: Links and Interactions. Oxidative Med. Cell. Longev. 2018, 2018, 7580707. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Park, J.E.; Gugnani, K.; Betharia, S.; Pino-Figueroa, A.; Kim, J. Influence of Iron Metabolism on Manganese Transport and Toxicity. Metallomics 2017, 9, 1028–1046. [Google Scholar] [CrossRef] [PubMed]
- Kohgo, Y.; Ikuta, K.; Ohtake, T.; Torimoto, Y.; Kato, J. Body Iron Metabolism and Pathophysiology of Iron Overload. Int. J. Hematol. 2008, 88, 7–15. [Google Scholar] [CrossRef]
- Avila, D.S.; Puntel, R.L.; Aschner, M. Manganese in Health and Disease. In Interrelations between Essential Metal Ions and Human Diseases; Metal Ions in Life Sciences; Sigel, A., Sigel, H., Sigel, R.K.O., Eds.; Springer: Dordrecht, The Netherland, 2013; Volume 13, pp. 199–227. [Google Scholar]
- Fatoki, J.O.; Badmus, J.A. Arsenic as an Environmental and Human Health Antagonist: A Review of Its Toxicity and Disease Initiation. J. Hazard. Mater. 2022, 5, 100052. [Google Scholar] [CrossRef]
- WHO. Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines. World Health Organization (WHO), Geneva and the United Nations Children’s Fund (UNICEF), New York. Available online: https://www.who.int/publications-detail-redirect/9789241549950 (accessed on 27 December 2022).
- Inyang, M.I.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.; Mosa, A.; Pullammanappallil, P.; Ok, Y.S.; Cao, X. A Review of Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal. Crit. Rev. Environ. Sci. Technol. 2016, 46, 406–433. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; da Silva, E.B.; de Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of Metal Sorption by Biochars: Biochar Characteristics and Modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- Gao, N.; Du, W.; Zhang, M.; Ling, G.; Zhang, P. Chitosan-Modified Biochar: Preparation, Modifications, Mechanisms and Applications. Int. J. Biol. Macromol. 2022, 209, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Loc, N.X.; Tuyen, P.T.T.; Mai, L.C.; Phuong, D.T.M. Chitosan-Modified Biochar and Unmodified Biochar for Methyl Orange: Adsorption Characteristics and Mechanism Exploration. Toxics 2022, 10, 500. [Google Scholar] [CrossRef] [PubMed]
- Rubeena, K.K.; Hari Prasad Reddy, P.; Laiju, A.R.; Nidheesh, P.V. Iron Impregnated Biochars as Heterogeneous Fenton Catalyst for the Degradation of Acid Red 1 Dye. J. Environ. Manag. 2018, 226, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Dalahmeh, S.S.; Stenström, Y.; Jebrane, M.; Hylander, L.D.; Daniel, G.; Heinmaa, I. Efficiency of Iron- and Calcium-Impregnated Biochar in Adsorbing Phosphate from Wastewater in Onsite Wastewater Treatment Systems. Front. Environ. Sci. 2020, 8, 538539. [Google Scholar] [CrossRef]
- He, R.; Peng, Z.; Lyu, H.; Huang, H.; Nan, Q.; Tang, J. Synthesis and Characterization of an Iron-Impregnated Biochar for Aqueous Arsenic Removal. Sci. Total Environ. 2018, 612, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Xu, X.; Ni, Q.; Lin, Q.; Fang, J.; Chen, Q.; Shen, X.; Lou, L. Enhanced As (V) Removal from Aqueous Solution by Biochar Prepared from Iron-Impregnated Corn Straw. J. Chem. 2018, 2018, 5137694. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, F.; Han, C.; Houda, C.; Hao, M.; Wang, Q. Research Progress on Adsorption of Arsenic from Water by Modified Biochar and Its Mechanism: A Review. Water 2022, 14, 1691. [Google Scholar] [CrossRef]
- Khawkomol, S.; Neamchan, R.; Thongsamer, T.; Vinitnantharat, S.; Panpradit, B.; Sohsalam, P.; Werner, D.; Mrozik, W. Potential of Biochar Derived from Agricultural Residues for Sustainable Management. Sustainability 2021, 13, 8147. [Google Scholar] [CrossRef]
- Wang, A.; Zou, D.; Zeng, X.; Chen, B.; Zheng, X.; Li, L.; Zhang, L.; Xiao, Z.; Wang, H. Speciation and Environmental Risk of Heavy Metals in Biochars Produced by Pyrolysis of Chicken Manure and Water-Washed Swine Manure. Sci. Rep. 2021, 11, 11994. [Google Scholar] [CrossRef] [PubMed]
- Thongsamer, T.; Vinitnantharat, S.; Pinisakul, A.; Werner, D. Chitosan Impregnation of Coconut Husk Biochar Pellets Improves Their Nutrient Removal from Eutrophic Surface Water. Sustain. Environ. Res. 2022, 32, 39. [Google Scholar] [CrossRef]
- Lamaming, J.; Saalah, S.; Rajin, M.; Ismail, N.M.; Yaser, A.Z. A Review on Bamboo as an Adsorbent for Removal of Pollutants for Wastewater Treatment. Int. J. Chem. Eng. Res. 2022, 2022, 7218759. [Google Scholar] [CrossRef]
- Hernandez-Mena, L.; Pecora, A.; Beraldo, A. Slow Pyrolysis of Bamboo Biomass: Analysis of Biochar Properties. Chem. Eng. Trans. 2014, 37, 115–120. [Google Scholar]
- Vinitnantharat, S.; Rattanasirisophon, W.; Ishibashi, Y. Modification of Granular Activated Carbon Surface by Chitosan Coating for Geosmin Removal: Sorption Performances. Water Sci. Technol. 2017, 55, 145–152. [Google Scholar] [CrossRef]
- Kalaruban, M.; Loganathan, P.; Nguyen, T.V.; Nur, T.; Johir, M.A.H.; Nguyen, T.H.; Trinh, M.V. Iron-impregnated Granular Activated Carbon for Arsenic Removal: Application to Practical Column Filters. J. Environ. Manag. 2019, 239, 235–243. [Google Scholar] [CrossRef]
- Kashem, M.A.; Singh, B.R.; Kondo, T.; Imamul Huq, S.M.; Kawai, S. Comparison of Extractability of Cd, Cu, Pb and Zn with Sequential Extraction in Contaminated and Non-cantaminated Soils. Int. J. Environ. Sci. Tech. 2007, 4, 169–176. [Google Scholar] [CrossRef]
- Chongtham, N.; Bisht, M.S.; Santosh, O.; Bajwa, H.K.; Indira, A. Mineral Elements in Bamboo Shoots and Potential Role in Food Fortification. J. Food Compos. Anal. 2021, 95, 103662. [Google Scholar] [CrossRef]
- Mianowski, A.; Owczarek, M.; Marecka, A. Surface Area of Activated Carbon Determined by the Iodine Adsorption Number. Energy Sources Part A 2007, 29, 839–850. [Google Scholar] [CrossRef]
- Simoes, M.C.; Hughes, K.J.; Ingham, D.B.; Ma, L.; Pourkashanian, M. Estimation of the Thermochemical Radii and Ionic Volumes of Complex Ions. Inorg. Chem. 2017, 56, 7566–7573. [Google Scholar] [CrossRef]
- Sahool, S.S.; Vijay, V.K.; Chandra, R.; Kumar, H. Production and Characterization of Biochar Produced from Slow Pyrolysis of Pigeon Pea Stalk and Bamboo. J. Clean. Prod. 2021, 3, 100101. [Google Scholar]
- Chen, D.; Yu, X.; Song, C.; Pang, X.; Huang, J.; Li, Y. Effect of Pyrolysis Temperature on the Chemical Oxidation Stability of Bamboo Biochar. Bioresour. Technol. 2016, 218, 1303–1306. [Google Scholar] [CrossRef] [PubMed]
- Spokas, K.A. Review of the Stability of Biochar in Soils: Predictability of O:C Molar Ratios. Carbon Manag. 2010, 1, 289–303. [Google Scholar] [CrossRef]
- Kruatong, N.; Vinitnantharat, S.; Pinisakul, A.; Wilamas, A.; Sukkhe, N. Use of Biochar Impregnated with Iron and Chitosan for Heavy Metal Removal: Sorption Performances. In Proceedings of the 47th International Congress on Science, Technology and Technology-Based Innovation: Sciences for SDGs: Challenges and Solutions, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand, 5–7 October 2021; pp. 614–620. [Google Scholar]
- Kirmizakis, P.; Tawabini, B.; Siddiq, O.M.; Kalderis, D.; Ntarlagiannis, D.; Soupios, P. Adsorption of Arsenic on Fe-modified Biochar and Monitoring Using Spectral Induced Polarization. Water 2022, 14, 563. [Google Scholar] [CrossRef]
- Jiménez-Cedillo, M.J.; Olguín, M.T.; Fall, C.; Colin-Cruz, A. As(III) and As(V) Sorption on Iron-modified Non-pyrolyzed and Pyrolyzed Biomass from Petroselinum crispum (Parsley). J. Environ. Manag. 2013, 117, 242–252. [Google Scholar] [CrossRef]
- Lodhi, G.; Kim, Y.S.; Hwang, J.W.; Kim, S.K.; Jeon, Y.J.; Je, J.Y.; Ahn, C.B.; Moon, S.H.; Jeon, B.T.; Park, P.J. Chitooligosaccharide and Its Derivatives: Preparation and Biological Applications. Biomed. Res. Int. 2014, 2014, 654913. [Google Scholar] [CrossRef]
- Nomanbhay, S.M.; Palanisamv, K. Removal of Heavy Metal from Industrial Wastewater Using Chitosan Coated Oil Palm Shell Charcoal. Electron. J. Biotechnol. 2005, 8, 43–53. [Google Scholar] [CrossRef]
- Hove, M.; van Hille, R.P.; Lewis, A.E. Mechanisms of Formation of Iron Precipitates from Ferrous Solutions at High and Low pH. Chem. Eng. Sci. 2008, 63, 1626–1635. [Google Scholar] [CrossRef]
- Aziz, H.A.; Smith, P.G. The Influence of pH and Coarse Media on Manganese Precipitation from Water. Wat. Res. 1992, 26, 853–855. [Google Scholar] [CrossRef]
- LIRT. Groundwater Quality Standard for Drinking Purpose, Notification of the Ministry of Industry, No. 12, BE 2542 (1999). Legislative Institutional Repository of Thailand. Available online: https://dl.parliament.go.th/handle/20.500.13072/230880 (accessed on 27 March 2023).
- Saikia, A.; Agnihotri, G.; Raul, K.P.; Banerjee, S.; Dwivedi, K.S. Integrated Approach to Remove Iron, Arsenic and Manganese from Water Using Manganese Greensand and Other Adsorbent. Indian J. Environ. Sci. 2020, 16, 105. [Google Scholar]
- Naik, D.K.; Monika, K.; Prabhakar, S.; Parthasarathy, R.; Satyavathi, B. Pyrolysis of Sorghum Bagasse Biomass into Bio-char and Bio-oil Products. J. Therm. Anal. Calorim. 2017, 127, 1277–1289. [Google Scholar] [CrossRef]
- Liang, H.; Zhu, C.; Ji, S.; Kannan, P.; Chen, F. Magnetic Fe2O3/biochar Composite Prepared in a Molten Salt Medium for Antibiotic Removal in Water. Biochar 2022, 4, 3. [Google Scholar] [CrossRef]
- Zeng, X.; Xiao, Z.; Zhang, G.; Wang, A.; Li, Z.; Liu, Y.; Wang, H.; Zeng, Q.; Liang, Y.; Zou, D. Speciation and Bioavailability of Heavy Metals in Pyrolytic Biochar of Swine and Goat manures. J. Anal. Appl. Anal. 2018, 132, 82–93. [Google Scholar] [CrossRef]
Ions | Na+ | NH4+ | K+ | Ca2+ | Mg2+ | Cl− | NO3− | SO42− | PO43− |
---|---|---|---|---|---|---|---|---|---|
(mg L−1) | 11.95 | 0.03 | 4.66 | 57.05 | 9.52 | 12.75 | 4.03 | 34.89 | ND |
Fraction | Extractants | Extraction Conditions |
---|---|---|
F1 Soluble | 20 mL of deionized water | Shaking at room temperature for 1 h |
F2 Exch | 20 mL of 1 M NH4OAc, pH 7 | Shaking at room temperature for 2 h |
F3 CO3 | 20 mL of 1 M NH4OAc, pH 5 | Shaking at room temperature for 2 h |
F4 Fe/MnO | 20 mL of 0.04 M NH2OH.HCl in 25% acetic acid (v v−1), pH 3 | Placing in the water bath at 80 °C for 6 h |
F5 Org/S | 15 mL of 30% H2O2 (v v−1), after being cooled add 5 mL of 3.2 M NH4OAc in 20% HNO3 (v v−1) | Placing in the water bath at 80 °C for 5.5 h Shaking at room temperature for 0.5 h |
F6 Residual | 20 mL of 7 M HNO3 | Placing in the water bath at 80 °C for 6 h |
Metal Composition (%) | SBET | Vp | Dp | pHDI | pHpzc | Iodine Number (mg g−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mn | Fe | Ca | Si | S | P | Cl | Mg | As | K | (m2 g−1) | (cm3 g−1) | (Å) | ||||
B | 0.70 | 0.32 | 7.78 | 7.93 | 2.87 | 7.06 | 5.62 | 2.69 | ND | 64.5 | 191.9 | 0.10 | 21.64 | 8.66 | 7.63 | 75.30 |
BC | 1.68 | 0.82 | 13.7 | 14.5 | 6.44 | 10.9 | ND | 3.41 | ND | 47.7 | 66.6 | 0.04 | 21.96 | 4.31 | 4.56 | 72.09 |
BFe | 0.59 | 19.6 | 3.17 | 25.9 | 3.08 | 6.04 | 24.3 | 1.39 | ND | 13.2 | 127.7 | 0.07 | 22.06 | 2.59 | 3.61 | 45.54 |
AC | 0.88 | 2.21 | 9.77 | 9.62 | 1.04 | 2.41 | 4.44 | 3.60 | ND | 65.7 | 136.0 | 0.11 | 19.52 | 9.35 | 8.34 | 267.38 |
Adsorbent | Heavy | Freundlich | Langmuir | pHE | ||||
---|---|---|---|---|---|---|---|---|
Metal | KF (mg g−1) (L mg−1)1/n) | 1/n | R2 | qm (mg g−1) | KL (L mg−1) | R2 | ||
As (V) | 0.0044 | 0.8435 | 0.9215 | 0.0058 | 0.7986 | 0.9630 | 7.98–8.78 | |
B | Fe(II) | 353.25 | 0.9353 | 0.9450 | 172.41 | 0.3621 | 0.9482 | 8.00–8.33 |
Mn (II) | 1.1410 | 0.7727 | 0.9911 | 5.0226 | 3.3451 | 0.9914 | 8.19–8.59 | |
As (V) | 0.0594 | 0.7384 | 0.8924 | 0.0096 | 0.0334 | 0.9162 | 5.00–5.33 | |
BC | Fe(II) | 274.21 | 0.9513 | 0.9959 | 303.03 | 0.9091 | 0.9966 | 6.13–6.34 |
Mn (II) | 0.0260 | 1.0336 | 0.9230 | 5.2029 | 181.92 | 0.9914 | 4.96–5.94 | |
As (V) | 0.1018 | 0.5052 | 0.9050 | 0.0195 | 0.0087 | 0.8639 | 6.05–6.98 | |
BFe | Fe(II) | 97.55 | 0.8309 | 0.7684 | 42.55 | 0.2128 | 0.8971 | 6.33–6.37 |
Mn (II) | 0.0515 | 0.7436 | 0.9449 | 0.2170 | 2.6296 | 0.8137 | 5.03–6.96 | |
As (V) | 0.0038 | 0.6713 | 0.8499 | 0.0018 | 0.1268 | 0.8889 | 9.32–9.50 | |
AC | Fe(II) | 25.23 | 0.2672 | 0.8541 | 13.35 | 0.0080 | 0.8153 | 8.95–8.99 |
Mn (II) | 2.5796 | 0.3375 | 0.9222 | 4.8355 | 0.4265 | 0.9317 | 8.89–9.24 |
Adsorbent | Heavy | Freundlich | Langmuir | pHE | ||||
---|---|---|---|---|---|---|---|---|
Metal | KF (mg g−1) (L mg−1)1/n) | 1/n (L g−1) | R2 | qm (mg/g−1) | KL (L mg−1) | R2 | ||
B | Fe(II) | 2.6710 | 0.6808 | 0.8022 | 2.2568 | 0.3056 | 0.8360 | 6.82–8.44 |
Mn(II) | 0.2559 | 0.6979 | 0.9020 | 0.6393 | 1.5398 | 0.9155 | ||
Bfe | Fe(II) | 36.874 | 0.7530 | 0.8686 | 26.1780 | 0.3010 | 0.9008 | 5.58–6.80 |
Mn(II) | 0.2715 | 0.8946 | 0.8388 | 3.6643 | 12.342 | 0.8732 | ||
AC | Fe(II) | 3.6370 | 0.8387 | 0.8632 | 3.1756 | 0.5062 | 0.8868 | 6.80–9.47 |
Mn(II) | 0.2142 | 0.8680 | 0.9031 | 1.3541 | 5.3369 | 0.8823 |
Adsorbents | Fractions (mg kg−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Metal | F1 Soluble | F2 Exch | F3 CO3 | F4 Fe/MnO | F5 Org/S | F6 Residual | Total | ||
B | Virgin | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | |
As | Loaded | 0.02 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.02 ± 0.00 | |
AC | Virgin | 0.04 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.04 ± 0.00 | |
Loaded | 0.01 ± 0.01 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.01 ± 0.01 | ||
B | Virgin | 0.23 ± 0.01 | 1.20 ± 0.42 | 0.00 ± 0.00 | 2.03 ± 0.95 | 9.45 ± 3.45 | 41.47 ± 3.99 | 54.40 ± 3.99 | |
Fe | Loaded | 0.41 ± 0.19 | 1.36 ± 0.26 | 2.44 ± 0.30 | 9.35 ± 0.13 | 14.75 ± 2.73 | 7.98 ± 2.18 | 36.29 ± 2.73 | |
AC | Virgin | 0.20 ± 0.06 | 0.34 ± 0.16 | 0.00 ± 0.00 | 94.64 ± 7.41 | 9.61 ± 1.65 | 95.21 ± 18.16 | 200.01 ± 18.16 | |
Loaded | 0.41 ± 0.06 | 0.77 ± 0.00 | 0.62 ± 0.23 | 54.46 ± 4.07 | 3.97 ± 1.44 | 72.73 ±12.32 | 132.96 ± 12.32 | ||
B | Virgin | 0.67 ± 0.02 | 3.55 ± 0.28 | 8.32 ± 0.06 | 11.84 ± 3.79 | 9.15 ± 0.37 | 14.00 ± 1.69 | 47.53 ± 3.79 | |
Mn | Loaded | 0.34 ± 0.04 | 15.83 ± 1.36 | 22.91 ± 0.88 | 24.24 ± 0.04 | 12.57 ± 0.64 | 12.64 ± 0.24 | 88.54 ± 1.36 | |
AC | Virgin | 0.00 ± 0.00 | 0.14 ± 0.09 | 0.72 ± 0.01 | 2.22 ± 0.20 | 0.91 ± 0.14 | 2.98 ± 0.39 | 6.97 ± 0.39 | |
Loaded | 0.00 ± 0.00 | 1.88 ± 0.36 | 3.82 ± 0.29 | 4.65 ± 0.48 | 1.30 ± 0.09 | 2.26 ± 0.25 | 13.92 ± 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinisakul, A.; Kruatong, N.; Vinitnantharat, S.; Wilamas, P.; Neamchan, R.; Sukkhee, N.; Werner, D.; Sanghaisuk, S. Arsenic, Iron, and Manganese Adsorption in Single and Trinary Heavy Metal Solution Systems by Bamboo-Derived Biochars. C 2023, 9, 40. https://doi.org/10.3390/c9020040
Pinisakul A, Kruatong N, Vinitnantharat S, Wilamas P, Neamchan R, Sukkhee N, Werner D, Sanghaisuk S. Arsenic, Iron, and Manganese Adsorption in Single and Trinary Heavy Metal Solution Systems by Bamboo-Derived Biochars. C. 2023; 9(2):40. https://doi.org/10.3390/c9020040
Chicago/Turabian StylePinisakul, Anawat, Nattakarn Kruatong, Soydoa Vinitnantharat, Ponwarin Wilamas, Rattikan Neamchan, Nareerat Sukkhee, David Werner, and Saichol Sanghaisuk. 2023. "Arsenic, Iron, and Manganese Adsorption in Single and Trinary Heavy Metal Solution Systems by Bamboo-Derived Biochars" C 9, no. 2: 40. https://doi.org/10.3390/c9020040