High Energy Density Primary Lithium Battery with Fluorinated S-Doped Graphene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fluorination of Sulfur-Doped Graphene
2.2. Physico-Chemical Characterization
3. Results
3.1. Physico-Chemical Characterization
3.2. Electrochemical Tests
- -
- The position of the peak corresponding to the C-F bonds changes to a lower chemical shift. Initially, the C-F bonds resonate at −175 ppm in powdered F70-60 min, indicating the presence of covalent C-F bonds. After electrode formulation, the chemical shift of the C-F bonds fell sharply to −155 ppm. The electron conduction provided by the black acetylene in the electrode interfered with the NMR measurements, even on the 19F nuclei. The peak of CF2 in PVDF also shifted. In addition, the mass of active material is lower in the rotor (close to 2 mg, whereas around 10 mg are compacted in the rotor for powdered F70-60 min). This results in a lower signal-to-noise ratio. It is therefore difficult to say whether the strength of the C-F bond in the electrode material has been weakened during the electrode formulation.
- -
- If the ratios of the intensities of the peaks linked to the S-F bonds (at 52 ppm) and C-F (−155 or −175 ppm) are considered for the spectra of the electrode and the initial powder, a decrease is noted after the formulation. Some of the S-F bonds were broken during electrode formulation. The unassigned peak at 10 ppm would be related to a decomposition product.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panja, T.; Bhattacharjya, D.; Yu, J.-S. Nitrogen and phosphorus co-doped cubic ordered mesoporous carbon as a supercapacitor electrode material with extraordinary cyclic stability. J. Mater. Chem. A 2015, 3, 18001–18009. [Google Scholar] [CrossRef]
- Zhuang, S.; Lee, E.S.; Lei, L.; Nunna, B.B.; Kuang, L.; Zhang, W. Synthesis of nitrogen-doped graphene catalyst by high-energy wet ball milling for electrochemical systems: Synthesis of N-G catalyst by high-energy wet ball milling. Int. J. Energy Res. 2016, 40, 2136–2149. [Google Scholar] [CrossRef]
- Zhang, G.; Colin, M.; Yang, X.; Sun, S.; Dodelet, J.-P.; Dubois, M. C-F bonding in fluorinated N-Doped carbons. Appl. Surf. Sci. 2022, 577, 151721. [Google Scholar] [CrossRef]
- Zhu, D.; Yuan, J.; Dai, Y.; Peng, Y.; Li, W.; Zhang, F.; Li, A.; Zhang, J. High-Rate Performance of Fluorinated Carbon Material Doped by Phosphorus Species for Lithium-Fluorinated Carbon Battery. Energy Technol. 2022, 10, 2200155. [Google Scholar] [CrossRef]
- Zhu, D.; Yuan, J.; Wang, T.; Dai, Y.; Peng, Y.; Li, W.; Li, A.; Zhang, J. A novel one-step method to prepare N, S Co-doped sub-fluorinated carbon electrode materials for ultrahigh-rate lithium-fluorinated carbon battery. J. Power Sources 2022, 551, 232188. [Google Scholar] [CrossRef]
- Wang, X.; Sun, G.; Routh, P.; Kim, D.-H.; Huang, W.; Chen, P. Heteroatom-doped graphene materials: Syntheses, properties and applications. Chem. Soc. Rev. 2014, 43, 7067–7098. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Feng, Y.; Kong, L.; Peng, C.; Hu, Y.; Li, W.; Li, Y.; Feng, W. The Fluorination of Boron-Doped Graphene for CFx Cathode with Ultrahigh Energy Density. Energy Environ. Mater. 2022, 6, e12437. [Google Scholar] [CrossRef]
- Shen, W.; Wang, C.; Xu, Q.; Liu, H.; Wang, Y. Nitrogen-Doping-Induced Defects of a Carbon Coating Layer Facilitate Na-Storage in Electrode Materials. Adv. Energy Mater. 2015, 5, 1400982. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Liu, B.; Zhang, Y.; Liang, X.; Xia, X. Heteroatom Doping: An Effective Way to Boost Sodium Ion Storage. Adv. Energy Mater. 2020, 10, 2000927. [Google Scholar] [CrossRef]
- Wan, H.; Shen, X.; Jiang, H.; Zhang, C.; Jiang, K.; Chen, T.; Shi, L.; Dong, L.; He, C.; Xu, Y.; et al. Biomass-derived N/S dual-doped porous hard-carbon as high-capacity anodes for lithium/sodium ions batteries. Energy 2021, 231, 121102. [Google Scholar] [CrossRef]
- Peng, S.; Yan, S.; Wang, N.; Nan, W.; Wang, J.; Chen, X.; Wang, C.; Qi, X.; Dai, S. Fluorinated graphene/sulfur hybrid cathode for high energy and high power density lithium primary batteries. RSC Adv. 2018, 8, 12701–12707. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, L.; Xue, Q. Fluorine and sulfur co-doped amorphous carbon films to achieve ultra-low friction under high vacuum. Carbon 2016, 96, 411–420. [Google Scholar] [CrossRef]
- Struzzi, C.; Sezen, H.; Amati, M.; Gregoratti, L.; Reckinger, N.; Colomer, J.-F.; Snyders, R.; Bittencourt, C.; Scardamaglia, M. Fluorine and sulfur simultaneously co-doped suspended graphene. Appl. Surf. Sci. 2017, 422, 104–110. [Google Scholar] [CrossRef]
- Plšek, J.; Drogowska, K.A.; Fridrichová, M.; Vejpravová, J.; Kalbáč, M. Laser-ablation-assisted SF6 decomposition for extensive and controlled fluorination of graphene. Carbon 2019, 145, 419–425. [Google Scholar] [CrossRef]
- Yu, X.; Lin, K.; Qiu, K.; Cai, H.; Li, X.; Liu, J.; Pan, N.; Fu, S.; Luo, Y.; Wang, X. Increased chemical enhancement of Raman spectra for molecules adsorbed on fluorinated reduced graphene oxide. Carbon 2012, 50, 4512–4517. [Google Scholar] [CrossRef]
- Wang, B.; Wang, J.; Zhu, J. Fluorination of Graphene: A Spectroscopic and Microscopic Study. ACS Nano 2014, 8, 1862–1870. [Google Scholar] [CrossRef] [PubMed]
- Tahara, K.; Iwasaki, T.; Matsutani, A.; Hatano, M. Effect of radical fluorination on mono- and bi-layer graphene in Ar/F2 plasma. Appl. Phys. Lett. 2012, 101, 163105. [Google Scholar] [CrossRef]
- Gao, X.; Tang, X. Effective reduction of graphene oxide thin films by a fluorinating agent: Diethylaminosulfur trifluoride. Carbon 2014, 76, 133–140. [Google Scholar] [CrossRef]
- Samanta, K.; Some, S.; Kim, Y.; Yoon, Y.; Min, M.; Lee, S.M.; Park, Y.; Lee, H. Highly hydrophilic and insulating fluorinated reduced graphene oxide. Chem. Commun. 2013, 49, 8991. [Google Scholar] [CrossRef]
- Jahanshahi, M.; Kowsari, E.; Haddadi-Asl, V.; Khoobi, M.; Bazri, B.; Aryafard, M.; Lee, J.H.; Kadumudi, F.B.; Talebian, S.; Kamaly, N.; et al. An innovative and eco-friendly modality for synthesis of highly fluorinated graphene by an acidic ionic liquid: Making of an efficacious vehicle for anti-cancer drug delivery. Appl. Surf. Sci. 2020, 515, 146071. [Google Scholar] [CrossRef]
- Nakajima, T.; Mabuchi, A.; Hagiwara, R. A new structure model of graphite oxide. Carbon 1988, 26, 357–361. [Google Scholar] [CrossRef]
- Jankovský, O.; Šimek, P.; Sedmidubský, D.; Matějková, S.; Janoušek, Z.; Šembera, F.; Pumera, M.; Sofer, Z. Water-soluble highly fluorinated graphite oxide. RSC Adv. 2014, 4, 1378–1387. [Google Scholar] [CrossRef]
- Mar, M.; Dubois, M.; Guérin, K.; Batisse, N.; Simon, B.; Bernard, P. Tuning fluorine and oxygen distribution in graphite oxifluorides for enhanced performances in primary lithium battery. Carbon 2019, 141, 6–15. [Google Scholar] [CrossRef]
- Chatenet, M.; Berthon-Fabry, S.; Ahmad, Y.; Guérin, K.; Colin, M.; Farhat, H.; Frezet, L.; Zhang, G.; Dubois, M. Fluorination and its Effects on Electrocatalysts for Low-Temperature Fuel Cells. Adv. Energy Mater. 2023, 13, 2204304. [Google Scholar] [CrossRef]
- Touhara, H.; Okino, F. Property control of carbon materials by fluorination. Carbon 2000, 38, 241–267. [Google Scholar] [CrossRef]
- Siburian, R.; Sihotang, H.; Raja, S.L.; Supeno, M.; Simanjuntak, C. New Route to Synthesize of Graphene Nano Sheets. Orient. J. Chem. 2018, 34, 182–187. [Google Scholar] [CrossRef]
- Yamamoto, H.; Matsumoto, K.; Matsuo, Y.; Sato, Y.; Hagiwara, R. Deoxofluorination of graphite oxide with sulfur tetrafluoride. Dalton Trans. 2020, 49, 47–56. [Google Scholar] [CrossRef]
- Dubois, M.; Giraudet, J.; Guérin, K.; Hamwi, A.; Fawal, Z.; Pirotte, P.; Masin, F. EPR and Solid-State NMR Studies of Poly(dicarbon monofluoride) (C2F)n. J. Phys. Chem. B 2006, 110, 11800–11808. [Google Scholar] [CrossRef]
- Giraudet, J.; Dubois, M.; Guérin, K.; Delabarre, C.; Hamwi, A.; Masin, F. Solid-State NMR Study of the Post-Fluorination of (C2.5F)n Fluorine−GIC. J. Phys. Chem. B 2007, 111, 14143–14151. [Google Scholar] [CrossRef]
- Zhang, W.; Dubois, M.; Guérin, K.; Bonnet, P.; Kharbache, H.; Masin, F.; Kharitonov, A.P.; Hamwi, A. Effect of curvature on C–F bonding in fluorinated carbons: From fullerene and derivatives to graphite. Phys. Chem. Chem. Phys. 2010, 12, 1388–1398. [Google Scholar] [CrossRef]
- Sato, Y.; Itoh, K.; Hagiwara, R.; Fukunaga, T.; Ito, Y. Short-range structures of poly(dicarbon monofluoride) (C2F)n and poly(carbon monofluoride) (CF)n. Carbon 2004, 42, 2897–2903. [Google Scholar] [CrossRef]
- Cheng, L.; Jandhyala, S.; Mordi, G.; Lucero, A.T.; Huang, J.; Azcatl, A.; Addou, R.; Wallace, R.M.; Colombo, L.; Kim, J. Partially Fluorinated Graphene: Structural and Electrical Characterization. ACS Appl. Mater. Interfaces 2016, 8, 5002–5008. [Google Scholar] [CrossRef] [PubMed]
- Dubois, M.; Guérin, K.; Zhang, W.; Ahmad, Y.; Hamwi, A.; Fawal, Z.; Kharbache, H.; Masin, F. Tuning the discharge potential of fluorinated carbon used as electrode in primary lithium battery. Electrochim. Acta 2012, 59, 485–491. [Google Scholar] [CrossRef]
- Feng, X.; Xu, M.; Guo, N.; Ma, R.; Yan, L.; Cai, L.; Jia, D.; Ai, L.; Wang, L. Dual-Salt-Induced Hierarchical Porous Structure in a Carbon Sheet for High Performance Supercapacitors. Langmuir 2023, 39, 6865–6873. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, C.; Zhao, H.; An, H.; Cao, H.; Zhang, Y.; Fan, Z. Tuning sulfur doping in graphene for highly sensitive dopamine biosensors. Carbon 2015, 86, 197–206. [Google Scholar] [CrossRef]
- Kiciński, W.; Dziura, A. Heteroatom-doped carbon gels from phenols and heterocyclic aldehydes: Sulfur-doped carbon xerogels. Carbon 2014, 75, 56–67. [Google Scholar] [CrossRef]
- Lacey, M.J.; Yalamanchili, A.; Maibach, J.; Tengstedt, C.; Edström, K.; Brandell, D. The Li-S battery: An investigation of redox shuttle and self-discharge behaviour with LiNO3-containing electrolytes. RSC Adv. 2015, 6, 3632–3641. [Google Scholar] [CrossRef]
- Barlow, A.J.; Quinton, J.S. Radio frequency SF6 plasma modified single-walled carbon nanotubes: Synchrotron spectroscopy and plasma characterisation studies. In Proceedings of the IEEE 2010 International Conference on Nanoscience and Nanotechnology (ICONN), Sydney, Australia, 22–26 February 2010; pp. 120–123. [Google Scholar] [CrossRef]
- Lindberg, B.J.; Hamrin, K.; Johansson, G.; Gelius, U.; Fahlman, A.; Nordling, C.; Siegbahn, K. Molecular Spectroscopy by Means of ESCA II. Sulfur compounds. Correlation of electron binding energy with structure. Phys. Scr. 1970, 1, 286–298. [Google Scholar] [CrossRef]
- Delabarre, C.; Guérin, K.; Dubois, M.; Giraudet, J.; Fawal, Z.; Hamwi, A. Highly fluorinated graphite prepared from graphite fluoride formed using BF3 catalyst. J. Fluor. Chem. 2005, 126, 1078–1087. [Google Scholar] [CrossRef]
Notation | Temperature (°C) | Duration (min) |
---|---|---|
F25-30 min | 25 | 30 |
F70-30 min | 70 | 30 |
F70-60 min | 70 | 60 |
F140-60 min | 140 | 60 |
Chemical Composition | ||||
---|---|---|---|---|
Compound | TEM-EDX | |||
C | O | S | F | |
S-graphene | 93.68 | 2.99 | 2.47 | --- |
F70-60 min | 90.75 | 1.93 | 2.00 | 5.02 |
F140-60 min | 83.02 | 0.46 | 0.00 | 16.82 |
Element | Assignment | F70-60 Min | F140-60 Min | |||
---|---|---|---|---|---|---|
Binding Energy (eV) | Relative Amount (at.%) | Binding Energy (eV) | Relative Amount (at.%) | |||
C | C (sp3) | 285.0 | 0.62 | 284.7 | 0.43 | |
C -CFx (type II) & C-S | 286.6 | 1.4 | 286.3 | 0.45 | ||
CF-C-CF (type II) | 287.5 | 9.8 | 287.3 | 3.5 | ||
CF (type II) | 290.0 | 31.9 | 289.7 | 28.8 | ||
CF2 (type II) | 292.0 | 6.9 | 291.6 | 10.8 | ||
CF3 | 294.0 | 0.91 | 293.5 | 1 | ||
O | O-C-F | 535.1 | 1.57 | 534.96 | 0.45 | |
C-O | - | - | 532.15 | 0.11 | ||
F | C-F | 688.7 | 46.7 | 688.5 | 54.5 | |
SOx & SFx | S 2p3/2 | S 2p1/2 | - | - | ||
S | S1 (-S=O) | 165.7 | 166.9 | 0.02 | ||
S2 (SO32−) | 167.9 | 169.1 | 0.01 | - | - | |
S3 (SO42−) | 169.4 | 170.6 | 0.01 | - | - | |
S4 (-SOFx) | 171.7 | 172.9 | 0.04 | - | - | |
S5 (-SF5) | 174.2 | 175.4 | 0.03 | - | - |
C Rate | Current Densities (mA/g) | Cexp ± 10% (mAh/g) | E1/2 (V) | Specific Energy (Wh/kg) | Power Density (W/kg) | Faradic Yield (%) ± 10% |
---|---|---|---|---|---|---|
0.01C | 10 | 773 | 3.10 | 2396 | 31 | 103 |
0.2C | 150 | 764 | 2.74 | 2093 | 411 | 102 |
1C | 751 | 675 | 2.54 | 1715 | 1908 | 90 |
2C | 1502 | 741 | 2.40 | 1778 | 3605 | 99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colin, M.; Farhat, H.; Chen, S.; Petit, E.; Flahaut, E.; Guérin, K.; Dubois, M. High Energy Density Primary Lithium Battery with Fluorinated S-Doped Graphene. C 2024, 10, 3. https://doi.org/10.3390/c10010003
Colin M, Farhat H, Chen S, Petit E, Flahaut E, Guérin K, Dubois M. High Energy Density Primary Lithium Battery with Fluorinated S-Doped Graphene. C. 2024; 10(1):3. https://doi.org/10.3390/c10010003
Chicago/Turabian StyleColin, Marie, Hani Farhat, Sam Chen, Elodie Petit, Emmanuel Flahaut, Katia Guérin, and Marc Dubois. 2024. "High Energy Density Primary Lithium Battery with Fluorinated S-Doped Graphene" C 10, no. 1: 3. https://doi.org/10.3390/c10010003
APA StyleColin, M., Farhat, H., Chen, S., Petit, E., Flahaut, E., Guérin, K., & Dubois, M. (2024). High Energy Density Primary Lithium Battery with Fluorinated S-Doped Graphene. C, 10(1), 3. https://doi.org/10.3390/c10010003