Stability and Resolution Analysis of the Wavelet Collocation Upwind Schemes for Hyperbolic Conservation Laws
Abstract
1. Introduction
2. Wavelet Collocation Upwind Schemes
2.1. Wavelet Approximation Theory
2.1.1. Preliminaries
2.1.2. Approximation of Functions on a Finite Domain
2.2. Wavelet Collocation Upwind Schemes
2.3. Asymmetrical Wavelets
3. Stability and Resolution Analysis of Wavelet Upwind Schemes
3.1. Advection of a Sine Wave
3.2. Advection of a Square Wave
3.3. Dissipation and Dispersion Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Pirozzoli, S. Numerical Methods for High-Speed Flows. Annu. Rev. Fluid Mech. 2011, 43, 163–194. [Google Scholar] [CrossRef]
- Lele, S.K. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 1992, 103, 16–42. [Google Scholar] [CrossRef]
- Kurganov, A.; Tadmor, E. New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection–Diffusion Equations. J. Comput. Phys. 2000, 160, 241–282. [Google Scholar] [CrossRef]
- Roe, P.L. Characteristic-Based Schemes for the Euler Equations. Annu. Rev. Fluid Mech. 1986, 18, 337–365. [Google Scholar] [CrossRef]
- Moretti, G. The λ-scheme. Comput. Fluids 1979, 7, 191–205. [Google Scholar] [CrossRef]
- Regele, J.D.; Vasilyev, O.V. An adaptive wavelet-collocation method for shock computations. Int. J. Comput. Fluid Dyn. 2009, 23, 503–518. [Google Scholar] [CrossRef]
- Shu, C.-W. High order WENO and DG methods for time-dependent convection-dominated PDEs: A brief survey of several recent developments. J. Comput. Phys. 2016, 316, 598–613. [Google Scholar] [CrossRef]
- Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S.R. Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 1987, 71, 231–303. [Google Scholar] [CrossRef]
- Liu, X.D.; Osher, S.; Chan, T. Weighted Essentially Non-oscillatory Schemes. J. Comput. Phys. 1994, 115, 200–212. [Google Scholar] [CrossRef]
- Ii, S.; Xiao, F. High order multi-moment constrained finite volume method. Part I: Basic formulation. J. Comput. Phys. 2009, 228, 3669–3707. [Google Scholar] [CrossRef]
- Cockburn, B.; Shu, C.-W. TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws II: General Framework. Math. Comput. 1989, 52, 411–435. [Google Scholar]
- Hughes, T.J.R.; Mallet, M.; Akira, M. A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput. Methods Appl. Mech. Eng. 1986, 54, 341–355. [Google Scholar] [CrossRef]
- Schneider, K.; Vasilyev, O.V. Wavelet methods in computational fluid dynamics. Annu. Rev. Fluid Mech. 2010, 42, 473–503. [Google Scholar] [CrossRef]
- Vasilyev, O.V.; Paolucci, S. A Dynamically Adaptive Multilevel Wavelet Collocation Method for Solving Partial Differential Equations in a Finite Domain. J. Comput. Phys. 1996, 125, 498–512. [Google Scholar] [CrossRef]
- Vasilyev, O.V. Solving Multi-dimensional Evolution Problems with Localized Structures using Second Generation Wavelets. Int. J. Comput. Fluid Dyn. 2003, 17, 151–168. [Google Scholar] [CrossRef]
- De Stefano, G.; Vasilyev, O.V. A fully adaptive wavelet-based approach to homogeneous turbulence simulation. J. Fluid Mech. 2012, 695, 149–172. [Google Scholar] [CrossRef]
- De Stefano, G.; Brown-Dymkoski, E.; Vasilyev, O.V. Wavelet-based adaptive large-eddy simulation of supersonic channel flow. J. Fluid Mech. 2020, 901, A13. [Google Scholar] [CrossRef]
- Chaurasiya, V.; Kumar, D.; Rai, K.N.; Singh, J. A computational solution of a phase-change material in the presence of convection under the most generalized boundary condition. Therm. Sci. Eng. Prog. 2020, 20, 100664. [Google Scholar] [CrossRef]
- Jitendra; Chaurasiya, V.; Rai, K.N.; Singh, J. Legendre wavelet residual approach for moving boundary problem with variable thermal physical properties. Int. J. Nonlinear Sci. Numer. Simul. 2022, 23, 957–970. [Google Scholar] [CrossRef]
- Engels, T.; Schneider, K.; Reiss, J.; Farge, M. A Wavelet-Adaptive Method for Multiscale Simulation of Turbulent Flows in Flying Insects. Commun. Comput. Phys. 2021, 30, 1118–1149. [Google Scholar]
- Vuik, M.J.; Ryan, J.K. Multiwavelet troubled-cell indicator for discontinuity detection of discontinuous Galerkin schemes. J. Comput. Phys. 2014, 270, 138–160. [Google Scholar] [CrossRef]
- Do, S.; Li, H.; Kang, M. Wavelet-based adaptation methodology combined with finite difference WENO to solve ideal magnetohydrodynamics. J. Comput. Phys. 2017, 339, 482–499. [Google Scholar] [CrossRef]
- Restrepo, J.M.; Leaf, G.K. Wavelet-Galerkin Discretization of Hyperbolic Equations. J. Comput. Phys. 1995, 122, 118–128. [Google Scholar] [CrossRef]
- Hughes, T.J.R.; Franca, L.P.; Mallet, M. A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics. Comput. Methods Appl. Mech. Eng. 1986, 54, 223–234. [Google Scholar] [CrossRef]
- Pereira, R.M.; Nguyen Van Yen, N.; Schneider, K.; Farge, M. Adaptive Solution of Initial Value Problems by a Dynamical Galerkin Scheme. Multiscale Model. Simul. 2022, 20, 1147–1166. [Google Scholar] [CrossRef]
- Bertoluzza, S. Adaptive wavelet collocation method for the solution of Burgers equation. Transp. Theory Stat. Phys. 1996, 25, 339–352. [Google Scholar] [CrossRef]
- Alam, J.M.; Kevlahan, N.K.-R.; Vasilyev, O.V. Simultaneous space–time adaptive wavelet solution of nonlinear parabolic differential equations. J. Comput. Phys. 2006, 214, 829–857. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.; Liu, X.; Zhou, Y. High-order adaptive multiresolution wavelet upwind schemes for hyperbolic conservation laws. arXiv 2023, arXiv:2301.01090. [Google Scholar]
- Warming, R.F.; Hyett, B.J. The modified equation approach to the stability and accuracy analysis of finite-difference methods. J. Comput. Phys. 1974, 14, 159–179. [Google Scholar] [CrossRef]
- Vichnevetsky, R.; Bowles, J.B. Fourier Analysis of Numerical Approximations of Hyperbolic Equations, 2nd ed.; Society for Industrial and Applied Mathematics: Philadelphi, PA, USA, 1982. [Google Scholar]
- Pirozzoli, S. On the spectral properties of shock-capturing schemes. J. Comput. Phys. 2006, 219, 489–497. [Google Scholar] [CrossRef]
- Ciarlet, P.G. Linear and Nonlinear Functional Analysis with Applications; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2013. [Google Scholar]
- Liu, X.; Liu, G.; Wang, J.; Zhou, Y. A wavelet multiresolution interpolation Galerkin method for targeted local solution enrichment. Comput. Mech 2019, 64, 989–1016. [Google Scholar] [CrossRef]
- Liu, X.; Liu, G.R.; Wang, J.; Zhou, Y. A wavelet multi-resolution enabled interpolation Galerkin method for two-dimensional solids. Eng. Anal. Bound. Elem. 2020, 117, 251–268. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Liu, X.; Zhou, Y. A wavelet integral collocation method for nonlinear boundary value problems in physics. Comput. Phys. Commun. 2017, 215, 91–102. [Google Scholar] [CrossRef]
- Beylkin, G.; Keiser, J.M. On the Adaptive Numerical Solution of Nonlinear Partial Differential Equations in Wavelet Bases. J. Comput. Phys. 1997, 132, 233–259. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Y.; Wang, J. A space-time fully decoupled wavelet Galerkin method for solving two-dimensional Burgers’ equations. Comput. Math. Appl. 2016, 72, 2908–2919. [Google Scholar] [CrossRef]
- Jiang, G.-S.; Shu, C.-W. Efficient Implementation of Weighted ENO Schemes. J. Comput. Phys. 1996, 126, 202–228. [Google Scholar] [CrossRef]
- Donoho, D.L. Interpolating wavelet transforms. Prepr. Dep. Stat. Stanf. Univ. 1992, 2, 1–54. [Google Scholar]
- Sweldens, W.; Schroder, P. Building Your Own Wavelets at Home; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Wang, J. Generalized Theory and Arithmetic of Orthogonal Wavelets and Applications to Researches of Mechanics Including Piezoelectric Smart Structures. Ph.D Thesis, Lanzhou University, Lanzhou, China, 2001. [Google Scholar]
- Chen, M.-Q.; Hwang, C.; Shih, Y.-P. The computation of wavelet-Galerkin approximation on a bounded interval. Int. J. Numer. Methods Eng. 1996, 39, 2921–2944. [Google Scholar] [CrossRef]
N | 3 | 4 | 5 | 6 | 7 | 7 | 8 | 9 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
BM | 1 | 2 | 1 | 2 | 1 | 3 | 2 | 1 | 3 | 2 |
SF | 0.33 | 0.20 | 0.60 | 0.43 | 0.71 | 0.33 | 0.56 | 0.78 | 0.45 | 0.64 |
Method | N1 | l∞ Error | l∞ Order | l2 Error | l2 Order |
---|---|---|---|---|---|
N = 3 (2nd order) | 32 | 8.00 × 10−2 | — | 8.24 × 10−2 | — |
64 | 2.02 × 10−2 | 1.99 | 2.05 × 10−2 | 2.01 | |
128 | 5.05 × 10−3 | 2.00 | 5.08 × 10−3 | 2.01 | |
256 | 1.26 × 10−3 | 2.00 | 1.27 × 10−3 | 2.01 | |
512 | 3.15 × 10−4 | 2.00 | 3.16 × 10−4 | 2.00 | |
N = 5 (4th order) | 32 | 1.84 × 10−4 | — | 1.90 × 10−4 | — |
64 | 1.15 × 10−5 | 4.01 | 1.16 × 10−5 | 4.03 | |
128 | 7.15 × 10−7 | 4.00 | 7.21 × 10−7 | 4.01 | |
256 | 4.47 × 10−8 | 4.00 | 4.49 × 10−8 | 4.01 | |
512 | 2.79 × 10−9 | 4.00 | 2.80 × 10−9 | 4.00 | |
N = 6 (5th order) | 32 | 3.78 × 10−5 | — | 3.80 × 10−5 | — |
64 | 1.18 × 10−6 | 4.99 | 1.19 × 10−6 | 5.00 | |
128 | 3.71 × 10−8 | 5.00 | 3.71 × 10−8 | 5.00 | |
256 | 1.16 × 10−9 | 5.00 | 1.16 × 10−9 | 5.00 | |
512 | 3.64 × 10−11 | 4.99 | 3.64 × 10−11 | 4.99 | |
N = 7 (6th order) | 32 | 1.02 × 10−6 | — | 1.04 × 10−6 | — |
64 | 1.46 × 10−8 | 6.12 | 1.48 × 10−8 | 6.14 | |
128 | 1.71 × 10−10 | 6.42 | 1.73 × 10−10 | 6.42 | |
256 | 8.70 × 10−13 | 7.61 | 8.75 × 10−13 | 7.62 | |
N = 8 (7th order) | 32 | 2.12 × 10−7 | — | 2.13 × 10−7 | — |
64 | 1.64 × 10−9 | 7.01 | 1.64 × 10−9 | 7.02 | |
128 | 1.33 × 10−11 | 6.95 | 1.33 × 10−11 | 6.95 | |
N = 9 (8th order) | 32 | 7.18 × 10−9 | — | 7.38 × 10−9 | — |
64 | 2.27 × 10−11 | 8.31 | 2.30 × 10−11 | 8.33 | |
N = 10 (9th order) | 32 | 1.45 × 10−9 | — | 1.46 × 10−9 | — |
64 | 2.77 × 10−12 | 9.03 | 2.77 × 10−12 | 9.04 |
Method | N1 | l∞ Error | l∞ Order | l2 Error | l2 Order |
---|---|---|---|---|---|
N = 7 BM = 1 (6th order) | 32 | 1.02 × 10−6 | — | 1.04 × 10−6 | — |
64 | 1.46 × 10−8 | 6.12 | 1.48 × 10−8 | 6.14 | |
128 | 1.71 × 10−10 | 6.42 | 1.73 × 10−10 | 6.42 | |
256 | 8.70 × 10−13 | 7.61 | 8.75 × 10−13 | 7.62 | |
N = 7 BM = 3 (6th order) | 32 | 6.94 × 10−6 | — | 7.13 × 10−6 | — |
64 | 1.10 × 10−7 | 5.98 | 1.12 × 10−7 | 6.00 | |
128 | 1.78 × 10−9 | 5.95 | 1.79 × 10−9 | 5.96 | |
256 | 4.20 × 10−11 | 5.40 | 3.41 × 10−11 | 5.72 | |
512 | 2.01 × 10−6 | −15.54 | 1.33 × 10−6 | −15.25 | |
N = 9 BM = 1 (8th order) | 32 | 7.18 × 10−9 | — | 7.38 × 10−9 | — |
64 | 2.27 × 10−11 | 8.31 | 2.30 × 10−11 | 8.33 | |
N = 9 BM = 3 (8th order) | 32 | 3.79 × 10−8 | — | 3.89 × 10−8 | — |
64 | 1.53 × 10−10 | 7.95 | 1.56 × 10−10 | 7.97 | |
128 | 8.73 × 10−13 | 7.46 | 8.79 × 10−13 | 7.47 |
N | N | ||||
---|---|---|---|---|---|
3 | 0.397 | 0.247 | 4 | 0.639 | 0.500 |
5 | 1.689 | 1.532 | 6 | 1.249 | 1.012 |
7 | 1.742 | 1.547 | 8 | 2.190 | 1.423 |
9 | 1.847 | 1.652 | 10 | 2.165 | 2.058 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Wang, J.; Liu, X.; Zhou, Y. Stability and Resolution Analysis of the Wavelet Collocation Upwind Schemes for Hyperbolic Conservation Laws. Fluids 2023, 8, 65. https://doi.org/10.3390/fluids8020065
Yang B, Wang J, Liu X, Zhou Y. Stability and Resolution Analysis of the Wavelet Collocation Upwind Schemes for Hyperbolic Conservation Laws. Fluids. 2023; 8(2):65. https://doi.org/10.3390/fluids8020065
Chicago/Turabian StyleYang, Bing, Jizeng Wang, Xiaojing Liu, and Youhe Zhou. 2023. "Stability and Resolution Analysis of the Wavelet Collocation Upwind Schemes for Hyperbolic Conservation Laws" Fluids 8, no. 2: 65. https://doi.org/10.3390/fluids8020065
APA StyleYang, B., Wang, J., Liu, X., & Zhou, Y. (2023). Stability and Resolution Analysis of the Wavelet Collocation Upwind Schemes for Hyperbolic Conservation Laws. Fluids, 8(2), 65. https://doi.org/10.3390/fluids8020065