Numerical Study of the Influence of the Critical Reynolds Number on the Aerodynamic Characteristics of the Wing Airfoil
Abstract
:1. Introduction
2. Model Implementation (Numerical Methods)
2.1. Predicting Lift Curve using RANS Turbulence Models
2.2. Numerical Study of the Influence of the Critical Reynolds Number (Recrit) on the Airfoil Aerodynamic Characteristics
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wokoeck, R.; Krimmelbein, N.; Radespiel, R.; Ciobaca, V.; Krumbein, A. RANS Simulation and Experiments on the Stall Behaviour of an Airfoil with Laminar Separation Bubbles. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006. [Google Scholar]
- Baragona, M.; Boermanns, L.M.M.; van Tooren, M.J.L.; Bijl, H.; Beukers, A. Bubble Bursting and Stall Hysteresis on Single-Slotted Flap High Lift Configuration. AIAA J. 2003, 41, 1230–1237. [Google Scholar] [CrossRef]
- Broeren, A.P.; Bragg, M.B. Spanwise Variation in the Unsteady Stalling Flowfields of Two-Dimensional Airfoil Models. AIAA J. 2001, 39, 1641–1651. [Google Scholar] [CrossRef]
- Spalart, P.R. Strategies for turbulence modeling and simulations. Int. J. Heat Fluid Flow 2020, 21, 252–263. [Google Scholar] [CrossRef]
- Spalart, P.R.; Allmaras, S.R. A one-equation turbulence model for aerodynamic flows. In Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1992. [Google Scholar]
- Menter, F.R. Zonal two equation k-w turbulence models for aerodynamic flows. In Proceedings of the 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, Orlando, FL, USA, 6–9 July 1993. [Google Scholar]
- Langtry, R.B.; Menter, F.R. Transition Modeling for General CFD Applications in Aeronautics. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005. [Google Scholar]
- Langtry, R.B.; Menter, F.R. Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes. AIAA J. 2009, 47, 2894–2906. [Google Scholar] [CrossRef]
- Menter, F.R.; Langtry, R.B.; Likki, S.R.; Suzen, Y.B.; Huang, P.G.; Völker, S. A Correlation based Transition Model using Local Variables. Part 1: Model Formulation. J. Turbomach. 2006, 128, 413–422. [Google Scholar] [CrossRef]
- Langtry, R.B. A Correlation-Based Transition Model Using Local Variables for Unstructured Parallelized CFD Codes. Ph.D. Thesis, Institute of Thermal Turbomachinery and Machinery Laboratory, University of Stuttgart, Stuttgart, Germany, 2006. Available online: https://elib.unistuttgart.de/opus/volltexte/2006/2801/ (accessed on 1 January 2020).
- Cecora, R.-D.; Eisfeld, B.; Probst, A.; Crippa, S.; Radespiel, R. Differential Reynolds Stress. In Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, USA, 9–12 January 2012. [Google Scholar]
- Zhuchkov, R.N.; Utkina, A.A. Combining the differential SSG/LRR-ω Reynolds stress model with models of detached vortices and laminar-turbulent transition. J. Fluid Gas Mech. 2016, 51, 25–35. [Google Scholar]
- Utkina, A.A.; Zhuchkov, R.N.; Deryugin, Y.N.; Emelyanova, Y.V. Application of hybrid dissipation scheme in solving computational aeroacoustics problems. J. Comput. Math. Math. Phys. 2018, 58, 1478–1487. [Google Scholar]
- Struchkov, A.V.; Kozelkov, A.S.; Volkov, K.; Kurkin, A.A.; Zhuchkov, R.N.; Sarazov, A.V. Numerical simulation of aerodynamic problems based on adaptive mesh refinement method. Acta Astronaut. 2020, 172, 7–15. [Google Scholar] [CrossRef]
- Kozelkov, A.S.; Pogosyan, M.A.; Strelets, D.Y.; Tarasova, N.V. Application of mathematical modeling to solve the emergency water landing task in the interests of passenger aircraft certification. Aerosp. Syst. 2021, 4, 75–89. [Google Scholar] [CrossRef]
- Tyatyushkina, E.S.; Kozelkov, A.S.; Kurkin, A.A.; Pelinovsky, E.N.; Kurulin, V.V.; Plygunova, K.S.; Utkin, D.A. Verification of the LOGOS Software Package for Tsunami Simulations. Geosciences 2020, 10, 385. [Google Scholar] [CrossRef]
- Kozelkov, A.S.; Strelets, D.Y.; Sokuler, M.S.; Arifullin, R.H. Application of Mathematical Modeling to Study Near-Field Pressure Pulsations of a Near-Future Prototype Supersonic Business Aircraft. J. Aerosp. Eng. 2022, 35, 04021120. [Google Scholar] [CrossRef]
- Probst, A.; Radespiel, R.; Wolf, C.; Knopp, T.; Schwamborn, D. A Comparison of Detached-Eddy Simulation and Reynolds-Stress Modelling Applied to the Flow over a Backward-Facing Step and an Airfoil at Stall. In Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2010. [Google Scholar]
No. | Recrit | No. | Recrit | No. | Recrit | No. | Recrit |
---|---|---|---|---|---|---|---|
1 | 50 | 5 | 400 | 9 | 800 | 13 | 1120 |
2 | 100 | 6 | 500 | 10 | 900 | 14 | 1140 |
3 | 200 | 7 | 600 | 11 | 1000 | 15 | 1160 |
4 | 300 | 8 | 700 | 12 | 1100 | 16 | 1180 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Utkina, A.; Kozelkov, A.; Zhuchkov, R.; Strelets, D. Numerical Study of the Influence of the Critical Reynolds Number on the Aerodynamic Characteristics of the Wing Airfoil. Fluids 2023, 8, 276. https://doi.org/10.3390/fluids8100276
Utkina A, Kozelkov A, Zhuchkov R, Strelets D. Numerical Study of the Influence of the Critical Reynolds Number on the Aerodynamic Characteristics of the Wing Airfoil. Fluids. 2023; 8(10):276. https://doi.org/10.3390/fluids8100276
Chicago/Turabian StyleUtkina, Anna, Andrey Kozelkov, Roman Zhuchkov, and Dmitry Strelets. 2023. "Numerical Study of the Influence of the Critical Reynolds Number on the Aerodynamic Characteristics of the Wing Airfoil" Fluids 8, no. 10: 276. https://doi.org/10.3390/fluids8100276
APA StyleUtkina, A., Kozelkov, A., Zhuchkov, R., & Strelets, D. (2023). Numerical Study of the Influence of the Critical Reynolds Number on the Aerodynamic Characteristics of the Wing Airfoil. Fluids, 8(10), 276. https://doi.org/10.3390/fluids8100276