Near Real-Time Estimation of Blood Loss and Flow–Pressure Redistribution during Unilateral Nephrectomy
Abstract
1. Introduction
2. Methods
2.1. The Renal Vasculature
2.2. Mathematical Approximations
2.3. Modelling Cuts to the Two-Kidney Vascular Network
2.4. Verification and Validation
3. Results
3.1. Blood Flow Rates in a Healthy Two-Kidney Model
3.2. Estimation of Blood Loss in Radical or Partial Unilateral Nephrectomy
3.3. Redistribution of Blood Fluxes Due to Unilateral Kidney Nephrectomy
3.4. Mapping the Blood Flux for a Radical Kidney Resection
3.5. Blood Pressure Distributions for Pre- and Post-Surgery Nephrectomies
4. Discussion
4.1. Clinical Relevance
4.2. Limitations
4.3. Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
References
- Rosiello, G.; Larcher, A.; Fallara, G.; Basile, G.; Cignoli, D.; Colandrea, G.; Re, C.; Trevisani, F.; Karakiewicz, P.I.; Salonia, A.; et al. The impact of intraoperative bleeding on the risk of chronic kidney disease after nephron-sparing surgery. World J. Urol. 2021, 39, 2553–2558. [Google Scholar] [CrossRef] [PubMed]
- Bivet, F. Nonuse of RIFLE classification urine output criteria: Biases for acute kidney injury biomarkers performance assessment? Crit. Care Med. 2012, 40, 1692–1693. [Google Scholar] [CrossRef] [PubMed]
- Kanji, H.D.; Schulze, C.J.; Hervas-Malo, M. Difference between pre-operative and cardiopulmonary bypass mean arterial pressure is independently associated with early cardiac surgery-associated acute kidney injury. J. Cardiothorac. Surg. 2010, 5, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Robert, A.M.; Kramer, R.S.; Dacey, L.I. Cardiac surgery-associated acute kidney injury: A comparison of two consensus criteria. Ann. Thorac. Surg. 2010, 90, 1939–1943. [Google Scholar] [CrossRef]
- Weir, M.R.; Aronson, S.; Avery, E.G. Acute kidney injury following cardiac surgery: Role of perioperative blood pressure control. Am. J. Nephrol. 2011, 33, 438–452. [Google Scholar] [CrossRef]
- Jaramillo, S.; Muntane, M.M.; Gambus, P.L.; Capitan, D.; Navarro-Ripoll, R.; Blasi, A. Perioperative blood loss: Estimation of blood volume loss or haemoglobin mass loss? Blood Transfus. 2020, 18, 20–29. [Google Scholar]
- Puelles, V.G.; Combes, A.N.; Bertram, J.F. Clearly imaging and quantifying the kidney in 3D. Kidney Int. 2021, 100, 780–786. [Google Scholar] [CrossRef]
- Schutter, R.; Lantinga, V.A.; Hamelink, T.L.; Pool, M.B.F.; Varsseveld, O.C.V.; Potze, J.H.; Hillebrands, J.L.; Heuvel, M.C.V.D.; Dierckx, R.A.J.O.; Leuvenink, H.G.D.; et al. Magnetic resonance imaging assessment of renal flow distribution patterns during ex vivo normothermic machine perfusion in porcine and human kidneys. Transpl. Int. 2021, 34, 1643–1655. [Google Scholar] [CrossRef]
- Nordsletten, D.A.; Blackett, S.; Bentley, M.D.; Ritman, E.L.; Smith, N.P. Structural morphology of renal vasculature. Am. Physiol. Soc. 2006, 291, 296–309. [Google Scholar] [CrossRef]
- Kalantarinia, K.; Belcik, J.T.; Patrie, J.T.; Wei, K. Real-time measurement of renal blood flow in healthy subjects using contrast-enhanced ultrasound. Am. J. Physiol. Ren. Physiol. 2009, 297, 1129–1134. [Google Scholar] [CrossRef]
- Cowley, J.; McGinty, S. A mathematical model of sonoporation using a liquid-crystalline shelled microbubble. Ultrasonics 2019, 96, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Cowley, J.; Mulholland, A.J.; Gachagan, A. The Rayleigh-Plesset equation for a liquid-crystalline shelled microbubble. Int. J. Mod. Eng. Res. IJMER 2020, 10, 25–35. [Google Scholar]
- Lok, C.E.; Huber, T.S.; Lee, T.; Shenoy, S.; Yevzlin, A.S.; Abreo, K.; Allon, M.; Asif, A.; Astor, B.C.; Glickman, M.H.; et al. Kdoqi clinical practice guideline for vascular access: 2019 update. Am. J. Kidney Dis. 2020, 75, 1–164. [Google Scholar] [CrossRef] [PubMed]
- Cupples, W.; Loutzenhiser, R. Dynamic autoregulation in the in vitro perfused hydronephrotic rat kidney. Am. J. Physiol. Ren. Physiol. 1998, 275, 126–130. [Google Scholar] [CrossRef]
- Cupples, W.A.; Braam, B. Assessment of renal autoregulation. Am. J. Physiol. Ren. Physiol. 2007, 292, 1105–1123. [Google Scholar] [CrossRef]
- Holstein-Rathlon, N.H.; Marsh, D.J. A dynamic model of renal blood flow autoregulation. Bull. Math. Biol. 1994, 56, 411–429. [Google Scholar] [CrossRef]
- Holstein-Rathlou, N.; Wagner, A.; Marsh, D. Tubloglomerular feedback dynamics and renal blood flow autoregulation in rats. Am. J. Physiol. Ren. Physiol. 1991, 260, 53–68. [Google Scholar] [CrossRef]
- Just, A. Mechanisms of renal blood flow autoregulation: Dynamics and contributions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R1–R17. [Google Scholar] [CrossRef]
- Just, A.; Arendshorst, W.J. Dynamics and contribution of mechanisms mediating renal blood flow autoregulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 285, 619–631. [Google Scholar] [CrossRef]
- Loutzenhiser, R.; Bidani, A.; Chilton, L. Renal myogenic response: Kinetic attributes and physiological role. Circ. Res. 2002, 90, 1316–1324. [Google Scholar] [CrossRef]
- Loutzenhiser, R.; Griffin, K.; Williamson, G.; Bidani, A. Renal autoregulation: New perspectives regarding the protective and regulatory roles of the underlying mechanisms. Am. J. Physiol. Regul. Integr. Comput. Physiol. 2006, 290, 1156–1167. [Google Scholar] [CrossRef] [PubMed]
- Lush, D.J.; Fray, J.C. Steady-state autoregulation of renal blood flow: A myogenic model. Am. J. Physiol. Regul. Integr. Comput. Physiol. 1984, 247, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Marsh, D.; Sosnovtseva, O.; Chon, K.; Holstein-Rathlou, N. Nonlinear interactions in renal blood blow regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, 1143–1159. [Google Scholar] [CrossRef] [PubMed]
- Marsh, D.; Sosnovtseva, O.; Mosekilde, E.; Holstein-Rathlou, N. Vascular coupling induces synchronization, quasiperiodicity, and chaos in a nephron tree. Chaos 2007, 17, 015114. [Google Scholar] [CrossRef] [PubMed]
- Marsh, D.; Sosnovtseva, O.; Pavlov, A.; Yip, K.; Holstein-Rathlou, N. Frequency encoding in renal blood blow regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, 1160–1167. [Google Scholar] [CrossRef]
- Moore, L. Tubuloglomerular feedback and SNGFR autoregulation in the rat. Am. J. Physiol. Ren. Physiol. 1984, 247, 267–276. [Google Scholar] [CrossRef]
- Oien, A.H.; Aukland, K. A mathematical-analysis of the myogenic hypothesis with special reference to auto-regulation of renal blood-flow. Circ. Res. 1983, 52, 241–252. [Google Scholar] [CrossRef]
- Persson, P. Renal blood flow autoregulation in blood pressure control. Curr. Opin. Nephrol. Hypertens. 2002, 11, 67–72. [Google Scholar] [CrossRef]
- Pires, S.L.S.; Julien, C.; Chapuis, B.; Sassard, J.; Barres, C. Spontaneous renal blood flow autoregulation curves in conscious sinoaortic baroreceptor-denervated rats. Am. J. Physiol. Ren. Physiol. 2002, 282, 51–58. [Google Scholar] [CrossRef]
- Racasan, S.; Joles, J.; Boer, P.; Koomans, H.; Braam, B. NO dependency of RBF and autoregulation in the spontaneously hypertensive rat. Am. J. Physiol. Ren. Physiol. 2003, 285, 105–112. [Google Scholar] [CrossRef]
- Turkstra, E.; Braam, B.; Koomans, H. Impaired renal blood flow autoregulation in twokidney, one-clip hypertensive rats is caused by enhanced activity of nitric oxide. J. Am. Soc. Nephrol. 2000, 11, 847–855. [Google Scholar] [CrossRef]
- Cury, L.F.M.; Talou, G.M.; Younes-Ibrahim, M.; Blanco, P.J. Parallel generation of extensive vascular networks with application to an archetypal human kidney model. R. Soc. Open Sci. 2021, 8, 210973. [Google Scholar] [CrossRef]
- Deng, W.; Tsubota, K.I. Numerical simulation of the vascular structure dependence of blood flow in the kidney. Med. Eng. Phys. 2022, 104, 103809. [Google Scholar] [CrossRef]
- Deng, W.; Tsubota, K.I. Numerical Modeling and Simulation of Blood Flow in a Rat Kidney: Coupling of the Myogenic Response and the Vascular Structure. Processes 2022, 10, 1005. [Google Scholar] [CrossRef]
- Sgouralis, I.; Evans, R.G.; Layton, A.T. Renal medullary and urinary oxygen tension during cardiopulmonary bypass in the rat. Math. Med. Biol. 2017, 34, 313–333. [Google Scholar] [CrossRef]
- Sgouralis, I.; Layton, A.T. Mathematical modeling of renal hemodynamics in physiology and pathophysiology. Math. Biosci. 2015, 264, 8–20. [Google Scholar] [CrossRef]
- Postnov, D.D.; Marsh, D.J.; Postnov, D.E.; Braunstein, T.H.; Holstein-Rathlou, N.H.; Martens, E.A.; Sosnovtseva, O. Modeling of Kidney Hemodynamics: Probability-Based Topology of an Arterial Network. PLoS Comput. Biol. 2016, 12, e1004922. [Google Scholar] [CrossRef]
- Hao, W.; Rovin, B.H.; Friedman, A. Mathematical model of renal interstitial fibrosis. Proc. Natl. Acad. Sci. USA 2014, 111, 14193–14198. [Google Scholar] [CrossRef]
- Basri, A.A.; Khader, S.M.A.; Johny, C.; Pai, B.R.; Zuber, M.; Ahmad, Z.; Ahmad, K.A. Effect of Single and Double Stenosed on Renal Arteries of Abdominal Aorta: A Computational Fluid Dynamics. CFD Lett. 2020, 12, 87–97. [Google Scholar]
- Grinberg, L.; Cheever, E.; Anor, T.; Madsen, J.R.; Karniadakis, G.E. Modeling blood flow circulation in intracranial arterial networks: A comparative 3D/1D simulation study. Ann. Biomed. Eng. 2011, 39, 297–309. [Google Scholar] [CrossRef]
- Grinberg, L.; Karniadakis, G.E. Outflow boundary conditions for arterial networks with multiple outlets. Ann. Biomech. Eng. 2008, 36, 1496–1514. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, A.; Togawa, T. Optimal branching structure of the vascular tree. Bull. Math. Biophys. 1972, 34, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.M.; Blanco, P.J.; Feijóo, R.A. Mathematica Model of Blood Flow in an Anatomically Detailed Arterial Network of the Arm. ESAIM Math. Model. Numer. Anal. 2013, 47, 961–985. [Google Scholar] [CrossRef]
- Hyde-Linaker, G.; Barientos, P.H.; Stoumpos, S.; Kingsmore, D.B.; Kazakidi, A. Patient-specific computational haemodynamics associated with the surgical creation of an arteriovenous fistula. Med. Eng. Phys. 2022, 105, 103814. [Google Scholar] [CrossRef]
- Black, S.M.; Maclean, C.; Hall-Barrientos, P.; Ritos, K.; McQueen, A.; Kazakidi, A. Calibration of patient-specific boundary conditions for coupled CFD models of the aorta derived from 4D Flow-MRI. Front. Bioeng. Biotech. 2023, 11, 1178483. [Google Scholar]
- Boumpouli, M.; Danton, M.H.D.; Gourlay, T.; Kazakidi, A. Blood flow simulations in the pulmonary bifurcation in relation to adult patients with repaired tetralogy of Fallot. Med. Eng. Phys. 2020, 85, 123–138. [Google Scholar]
- Johnston, L.; Allen, R.; Hall Barrientos, P.; Mason, A.; Kazakidi, A. Hemodynamic abnormalities in the aorta of turner syndrome girls. Front. Cardiovasc. Med. 2021, 8, 670841. [Google Scholar]
- Kazakidi, A.; Sherwin, S.J.; Weinberg, P.D. Effect of Reynolds number and flow division on patterns of haemodynamic wall shear stress near branch points in the descending thoracic aorta. J. R. Soc. Interface 2009, 6, 539–548. [Google Scholar] [CrossRef]
- Doormaal, M.A.V.; Kazakidi, A.; Wylezinska, M.; Hunt, A.; Tremoleda, J.L.; Protti, A.; Bohraus, Y.; Gsell, W.; Weinberg, P.D.; Ethier, C.R. Haemodynamics in the mouse aortic arch computed from MRI-derived velocities at the aortic root. J. R. Soc. Interface 2012, 9, 2834–2844. [Google Scholar]
- Kazakidi, A.; Plata, A.M.; Sherwin, S.J.; Weinberg, P.D. Effect of reverse flow on the pattern of wall shear stress near arterial branches. J. R. Soc. Interface 2011, 8, 1594–1603. [Google Scholar] [CrossRef]
- Pedley, T.J.; Schroter, R.C.; Sudlow, M.F. Flow and pressure drop in systems of repeatedly branching tubes. J. Fluid Mech. 1971, 46, 365–383. [Google Scholar] [CrossRef]
- Shi, Y.; Lawford, P.; Hose, R. Review of Zero-D and 1-D models of blood flow in the cardiovascular system. BioMed. Eng. OnLine 2011, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Cowley, J.; Luo, X.; Stewart, G.D.; Shu, W.; Kazakidi, A. A mathematical model of blood loss during renal resection. Fluids 2023, 8, 316. [Google Scholar] [CrossRef]
- Sherman, T.F. On connecting large vessels to small. The meaning of Murray’s law. J. Gen. Physiol. 1981, 78, 431–453. [Google Scholar] [CrossRef]
- Yang, J.; Pak, Y.E.; Lee, T.-R. Predicting bifurcation angle effect on blood flow in the microvasculature. Microvasc. Res. 2016, 108, 22–28. [Google Scholar] [CrossRef]
- Bessonov, N.; Sequeira, A.; Simakov, S.; Vassilevskii, Y.; Volpert, V. Methods of blood flow modelling. Math. Model. Nat. Phenom. 2016, 11, 1–25. [Google Scholar] [CrossRef]
- Aroesty, J.; Gross, J.F. The mathematics of pulsatile flow in small vessels I. Casson theory. Microvasc. Res. 1972, 4, 1–12. [Google Scholar] [CrossRef]
- Paruchuri, V.; Salhab, K.F.; Kuzmik, G.; Gubernikoff, G.; Fang, H.; Rizzo, J.A.; Ziganshin, B.A.; Elefteriades, J.A. Aortic Size Distribution in the General Population: Explaining the Size Paradox in Aortic Dissection. Cardiology 2015, 131, 265–272. [Google Scholar] [CrossRef]
- Stark, H.; Schuster, S. Comparison of various approaches to calculating the hematocrit in vertebrates. J. Appl. Physiol. 2012, 113, 355–367. [Google Scholar] [CrossRef]
- Sochi, T. Analytical solutions for the flow of Carreau and Cross fluids in circular pipes and thin slits. Rheol. Acta 2015, 54, 745–756. [Google Scholar] [CrossRef]
- Wolfram Inc. Mathematica, Version 130; Wolfram Inc.: Champaign, IL, USA, 2022. [Google Scholar]
- Zhao, Y.; Lieber, B. Steady inspiratory flow in a model symmetric bifurcation. J. Biomech. Eng. 1994, 116, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Schroter, R.C.; Sudlow, M.F. Flow patterns in models of the human bronchial airways. Respir. Physiol. 1969, 7, 341–355. [Google Scholar] [CrossRef] [PubMed]
- López-Picado, A.; Albinarrate, A.; Barrachina, B. Determination of perioperative blood loss: Accuracy or approximation? Anesth. Analg. 2017, 125, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Abu-Naser, M.; Williamson, G.A.; Bidani, A.K.; Griffin, K.A. Vascular resistance estimation in real hemodynamics using a time-varying Windkessel model. In Proceedings of the Proceedings. (ICASSP ’05), IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, Philadelphia, PA, USA, 23 March 2005; Volume 5, pp. 641–644. [Google Scholar]
- Hsu, T.L.; Hsiu, H.; Chao, P.T.; Li, S.P.; Wang, W.K.; Wang, Y.Y.L. Three-block electrical model of renal impedance. IOP Physiol. Meas. 2005, 26, 387–399. [Google Scholar] [CrossRef]
- Shvarts, O.; Tsui, K.; Smith, R.B.; Kernion, J.B.D.; Belldegrun, A. Blood loss and the need for transfusion in patients who undergo partial or radical nephrectomy for renal cell carcinoma. J. Urol. 2000, 164, 1160–1163. [Google Scholar] [CrossRef]
- Aboumarzouk, O.M.; El-Damanhoury, H.M. The impact of renal vascular anatomy on laparoscopic partial nephrectomy. J. Endourol. 2014, 28, 438–444. [Google Scholar]
- Liu, X.; Fong, Y. Management of renal vascular anatomy during partial nephrectomy. Urol. Clin. N. Am. 2013, 40, 325–332. [Google Scholar]
- Kumar, P.; Ghosh, S. Techniques and strategies in managing hemorrhage during nephrectomy. J. Urol. 2018, 199, 391–398. [Google Scholar]
- Serrano, P.; Khan, M.S. Advances in the management of bleeding during renal surgery. Expert Rev. Anticancer Ther. 2015, 15, 1415–1424. [Google Scholar]
- Kawaguchi, A.; Vigneswaran, H.T. The role of predictive modeling in optimizing surgical outcomes: A review. J. Surg. Res. 2017, 218, 94–104. [Google Scholar]
- Warren, D.R.; Partridge, M. The role of necrosis, acute hypoxia and chronic hypoxia in 18F-FMISO PET image contrast: A computational modelling study. Phys. Med. Biol. 2016, 61, 8596–8624. [Google Scholar] [CrossRef] [PubMed]
- Andreeva, A.A.; Anand, M.; Lobanov, A.I.; Nikolaev, A.V.; Panteleev, M.A.; Susree, M. Mathematical modelling of platelet rich plasma clotting. Pointwise unified model. Russ. J. Numer. Anal. Math. Model. 2018, 33, 265–276. [Google Scholar] [CrossRef]
- Salotto, A.G.; Muscarella, L.F.; Melbin, J.; Li, J.K.J.; Noordergraaf, A. Pressure pulse transmission into vasculare beds. Microvasc. Res. 1986, 32, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Soares, T.R.S.; Ferraz, J.S.; Dartibale, C.B.; Oliveira, I.R.M. Variations in human renal arteries. Acta Sci. Biol. Sci. 2013, 35, 277–282. [Google Scholar] [CrossRef]
- Piccioli, F.; Bertaglia, G.; Valiani, A.; Caleffi, V. Modeling blood flow in networks of viscoelastic vessels with the 1-D augmented fluid–structure interaction system. J. Comput. Phys. 2022, 464, 111364. [Google Scholar] [CrossRef]
- Bianchi, L.; Cercenelli, L.; Bortolani, B.; Piazza, P.; Droghetti, M.; Boschi, S.; Gaudiano, C.; Carpani, G.; Chessa, F.; Lodi, S.; et al. 3D renal model for surgical planning of partial nephrectomy: A way to improve surgical outcomes. Front. Oncol. 2022, 12, 1046505. [Google Scholar] [CrossRef]
Branch Cut(s) | Blood Loss from Individual Vessel (mL/min) | Total Blood Loss (mL/min) | % Blood Loss |
---|---|---|---|
QL (radical kidney nephrectomy) | 59.9 | 59.9 | 1.20 |
QLR33 | 34.9 | 34.9 | 0.70 |
QLR2 & QLR10 | 24.3 & 48.5 | 72.8 | 1.46 |
QLR11 & QLR20 | 22.0 & 44.1 | 66.1 | 1.32 |
QLL2 & QLL5 | 22.4 & 44.9 | 67.3 | 1.35 |
QLL6 & QLL9 | 20.7 & 41.6 | 62.3 | 1.25 |
QLL6 & QLL9 & QLR2 & QLR10 | 24.5 & 48.8 & 25.9 & 51.5 | 150.7 | 3.01 |
Branch Cut(s) | Right Renal Artery Blood Flux, QR (mL/min) | % of Flow Redistributed from the Left Kidney to the Right | Left Renal Artery Blood Flux, QL (mL/min) | % of Flow Remaining at the Left Kidney | Downstream Aortic Blood Flux, Qaorta (mL/min) | % of Flow Redistributed from the Left Kidney to Aorta | Ratio of Aortic to Right Kidney Redistribution |
---|---|---|---|---|---|---|---|
Healthy kidney (with no cuts) | 599.6 | - | 599.6 | - | 1200.8 | - | - |
QL (radical left kidney nephrectomy) | 837.7 | 39.71 | 59.9 | 9.99 | 1502.4 | 50.30 | 1.27 |
QLR33 (partial left kidney nephrectomy) | 613.2 | 2.27 | 568.6 | 94.83 | 1218.2 | 2.90 | 1.28 |
QLR2 & QLR10 | 719.6 | 20.01 | 327.6 | 54.64 | 1352.8 | 25.35 | 1.27 |
QLR11 & QLR20 | 685.0 | 14.24 | 406.0 | 67.71 | 1309 | 18.05 | 1.27 |
QLL2 & QLL5 | 649.4 | 8.31 | 486.7 | 81.17 | 1263.9 | 10.52 | 1.27 |
QLL6 & QLL9 | 637.4 | 6.30 | 513.8 | 85.69 | 1248.8 | 8.01 | 1.27 |
QLL6 & QLL9 & QLR2 & QLR10 | 776.7 | 29.54 | 198.2 | 33.06 | 1425.1 | 37.41 | 1.27 |
Branch Cut(s) | Blood Pressure, PR (mmHg) | Blood Pressure, PL (mmHg) | Blood Pressure, Paorta (mmHg) |
---|---|---|---|
Healthy kidneys (with no cuts) | 125.2 | 125.2 | 10.3 |
PL (radical kidney resection) | 175.0 | 12.5 | 12.9 |
PLR33 | 128.1 | 118.8 | 10.5 |
PLR2 & PLR10 | 150.3 | 68.4 | 11.7 |
PLR11 & PLR20 | 143.1 | 84.8 | 11.3 |
PLL2 & PLL5 | 135.6 | 101.7 | 10.9 |
PLL6 & PLL9 | 133.1 | 107.3 | 10.8 |
PLL6 & PLL9 & PLR2 & PLR10 | 162.2 | 41.4 | 12.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cowley, J.; Kyeremeh, J.; Stewart, G.D.; Luo, X.; Shu, W.; Kazakidi, A. Near Real-Time Estimation of Blood Loss and Flow–Pressure Redistribution during Unilateral Nephrectomy. Fluids 2024, 9, 214. https://doi.org/10.3390/fluids9090214
Cowley J, Kyeremeh J, Stewart GD, Luo X, Shu W, Kazakidi A. Near Real-Time Estimation of Blood Loss and Flow–Pressure Redistribution during Unilateral Nephrectomy. Fluids. 2024; 9(9):214. https://doi.org/10.3390/fluids9090214
Chicago/Turabian StyleCowley, James, Justicia Kyeremeh, Grant D. Stewart, Xichun Luo, Wenmiao Shu, and Asimina Kazakidi. 2024. "Near Real-Time Estimation of Blood Loss and Flow–Pressure Redistribution during Unilateral Nephrectomy" Fluids 9, no. 9: 214. https://doi.org/10.3390/fluids9090214
APA StyleCowley, J., Kyeremeh, J., Stewart, G. D., Luo, X., Shu, W., & Kazakidi, A. (2024). Near Real-Time Estimation of Blood Loss and Flow–Pressure Redistribution during Unilateral Nephrectomy. Fluids, 9(9), 214. https://doi.org/10.3390/fluids9090214