A Numerical Approach and Study of the Shock-Wave Structure of Supersonic Jet Flow in a Nozzle
Abstract
:1. Introduction
2. Basic Equations and Calculation Method
3. Research into Shock-Wave Structure of Nozzle Supersonic Flow
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kozelkov, A.S.; Strelets, D.Y.; Sokuler, M.S.; Arifullin, R.H. Application of Mathematical Modeling to Study Near-Field Pressure Pulsations of a Near-Future Prototype Supersonic Business Aircraft. J. Aerosp. Eng. 2022, 35, 04021120. [Google Scholar] [CrossRef]
- Tam, C.K.W.; Tanna, H.K. Shock associated noise of supersonic jets from convergent-divergent nozzles. J. Sound Vib. 1982, 81, 337–358. [Google Scholar] [CrossRef]
- Tam, C.K.W. Jet Noise Generated by large Scale Coherent Motion. In NASA. Langley Research Center, Aeroacoustics of Flight Vehicles: Theory and Practice; Hubbard, H.H., Ed.; National Aeronautics and Space Administration: Washington, DC, USA, 1991; Volume 1: Noise Sources, pp. 311–390. [Google Scholar]
- Tam, C.K.W. Supersonic Jet Noise. Annu. Rev. Fluid Mech. 1995, 27, 17–43. [Google Scholar] [CrossRef]
- Norum, T.D.; Seiner, J.M. Broadband Shock Noise from Supersonic Jets. AIAA J. 1982, 20, 68–73. [Google Scholar] [CrossRef]
- Raman, G. Advances in Understanding Supersonic Jet Screech: Review and Perspective. Prog. Aerosp. Sci. 1998, 34, 45–106. [Google Scholar] [CrossRef]
- Umeda, Y.; Ishii, R. On the Sound Sources of Screech Tones Radiated from Choked Circular Jets. J. Acoust. Soc. Am. 2001, 110, 1845–1858. [Google Scholar] [CrossRef] [PubMed]
- Bodony, D.J.; Lele, S.K. On Using Large-Eddy Simulation for the Prediction of Noise from Cold and Heated Turbulent Jets. Phys. Fluids 2005, 17, 085103. [Google Scholar] [CrossRef]
- Bogey, C.; Bailly, C. Effects of Inflow Conditions and Forcing on Subsonic Jet Flows and Noise. AIAA J. 2005, 43, 1000–1007. [Google Scholar] [CrossRef]
- Freund, J.B. Noise Sources in a Low-Reynolds-Number Turbulent Jet at Mach 0.9. J. Fluid Mech. 2001, 438, 277–305. [Google Scholar] [CrossRef]
- Uzun, A.; Blaisdell, G.A.; Lyrintzis, A.S. Coupling of Integral Acoustics Methods with LES for Jet Noise Prediction. Int. J. Aeroacoustics 2004, 3, 297–346. [Google Scholar] [CrossRef]
- Bodony, D.J.; Lele, S.K. Current Status of Jet Noise Predictions Using Large-Eddy Simulation. AIAA J. 2004, 46, 364–380. [Google Scholar] [CrossRef]
- DeBonis, J.R.; Scott, J.N. A Large-Eddy Simulation of a Turbulent Compressible Round Jet. AIAA J. 2002, 40, 1346–1354. [Google Scholar] [CrossRef]
- Andersson, N.; Eriksson, L.; Davidson, L. Large-Eddy Simulation of Subsonic Turbulent Jets and Their Radiated Sound. AIAA J. 2005, 43, 1899–1912. [Google Scholar] [CrossRef]
- Vuillot, F.; Lupoglazoff, N.; Rahier, G. Double-Stream Nozzles Flow and Noise Computations and Comparisons to Experiments. In Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 7–10 January 2008. [Google Scholar]
- Xia, H.; Tucker, P.G.; Eastwood, S. Towards Jet Flow LES of Conceptual Nozzles for Acoustic Predictions. In Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 7–10 January 2008. [Google Scholar]
- Shur, M.L.; Spalart, P.R.; Strelets, M.K.; Garbaruk, A.V. Further Steps in LES-Based Noise Prediction for Complex Jets. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 9–12 January 2006. [Google Scholar]
- Viswanathan, K.; Shur, M.L.; Spalart, P.R.; Strelets, M.K. Computation of the Flow and Noise of Round and Beveled Nozzles. In Proceedings of the 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), Cambridge, MA, USA, 8–10 May 2006. [Google Scholar]
- Bodony, D.J.; Ryu, J.; Lele, S.K. Investigating Broadband Shock-Associated Noise of Axisymmetric Jets Using Large-Eddy Simulation. In Proceedings of the 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), Cambridge, MA, USA, 8–10 May 2006. [Google Scholar]
- Lo, S.C.; Blaisdell, G.A.; Lyrintzis, A.S. Numerical Simulation of Supersonic Jet Flows and their Noise. In Proceedings of the 14th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), Vancouver, BC, Canada, 5–7 May 2008. [Google Scholar]
- Imamoglu, B.; Balakumar, P. Computation of Shock Induced Noise in Imperfectly Expanded Supersonic Jets. Int. J. Aeroacoustics 2007, 6, 127–146. [Google Scholar] [CrossRef]
- Struchkov, A.V.; Kozelkov, A.S.; Volkov, K.N.; Kurkin, A.A.; Zhuchkov, R.N.; Sarazov, A.V. Numerical simulation of aerodynamic problems based on adaptive mesh refinement method. Acta Astronaut. 2020, 172, 7–15. [Google Scholar] [CrossRef]
- Struchkov, A.V.; Kozelkov, A.S.; Zhuchkov, R.N.; Volkov, K.N.; Strelets, D.Y. Implementation of Flux Limiters in Simulation of External Aerodynamic Problems on Unstructured Meshes. Fluids 2023, 8, 31. [Google Scholar] [CrossRef]
- Dmitriev, S.M.; Kozelkov, A.S.; Kurkin, A.A.; Legchanov, M.A.; Tarasova, N.V.; Kurulin, V.V.; Efremov, V.R.; Shamin, R.V. Simulation of turbulent convection at high Rayleigh numbers. Model. Simul. Eng. 2018, 2018, 5781602. [Google Scholar] [CrossRef]
- Deryugin, Y.N.; Zhuchkov, R.N.; Zelenskiy, D.K.; Kozelkov, A.S.; Sarazov, A.V.; Kudimov, N.F.; Lipnickiy, Y.M.; Panasenko, A.V.; Safronov, A.V. Validation Results for the LOGOS Multifunction Software Package in Solving Problems of Aerodynamics and Gas Dynamics for the Lift-Off and Injection of Launch Vehicles. Math. Models Comput. Simul. 2015, 7, 144–153. [Google Scholar] [CrossRef]
- Loitsyanskii, L.G. Mechanics of Liquids and Gases. In International Series of Monographs in Aeronautics and Astronautics, Division II, Aerodynamics, 2nd ed.; Pergamon Press: New York, NY, USA, 1966; Volume 6. [Google Scholar]
- Jasak, H. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flow; Department of Mechanical Engineering, Imperial College of Science: London, UK, 1996. [Google Scholar]
- Spalart, P.R.; Allmaras, S.R. A one-equation turbulence model for aerodynamic flows. In Proceedings of the 30th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 6–9 January 1992. [Google Scholar]
- Ferziger, J.H.; Peric, M. Computational Method for Fluid Dynamics; Springer: New York, NY, USA, 2002. [Google Scholar]
- Liou, M.-S. A Sequel to AUSM: AUSM+. J. Comput. Phys. 1996, 129, 364–382. [Google Scholar] [CrossRef]
- Vierendeels, J.; Merci, B.; Dick, E. Blended AUSM+ Method for All Speeds and All Grid Aspect Ratios. AIAA J. 2001, 39, 2278–2282. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, C.; Rho, O.-H. Methods for the accurate computations of hypersonic flows. I AUSMPW+ scheme Methods. J. Comput. Phys. 2001, 174, 38–80. [Google Scholar] [CrossRef]
- Sweby, P.K. High resolution using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 1984, 21, 995–1011. [Google Scholar] [CrossRef]
- Liu, J.; Kailasanath, K.; Ramamurti, R.; Munday, D.; Gutmark, E.; Lohner, R. Large-Eddy Simulations of a Supersonic Jet and Its Near-Field Acoustic Properties. AIAA J. 2009, 47, 1849–1864. [Google Scholar] [CrossRef]
- Munday, D.; Gutmark, E.; Liu, J.; Kailasanath, K. Flow structure and acoustics of supersonic jets from conical convergent-divergent nozzles. Phys. Fluids 2011, 23, 116102. [Google Scholar] [CrossRef]
- Pack, D.C. A note on Prandtl’s formula for the wavelength of a supersonic gas jet. Q. J. Mech. Appl. Math. 1950, 3, 173–181. [Google Scholar] [CrossRef]
T0, K | P0, Pa | Mj | Ma | Uj, m/s | Tj, K | Re |
---|---|---|---|---|---|---|
300 | 400,000 | 1.56 | 1.28 | 444 | 202 | 4.148 × 106 |
Grid | Number of Cells | Single Iteration Computation Time, s |
---|---|---|
Grid C | 3,626,762 (less by 16.3%) | 0.59 (faster by 16.9%) |
Grid D | 4,333,243 | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozelkov, A.; Struchkov, A.; Kornev, A.; Kurkin, A. A Numerical Approach and Study of the Shock-Wave Structure of Supersonic Jet Flow in a Nozzle. Fluids 2024, 9, 164. https://doi.org/10.3390/fluids9070164
Kozelkov A, Struchkov A, Kornev A, Kurkin A. A Numerical Approach and Study of the Shock-Wave Structure of Supersonic Jet Flow in a Nozzle. Fluids. 2024; 9(7):164. https://doi.org/10.3390/fluids9070164
Chicago/Turabian StyleKozelkov, Andrey, Andrey Struchkov, Aleksandr Kornev, and Andrey Kurkin. 2024. "A Numerical Approach and Study of the Shock-Wave Structure of Supersonic Jet Flow in a Nozzle" Fluids 9, no. 7: 164. https://doi.org/10.3390/fluids9070164
APA StyleKozelkov, A., Struchkov, A., Kornev, A., & Kurkin, A. (2024). A Numerical Approach and Study of the Shock-Wave Structure of Supersonic Jet Flow in a Nozzle. Fluids, 9(7), 164. https://doi.org/10.3390/fluids9070164