Electron Beam-Irradiated Cross-Linked Polyethylene Composites Containing Graphene Nanoplatelets for Thermally Conducting Pipes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments and Measurements
2.3. Preparation of PE-GE Composites
2.4. EB-Irradiation Process of the Pipes
3. Results
3.1. Graphene Surface Modification for Improved Processability of Composites
3.2. A Comparison Study on the Thermal Conductivity of PE-GE and PE-Al2o3
3.3. Crosslinking Process Under EB Irradiation
3.4. Mechanical Properties of PE-GE Composites
3.5. Thermal Properties of PE-GE-15
3.6. Microscopic Morphology
3.7. Fabrication of the PE-GE-15 Pipes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- CIBSE HVUH. Underfloor Heating Design & Installation Guide; Chartered Institution of Building Services Engineers: London, UK, 2016; ISBN 9781906846824. [Google Scholar]
- Meng, X. Thermal performance assessment of the dynamic rotating latent-energy-storage envelope (DRLESE) during winter. Case Stud. Therm. Eng. 2024, 60, 104671. [Google Scholar] [CrossRef]
- Scheirs, J.; Böhm, L.L.; Boot, J.C.; Leevers, P.S. PE100 Resins for Pipe Applications:-Continuing the Development into the 21st Century. Trends Polym. Sci. 1996, 4, 408–415. [Google Scholar]
- Hametner, C. Polypropylene pipes for drinking water supply. J. Macromol. Sci. Part A 1999, 36, 1751–1758. [Google Scholar] [CrossRef]
- Crowson, D.L.; Chambers, R. Polyethylene and polybutylene pipe and tubing: A status report. J. Am. Water Work. Ass. 1985, 77, 45–46. [Google Scholar] [CrossRef]
- Bohm, L. The Ethylene Polymerization with Ziegler Catalysts: Fifty Years after the Discovery. Angew. Chem. Int. Ed. 2003, 42, 5010. [Google Scholar] [CrossRef]
- Hou, Z.L.; Wei, W.J. Market analysis for PERT floor heating tube specialty. China Synth. Resin Plast. 2019, 36, 90–93. [Google Scholar]
- Zhou, X.Y.; Qin, M.M.; Feng, W. Enhancing thermal conductivity of polymer matrix composite by optimizing filler structure. J. Funct. Polym. 2024, 37, 295–303. [Google Scholar]
- Wu, S.; Ladani, R.B.; Zhang, J. Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites. Carbon 2015, 94, 607–618. [Google Scholar] [CrossRef]
- Zeng, X.L.; Yao, Y.M.; Gong, Z.Y.; Wang, F.F.; Sun, R.; Xu, J.B.; Wong, C.P. Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement. Small 2015, 11, 6205–6213. [Google Scholar] [CrossRef]
- Wu, H.C.; Zhou, W.Q.; Liu, Q.; Cai, X.; Qu, Z.H.; Li, P.; Hu, D.; Jia, X. High pressure homogenization of graphene and carbon nanotube for thermal conductive polyethylene composite with a low filler content. J. Appl. Polym. Sci. 2022, 139, 51838. [Google Scholar] [CrossRef]
- Pi, L.; Guo, D.; Nie, M.; Wang, Q. Highly endurable hydrostatic pressure polyethylene pipe prepared by the combination of rotation extrusion and lightly cross-linked polyethylene. J. Polym. Res. 2018, 25, 177. [Google Scholar] [CrossRef]
- Dadbin, S.; Frounchi, M.; Sabet, M. Studies on the properties and structure of electron-beam crosslinked low-density polyethylene/poly[ethylene-co-(vinyl acetate)] blends. Polym. Int. 2005, 54, 686–691. [Google Scholar] [CrossRef]
- Shi, C.Y.; Yang, J.Y.; Liu, Y.; Wang, Y.M.; Xu, W.G.; Xu, Y.Q.; Hu, W.; Liu, B.J. Thermally conductive study of polyethylene/Al2O3 composite networks cross-linked by electron beam irradiation. Chem. Res. Chin. Univ. 2020, 36, 940–945. [Google Scholar] [CrossRef]
- Salehi, S.M.A.; Mirjalili, G.; Amrollahi, J. Effects of high-energy electron beam on low-density polyethylene materials containing EVA. Appl. Polym. Sci. 2004, 92, 1049–1052. [Google Scholar] [CrossRef]
- Seretis, G.V.; Kouzilos, G.; Polyzou, A.K.; Manolakos, D.E.; Provatidis, C.G. Effect of graphene nanoplatelets fillers on mechanical properties and microstructure of cast aluminum matrix composites. Nano Hybr. Compos. 2017, 15, 26–35. [Google Scholar] [CrossRef]
- Mohammad, W.M.W.; Ali, E.; Ghapur, E.A.; Abdullah, M.A.A.; Sheng, C.K. Investigation on mechanical, electrical and morphological of high-density polyethylene (HDPE) reinforced with different particle size and composition of graphene nanoplatelets (GNP). Dig. J. Nanomater. Biostructures 2024, 19, 41–52. [Google Scholar] [CrossRef]
- Zhang, C.; Li, A.; Zhao, Y.H.; Bai, S.L.; Zhang, Y.F. Thermal, electrical and mechanical properties of graphene foam filled poly (methyl methacrylate) composite prepared by in situ polymerization. Compos. Part. B-Eng. 2018, 135, 201–206. [Google Scholar] [CrossRef]
- Ouyang, Y.G.; Bai, L.Y.; Tian, H.F.; Li, X.F.; Yuan, F.L. Recent progress of thermal conductive ploymer composites: Al2O3 fillers, properties and applications. Compos. Part A Appl. Sci. Manuf. 2022, 152, 106685. [Google Scholar] [CrossRef]
- Sabet, M.; Hassan, A.; Ratnam, C.T. Mechanical, electrical, and thermal properties of irradiated low-density polyethylene by electron beam. Polym. Bull. 2012, 68, 2323–2339. [Google Scholar] [CrossRef]
- Gheysari, D.J.; Behjat, A.; Haji-Saeid, M. The effect of high-energy electron beam on mechanical and thermal properties of LDPE and HDPE. Eur. Polym. J. 2000, 37, 295–302. [Google Scholar] [CrossRef]
- Kherici, S.; Benouali, D.; Nouredine, C. The effects of calcium carbonate filler on HDPE pipe. Adv. Sci. Technol. 2022, 16, 213–218. [Google Scholar] [CrossRef]
- Dimitra, K.; Evangelia, T.; Bikiaris, D.N.; Konstantinos, C. Thermal properties of graphene nanoplatelets reinforced crosslinked and short chain branched polyethylenes for geothermal pipe applications. Macromol. Symp. 2022, 405, 2100225. [Google Scholar]
- Khanam, P.N.; Al-Maadeed, M.A.; Ouederni, M.; Harkin-Jones, E.; Mayoral, B.; Hamilton, A.; Sun, D. Melt processing and properties of linear low density polyethylene-graphene nanoplatelet composites. Vacuum 2016, 130, 63–71. [Google Scholar] [CrossRef]
- Balandin, A.A.; Ghosh, S.; Bao, W.Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.J.; Wang, C.; Zhou, S.L.; Zheng, M.; Ye, H.Y. Preparation and performance of thermal conductive composite of polyethylene/graphene/boronnitride. Technol. Dev. Chem. Ind. 2022, 51, 15–85. [Google Scholar]
- Duan, J.C.; Qi, Y.X.; Shi, C.Y.; Zhao, Q.; Liu, B.J.; Sun, Z.Y.; Xu, Y.Q.; Hu, W.; Zhang, N.N. Electron beam radiation modification of polyethylene thermal conductive composites. J. Appl. Chem. 2020, 37, 896–903. [Google Scholar]
- Shi, H.C.; Yu, Y.C.; Han, C.Y. Morphology, rheological and mechanical properties of polyethylene/aluminium oxide composites. J. Appl. Chem. 2022, 39, 1593–1599. [Google Scholar]
- Gu, Y.X.; Song, Y.B.; Qiao, L.Q.; Zhang, W.L.; Gui, J.F. Effects of thermal conducting fillers on properties of LLDPE. Plast. Sci. Technol. 2015, 43, 86–89. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Lu, K.; Li, H.; Xiong, C.; Liu, Y.; Liu, B. Electron Beam-Irradiated Cross-Linked Polyethylene Composites Containing Graphene Nanoplatelets for Thermally Conducting Pipes. C 2025, 11, 31. https://doi.org/10.3390/c11020031
Xu W, Lu K, Li H, Xiong C, Liu Y, Liu B. Electron Beam-Irradiated Cross-Linked Polyethylene Composites Containing Graphene Nanoplatelets for Thermally Conducting Pipes. C. 2025; 11(2):31. https://doi.org/10.3390/c11020031
Chicago/Turabian StyleXu, Wenge, Kuan Lu, Huinan Li, Chen Xiong, Yang Liu, and Baijun Liu. 2025. "Electron Beam-Irradiated Cross-Linked Polyethylene Composites Containing Graphene Nanoplatelets for Thermally Conducting Pipes" C 11, no. 2: 31. https://doi.org/10.3390/c11020031
APA StyleXu, W., Lu, K., Li, H., Xiong, C., Liu, Y., & Liu, B. (2025). Electron Beam-Irradiated Cross-Linked Polyethylene Composites Containing Graphene Nanoplatelets for Thermally Conducting Pipes. C, 11(2), 31. https://doi.org/10.3390/c11020031