Hydrates Formed with Binary CH4/C2H6 Mixtures: Effects of Adding 25–75 vol% Ethane on the Quantity of Hydrates Formed, Growth Mechanism and Structure Preservation
Abstract
1. Introduction
2. Interaction Between CH4 and C2H6 Molecules When Forming sI Hydrates
3. Materials and Methods
3.1. Apparatus and Materials
3.2. Procedure
4. Results and Discussion
- (i)
- CH4/C2H6 75/25 vol%;
- (ii)
- CH4/C2H6 50/50 vol%;
- (iii)
- CH4/C2H6 25/75 vol%.
- − CH4/C2H6 (25/75 vol%) mixture: 0.195 mol;
- − CH4/C2H6 (50/50 vol%) mixture: 0.197 mol;
- − CH4/C2H6 (75/25 vol%) mixture: 0.255 mol.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sloan, E.D.; Koh, C.A. Clathrate Hydrates of Natural Gases, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Zhang, X.; Zhang, S.; Yin, S.; He, G.; Li, J.; Wu, Q. Research progress of the kinetics on natural gas hydrate replacement by CO2 containing mixed gas: A review. J. Nat. Gas Sci. Eng. 2022, 108, 104837. [Google Scholar] [CrossRef]
- Xu, C.G.; Zhang, W.; Yan, K.F.; Cai, J.; Chen, Z.Y.; Li, X.S. Research on micro mechanism and influence of hydrate-based methane-carbon dioxide replacement for realizing simultaneous clean energy exploitation and carbon emission reduction. Chem. Eng. Sci. 2022, 248, 117266. [Google Scholar] [CrossRef]
- Wang, P.; Teng, Y.; Zhu, J.; Bao, W.; Han, S.; Li, Y.; Zhao, Y.; Xie, H. Review on the synergistic effect between metal-organic frameworks and gas hydrates for CH4 storage and CO2 separation applications. Renew. Sustain. Energy Rev. 2022, 167, 112807. [Google Scholar] [CrossRef]
- Gambelli, A.M.; Rossi, F. Review on the usage of small-chain hydrocarbons (C2-C4) as aid gases for improving the efficiency of hydrate-based technologies. Energies 2023, 16, 3576. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, S.; Yang, Z.; Zhang, F. Geochemical characteristics of borehole cores and their indicative significance for gas hydrates in the permafrost area, Qinghai-Tibet Plateau. Appl. Geochem. 2025, 178, 106223. [Google Scholar] [CrossRef]
- Li, X.S.; Xu, C.G.; Zhang, Y.; Ruan, X.K.; Li, G.; Wang, Y. Investigation into gas production from natural gas hydrate: A review. Appl. Energy 2016, 172, 286–322. [Google Scholar] [CrossRef]
- He, J.; Li, X.; Chen, Z.; Li, Q.; Zhang, Y.; Wang, Y.; Xia, Z.; You, C. Combined styles of depressurization and electrical heating for methane hydrate production. Appl. Energy 2021, 282, 266–273. [Google Scholar] [CrossRef]
- Xuan, K.; Yi, W.; Li, X.S.; Zhang, Y.; Chen, Y.Z. Influence of heat conduction and heat convection on hydrate dissociation by depressurization in a pilot-scale hydrate simulator. Appl. Energy 2019, 251, 113405. [Google Scholar] [CrossRef]
- Nair, V.C.; Prasad, S.K.; Kumar, R.; Sangway, J.S. Energy recovery from simulated clayey gas hydrate reservoir using depressurization by constant rate gas release, thermal stimulation and their combination. Appl. Energy 2018, 225, 755–768. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, J.C.; Li, X.S.; Zhang, Y. Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation. Appl. Energy 2017, 207, 562–572. [Google Scholar] [CrossRef]
- Shao, Z.; Liu, H.; Lin, Q.; Wu, M.; Sun, L. Heat and mass transfer analysis during the process of methane hydrate dissociation by thermal stimulation. Fuel 2024, 362, 130790. [Google Scholar] [CrossRef]
- Semenov, A.P.; Tulegenov, T.B.; Stoporev, A.S.; Novikov, A.A.; Gushchin, P.A.; Vinokurov, V.A. Does dimethyl sulfoxide inhibit or promote methane hydrate nucleation and growth? J. Mol. Liq. 2025, 437, 128393. [Google Scholar] [CrossRef]
- Semenov, A.P.; Mendgaziev, R.I.; Stoporev, A.S.; Istomin, V.A.; Sergeeva, D.V.; Ogienko, A.G.; Vinokurov, V.A. The pursuit of a more powerful thermodynamic hydrate inhibitor than methanol. Dimethyl sulfoxide as a case study. Chem. Eng. J. 2021, 423, 130227. [Google Scholar] [CrossRef]
- Gambelli, A.M.; Rossi, F. Re-definition of the region suitable for CO2/CH4 replacement into hydrates as a function of the thermodynamic difference between CO2 hydrate formation and dissociation. Proc. Saf. Environ. Prot. 2023, 169, 132–141. [Google Scholar] [CrossRef]
- Gambelli, A.M.; Presciutti, A.; Rossi, F. Kinetic considerations and formation rate for carbon dioxide hydrate, formed in presence of a natural silica-based porous medium: How initial thermodynamic conditions may modify the process kinetic. Thermochim. Acta 2021, 705, 179039. [Google Scholar] [CrossRef]
- Cao, X.; Wang, H.; Yang, K.; Wu, S.; Chen, Q.; Bian, J. Hydrate-based CO2 sequestration technology: Feasibility mechanisms, influencing factors, and applications. J. Pet. Sci. Eng. 2022, 219, 111121. [Google Scholar] [CrossRef]
- Aminu, M.D.; Nabavi, S.; Rochelle, C.; Manovìc, V. A review of developments in carbon dioxide storage. Appl. Energy 2017, 208, 1389–1419. [Google Scholar] [CrossRef]
- Liu, X.; Cao, Q.; Xu, D.; Luo, S.; Guo, R. Improved methane storage capacity on methane hydrate promoted by vesicles from carboxylate surfactants and quaternary ammonium. J. Nat. Gas Sci. Eng. 2021, 93, 103990. [Google Scholar] [CrossRef]
- Kumar, S.; Kwon, H.T.; Choi, K.H.; Lim, W.; Cho, J.H.; Tak, K.; Moon, L. LNG: An eco-friendly cryogenic fuel for sustainable development. Appl. Energy 2011, 88, 4264–4273. [Google Scholar] [CrossRef]
- Veluswamy, H.P.; Wong, A.J.H.; Babu, P.; Kumar, R.; Kulprathipanja, S.; Rangsunvigit, P.; Linga, P. Rapid methane hydrate formation to develop a cost effective large scale energy storage system. Chem. Eng. J. 2016, 290, 161–173. [Google Scholar] [CrossRef]
- Wang, F.; Guo, G.; Liu, G.Q.; Luo, S.J.; Guo, R.B. Effects of surfactants micelles and surfactant-coated nanosphere on methane hydrate growth pattern. Chem. Eng. Sci. 2016, 144, 108–115. [Google Scholar] [CrossRef]
- Dyadin, Y.A.; Larionov, E.G.; Manakiv, A.Y.; Zhurko, F.V.; Aladko, E.Y.; Mikina, T.V.; Komarov, V.Y. Clathrate hydrates hydrogen and neon. Mendeleev Commun. 1999, 9, 209–210. [Google Scholar] [CrossRef]
- Smirnov, G.S.; Stegailov, V.V. Toward determination of the new hydrogen hydrate clathrate structures. J. Phys. Chem. Lett. 2013, 4, 3560–3564. [Google Scholar] [CrossRef]
- Du, J.; Wang, L.; Liang, D.; Li, D. Phase equilibria and dissociation enthalpies of hydrogen semi-clathrate hydrate with tetrabutyl ammonium nitrate. J. Chem. Eng. Data 2021, 57, 603–609. [Google Scholar] [CrossRef]
- Hashimoto, S.; Sugahara, T.; Moritoki, M.; Sato, H.; Ohgaki, K. Thermodynamic stability of hydrogen + tetra-n-butyl ammonium bromide mixed gas hydrate in nonstoichiometric aqueous solutions. Chem. Eng. Sci. 2008, 63, 1092–1097. [Google Scholar] [CrossRef]
- Wang, P.; Li, K.; Yang, J.; Zhu, J.; Zhao, Y.; Teng, Y. Experimental and theoretical study on dissociation thermodynamics and kinetics of hydrogen-propane hydrate. Chem. Eng. J. 2021, 426, 131279. [Google Scholar] [CrossRef]
- Zhang, Y.; Bhattacharjee, G.; Kumar, R.; Linga, P. Solidified hydrogen storage (Solid-HyStore) via clathrate hydrates. Chem. Eng. J. 2022, 431, 133702. [Google Scholar] [CrossRef]
- Gambelli, A.M.; Pezzolla, D.; Rossi, F.; Gigliotti, G. Thermodynamic description of CO2 hydrates production in aqueous systems containing NH4Cl; evaluation of NH4+ removal from water via spectrophotometric analysis. Chem. Eng. Sci. 2023, 281, 119137. [Google Scholar] [CrossRef]
- Karamoddin, M.; Varaminian, F. Water desalination using R141b gas hydrate formation. Desalination Water Treat. 2014, 52, 2450–2456. [Google Scholar] [CrossRef]
- Nam Park, K.; Hong, S.Y.; Lee, J.W.; Kang, K.C.; Lee, Y.C.; Ha, M.G.; Lee, J.D. A new apparatus for seawater desalination by gas hydrate process and removal characteristics of dissolved minerals (Na+, Mg2+, Ca2+, K+, B3+). Desalination 2011, 274, 91–96. [Google Scholar] [CrossRef]
- Gaikward, N.; Nakka, R.; Khavala, V.; Bhadani, A.; Mamane, H.; Kumar, R. Gas hydrate-based process for desalination of heavy metal ions from an aqueous solution: Kinetics and rate of recovery. ACS ES&T Water 2021, 1, 134–144. [Google Scholar]
- Karamoddin, M.; Varaminian, F. Water purification by freezing and gas hydrate process, and removal of dissolved minerals (Na+, K+, Mg2+, Ca2+). Desalination 2022, 537, 115855. [Google Scholar]
- Montazeri, S.M.; Kolliopoulos, G. Hydrate based desalination for sustainable water treatment: A review. Desalination 2022, 5, 115855. [Google Scholar] [CrossRef]
- Neves, M.F.; Trombin, V.G.; Marques, V.N.; Martinez, L.F. Global orange juice market: A 16-year summary and opportunities for creating value. Trop. Plant. Pathol. 2020, 45, 166–174. [Google Scholar] [CrossRef]
- Adnan, A.; Mushtaq, M.; Islam, T. Fruit juice concentrates. Fruit Juices 2018, 5, 217–240. [Google Scholar]
- Claben, T.; Seidl, P.; Loekman, S.; Gatternig, B.; Rauch, C.; Delgado, A. Review on the food technological potentials for gas hydrate technology. Curr. Opin. Food Sci. 2019, 29, 48–55. [Google Scholar] [CrossRef]
- Srivastava, S.; Hitzmann, B.; Zettel, V. A future road map for carbon dioxide (CO2) gas hydrate as an emerging technology in food research. Food Bioprocess. Technol. 2021, 14, 1758–1762. [Google Scholar] [CrossRef]
- Lv, Y.; Xia, X.; Wang, F.; Wu, X.; Cheng, C.; Zhang, L.; Yang, L.; Zhao, J.; Song, Y. Clathrate hydrate for phase change cold storage: Simulation advances and potential applications. J. Energy Storage 2022, 55, 105835. [Google Scholar] [CrossRef]
- Li, Y.; Kumar, N.; Hirschey, J.; Akamo, D.O.; Li, K.; Tugba, T.; Goswami, M.; Orlando, R.; LaClair, T.J.; Graham, S.; et al. Stable salt hydrate-based thermal energy storage materials. Compos. B Eng. 2022, 233, 109621. [Google Scholar] [CrossRef]
- Chang, Y.; Sun, Z. Synthesis and thermal properties of n-tetradecane phase change microcapsules for cold storage technology. J. Energy Storage 2020, 117, 104959. [Google Scholar]
- Cheng, C.; Wang, F.; Tian, Y.; Wu, X.; Zheng, J.; Li, L.; Yang, P.; Zhao, J. Review and prospects of hydrate cold storage technology. Renew. Sustain. Energy Rev. 2020, 117, 109492. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, M.; Wang, T.; Yang, L.; Zhang, X.; Zhao, J.; Song, Y. An in-situ MRI method for quantifying temperature changes during crystal hydrate growth in porous medium. Int. J. Therm. Sci. 2022, 31, 1542–1550. [Google Scholar] [CrossRef]
- Viswanadhan, S.K.; Singh, A.; Veluswamy, H.P. Hydrate-based gas separation (HBGS) technology review: Status, challenges and way forward. Gas Sci. Eng. 2024, 131, 205465. [Google Scholar] [CrossRef]
- Wang, Y.W.; Qian, Y.C.; Liu, Z.Q.; Xu, T.Z.; Sun, Q.; Liu, A.X.; Yang, L.; Gong, J.; Guo, X. The hydrate-based separation of hydrogen and ethylene from fluid catalytic cracking dry gas in presence of n-octyl-ß-d-glucopyranoside. Int. J. Hydrogn Energy 2022, 47, 31350–31369. [Google Scholar] [CrossRef]
- Babu, P.; Daraboina, N. A systematic review of recent advances in hydrate technology for precombustion carbon capture. J. Environ. Chem. Eng. 2024, 12, 113439. [Google Scholar] [CrossRef]
- Ko, G.; Lee, J.; Seo, Y. Separation efficiency and equilibrium recovery ratio of SF6 in hydrate-based greenhouse gas separation. Chem. Eng. J. 2021, 405, 126956. [Google Scholar] [CrossRef]
- Wang, X.H.; Zhang, T.H.; Xu, Z.B.; Wu, Y.W.; Sun, C.Y.; Chen, G.J. Study on the gas composition of hydrate phase and untreated liquid phase for hydrate-based gas separation. J. Environ. Chem. Eng. 2025, 13, 115008. [Google Scholar] [CrossRef]
- Iizuka, A.; Hayashi, S.; Tajima, H.; Kiyono, F.; Yanagisawa, Y.; Yamasaki, A. Gas separation using tetrahydrofuran clathrate hydrate crystals based in the molecular sieving effect. Sep. Purif. Technol. 2015, 139, 70–77. [Google Scholar] [CrossRef]
- Linga, P.; Kumar, R.; Englezos, P. Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures. Chem. Eng. Sci. 2007, 62, 4268–4276. [Google Scholar] [CrossRef]
- Li, Y.; Gambelli, A.M.; Rossi, F. Experimental study on the effect of SDS and micron copper particles mixture on carbon dioxide hydrates formation. Energies 2022, 15, 6540. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, L.; Song, W.; Chen, B.; Song, Y. A method of cycling icing and melting for stable and rapid formation of hydrate: Novel strategy of hydrate-based energy storage. J. Energy Storage 2024, 98, 112839. [Google Scholar] [CrossRef]
- Lee, S.; Seo, D.; Lee, Y.; Moon, S.; Park, Y. Promoting thermodynamic stability of hydrogen hydrates with gas-phase modulators for energy-efficient blue hydrogen storage. Fuel 2024, 372, 132196. [Google Scholar] [CrossRef]
- Mahant, B.; Kushwaha, O.S.; Kumar, R. Thermodynamic phase equilibria study of Hythane (methane+hydrogen) gas hydrates for enhanced energy storage applications. Fluid Phase Equilibr. 2024, 582, 114089. [Google Scholar] [CrossRef]
- Zheng, R.; Wang, Z.; Li, X.; Fan, Z.; Negahban, S. Structural and dynamic analyses of CH4-C2H6-CO2 hydrates using thermodynamic modeling and molecular dynamic simulation. J. Chem. Thermodyn. 2022, 169, 106749. [Google Scholar] [CrossRef]
- Zheng, R.; Li, X.; Negahban, S. Molecular-level insights into the structure stability of CH4-C2H6 hydrates. Chem. Eng. Sci. 2022, 247, 117039. [Google Scholar] [CrossRef]
- Gambelli, A.M.; Gigliotti, G.; Rossi, F. Production of CH4/C3H8 (85/15 vol%) hydrate in a lab-scale unstirred reactor: Quantification of the promoting effect due to the addition of propane to the gas mixture. Energies 2024, 17, 1104. [Google Scholar] [CrossRef]
- Makogon, Y.F. Natural gas hydrates—A promising source of energy. J. Nat. Gas Sci. Eng. 2010, 2, 49–59. [Google Scholar] [CrossRef]
- Makogon, Y.F.; Holditch, S.A.; Makogon, T.Y. Natural gas-hydrates—A potential energy source for the 21 Century. J. Petrol. Sci. Eng. 2007, 56, 14–31. [Google Scholar] [CrossRef]
- Gambelli, A.M.; Filipponi, M.; Nicolini, A.; Rossi, F. Natural gas hydrate: Effect of sodium chloride on the CO2 replacement process. Int. Multidiscip. Sci. GeoConference SGEM 2019, 19, 333–343. [Google Scholar]
- Gambelli, A.M. Variations in terms of CO2 capture and CH4 recovery during replacement processes in gas hydrate reservoirs, associated to the “memory effect”. J. Clean. Prod. 2022, 360, 132154. [Google Scholar] [CrossRef]
- Gambelli, A.M.; Rossi, F.; Gigliotti, G. Hydrates production with binary CO2/C3H8 gaseous mixtures (90/10, 85/15, 80/20 vol%) in batch and unstirred conditions: The role of propane on the process thermodynamics. Chem. Eng. Sci. 2024, 298, 120441. [Google Scholar] [CrossRef]
- Gambelli, A.M. Hydrates production with gaseous CO2/C3H8 and CH4/C3H8 (90/10 vol%) mixtures and definition of the role of propane during CO2/CH4 replacement processes. J. CO2 Util. 2024, 88, 102936. [Google Scholar] [CrossRef]
- Bavoh, C.B.; Partoon, B.; Lal, B.; Keong, L.K. Methane hydrate-liquid-vapor-equilibrium phase condition measurements in the presence of natural amino acids. J. Nat. Gas Sci. Eng. 2017, 37, 425–434. [Google Scholar] [CrossRef]
- Bottger, A.; Kamps, A.P.S.; Maurer, G. An experimental investigation on the phase equilibrium of the binary system (methane + water) at low temperatures: Solubility of methane in water and three-phase (vapour + liquid + hydrate) equilibrium. Fluid Phase Equilibr. 2016, 407, 209–216. [Google Scholar] [CrossRef]
- Nagashima, H.D.; Ohmura, R. Phase equilibrium condition measurements in methane clathrate hydrate forming system from 197.3 K to 238.7 K. J. Chem. Thermodyn. 2016, 102, 252–256. [Google Scholar] [CrossRef]
- Kassim, Z.; Khan, M.S.; Lal, B. Thermodynamic modelling on methane hydrate equilibrium condition in the presence of electrolyte inhibitor. Mater. Today Proc. 2019, 19, 1395–1402. [Google Scholar] [CrossRef]
- Ohmura, R.; Uchida, T.; Takeya, S.; Nagao, J.; Minagawa, H.; Ebinuma, T.; Narita, H. Clathrate hydrate formation in (methane + water + methylcyclohexanone) systems: The first phase equilibrium data. J. Chem. Thermodyn. 2003, 35, 2045–2054. [Google Scholar] [CrossRef]
- Hendriks, E.M.; Edmond, B.; Moorwood, R.A.S.; Szcepanski, R. Hydrate structure stability in simple and mixed hydrates. Fluid Phase Equilibr. 1996, 117, 193–200. [Google Scholar] [CrossRef]
- Subramanian, S.; Kini, R.A.; Dec, S.F.; Sloan, E.D. Evidence of structure II hydrate formation from methane + ethane mixtures. Chem. Eng. Sci. 2000, 55, 1981–1999. [Google Scholar] [CrossRef]
- Sun, Y.H.; Zhang, G.B.; Carroll, J.J.; Li, S.L.; Jiang, S.H.; Guo, W. Experimental investigation into gas recovery from CH4-C2H6-C3H8 hydrates by CO2 replacement. Appl. Energy 2018, 229, 625–636. [Google Scholar] [CrossRef]
- Sundramoorthy, J.D.; Hammonds, P.; Lal, B.; Philips, G. Gas hydrate equilibrium measurement and observation of gas hydrate dissociation with/without a KHI. Procedia Eng. 2016, 148, 870–877. [Google Scholar] [CrossRef]
- Gambelli, A.M. Deviation of phase boundary conditions for hydrates of small-chain hydrocarbons (CH4, C2H6 and C3H8) when formed within porous sediments. Energies 2024, 17, 5574. [Google Scholar] [CrossRef]
- Chen, B.; Dong, H.; Sun, H.; Wang, P.; Yang, L. Effect of a weak electric field on THF hydrate formation: Induction time and morphology. J. Pet. Sci. Eng. 2020, 194, 107486. [Google Scholar] [CrossRef]
- Zare, M.; Zendehboudi, S.; Abdi, M.A. Deterministic tools to estimate induction time for methane hydrate formation in the presence of Luvicap 55W solutions. J. Mol. Liq. 2022, 348, 118374. [Google Scholar] [CrossRef]
- Li, S.; Xu, X.; Zheng, R.; Chen, Y.; Hou, J. Experimental investigation on dissociation driving force of methane hydrate in porous media. Fuel 2015, 160, 117–122. [Google Scholar] [CrossRef]
- Takeya, S.; Kida, M.; Minami, H.; Sakagami, H.; Hackikubo, A.; Takahashi, N.; Shoji, H.; Soloviev, V.; Wallmann, K.; Biebow, N.; et al. Structure and thermal expansion of natural gas clathrate hydrates. Chem. Eng. Sci. 2006, 61, 2670–2674. [Google Scholar] [CrossRef]
- Aregba, A.G. Gas hydrate—Properties, formation and benefits. Open J. Yangtze Oil Gas 2017, 2, 27–44. [Google Scholar] [CrossRef]
- Fitzgerald, G.C.; Castaldi, M.J.; Zhou, Y. Large scale reactor details and results for the formation and decomposition of methane hydrates via thermal stimulation dissociation. J. Pet. Sci. Eng. 2012, 94, 19–27. [Google Scholar] [CrossRef]
- Kida, M.; Takeya, S.; Ohmura, R.; Nagao, J.; Hori, A. Dissociation behavior of methane-ethane mixed-gas hydrates. J. Phys. Chem. B 2010, 114, 656–662. [Google Scholar]
- Gambelli, A.M. Methane replacement into hydrate reservoirs with carbon dioxide: Main limiting factors and influence of the gaseous phase composition, over hydrates, on the process. Chem. Eng. J. 2023, 478, 147247. [Google Scholar] [CrossRef]






| sI | sII | ||||
|---|---|---|---|---|---|
| Guest species | md [Å] | 512 | 51262 | 512 | 51264 |
| CH4 | 4.36 | 0.855 | 0.744 | 0.868 | 0.655 |
| CO2 | 5.12 | 1 | 0.834 | 1.02 | 0.769 |
| C2H6 | 5.5 | 1.08 | 0.939 | 1.1 | 0.826 |
| C3H8 | 6.28 | 1.23 | 1.07 | 1.25 | 0.943 |
| Temperature [°C] | Pressure [bar] | Temperature [°C] | Pressure [bar] |
|---|---|---|---|
| 6.6 | 29.37 | 10.8 | 37.61 |
| 6.8 | 29.55 | 11.0 | 38.14 |
| 7.0 | 29.66 | 11.2 | 38.71 |
| 7.2 | 29.86 | 11.4 | 39.13 |
| 7.4 | 30.05 | 11.6 | 39.64 |
| 7.6 | 30.39 | 11.8 | 40.15 |
| 7.8 | 30.66 | 12.0 | 40.65 |
| 8.0 | 30.97 | 12.2 | 41.25 |
| 8.2 | 31.38 | 12.4 | 41.75 |
| 8.4 | 31.66 | 12.6 | 42.25 |
| 8.6 | 32.08 | 12.8 | 42.84 |
| 8.8 | 32.41 | 13.0 | 43.34 |
| 9.0 | 32.86 | 13.2 | 43.74 |
| 9.2 | 33.34 | 13.4 | 44.31 |
| 9.4 | 33.86 | 13.6 | 44.71 |
| 9.6 | 34.34 | 13.8 | 45.08 |
| 9.8 | 34.82 | 14.0 | 45.38 |
| 10.0 | 35.43 | 14.2 | 45.79 |
| 10.2 | 35.93 | 14.4 | 45.99 |
| 10.4 | 36.53 | 14.6 | 46.14 |
| 10.6 | 37.03 |
| Temperature [°C] | Pressure [bar] | Temperature [°C] | Pressure [bar] |
|---|---|---|---|
| 11.6 | 31.66 | 14.4 | 39.83 |
| 11.8 | 32.08 | 14.6 | 40.31 |
| 12.0 | 32.50 | 14.8 | 40.73 |
| 12.2 | 33.11 | 15.0 | 41.25 |
| 12.4 | 33.58 | 15.2 | 41.75 |
| 12.6 | 34.15 | 15.4 | 42.16 |
| 12.8 | 34.74 | 15.6 | 42.51 |
| 13.0 | 35.43 | 15.8 | 42.93 |
| 13.2 | 36.01 | 16.0 | 43.34 |
| 13.4 | 36.75 | 16.2 | 43.66 |
| 13.6 | 37.45 | 16.4 | 43.90 |
| 13.8 | 38.03 | 16.6 | 44.23 |
| 14.0 | 38.72 | 16.8 | 44.50 |
| 14.2 | 39.24 | 17.0 | 44.71 |
| Temperature [°C] | Pressure [bar] | Temperature [°C] | Pressure [bar] |
|---|---|---|---|
| 13.6 | 27.84 | 15.0 | 34.27 |
| 13.8 | 28.67 | 15.2 | 35.33 |
| 14.0 | 29.45 | 15.4 | 36.43 |
| 14.2 | 30.28 | 15.6 | 37.37 |
| 14.4 | 31.24 | 15.8 | 38.44 |
| 14.6 | 32.28 | 16.0 | 39.56 |
| 14.8 | 33.27 | 16.2 | 40.57 |
| Mixture | CH4/C2H6 (25/75 vol%) | CH4/C2H6 (50/50 vol%) | CH4/C2H6 (75/25 vol%) |
|---|---|---|---|
| w | 0.13 | 0.161 | 0.193 |
| Tc [°C] | 31.89 | 31.65 | 31.35 |
| Pc [bar] | 54.14 | 60.40 | 66.67 |
| Z | 0.966 | 0.966 | 0.968 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gambelli, A.M.; Pezzolla, D.; Rossi, F.; Gigliotti, G. Hydrates Formed with Binary CH4/C2H6 Mixtures: Effects of Adding 25–75 vol% Ethane on the Quantity of Hydrates Formed, Growth Mechanism and Structure Preservation. C 2025, 11, 88. https://doi.org/10.3390/c11040088
Gambelli AM, Pezzolla D, Rossi F, Gigliotti G. Hydrates Formed with Binary CH4/C2H6 Mixtures: Effects of Adding 25–75 vol% Ethane on the Quantity of Hydrates Formed, Growth Mechanism and Structure Preservation. C. 2025; 11(4):88. https://doi.org/10.3390/c11040088
Chicago/Turabian StyleGambelli, Alberto Maria, Daniela Pezzolla, Federico Rossi, and Giovanni Gigliotti. 2025. "Hydrates Formed with Binary CH4/C2H6 Mixtures: Effects of Adding 25–75 vol% Ethane on the Quantity of Hydrates Formed, Growth Mechanism and Structure Preservation" C 11, no. 4: 88. https://doi.org/10.3390/c11040088
APA StyleGambelli, A. M., Pezzolla, D., Rossi, F., & Gigliotti, G. (2025). Hydrates Formed with Binary CH4/C2H6 Mixtures: Effects of Adding 25–75 vol% Ethane on the Quantity of Hydrates Formed, Growth Mechanism and Structure Preservation. C, 11(4), 88. https://doi.org/10.3390/c11040088

