Express Method for Assessing Optimality of Industrial Heat Exchangers for Adsorption Heat Transformation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Small Heat Exchangers
2.2. Wind Tunnel
2.3. Experimental Procedure and Data Evaluation
2.4. Error Analysis
3. Results
3.1. Experimentally Measured UA
3.2. Nusselt Number Correlations for Tested Radiators
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | analog to digital converter |
ADHex | Adsorber Heat Exchanger |
AHT | Adsorption Heat Transformation (Transformer) |
FFT | finned flat tube |
Hex | Heat Exchanger |
HMT | heat mass transfer |
Nomenclature | |
a | coefficient |
A | surface area, m2 |
Cp | heat capacity, J/(g K) |
D | width, m |
E | effectiveness |
f | flow rate, m3/s |
H | height, m |
h | heat transfer coefficient, W/(m2 K) |
K | coefficient of surface extension |
L | length, m |
LMTD | logarithm mean temperature difference, K |
Nu | Nusselt number |
Pr | Prandtl number |
Re | Reynolds number |
Q | rate of heat transfer, W |
T | temperature, K, °C |
u | velocity, m/s |
UA | global heat transfer coefficient, W/K |
V | volume, cm3 |
X | height of whole Hex, m |
Subscripts | |
1, 2 | related to fluid 1 or 2 |
air | related to air |
c | channel |
f | fin |
in | inlet |
out | outlet |
Superscripts | |
b, c | coefficients |
Greek symbols | |
δ | thickness, m |
Δ | interval, m |
λ | heat conductivity, W/(m K) |
ε | absolute error, K |
ω | relative error, % |
Φ | hydraulic diameter, m |
ρ | density, kg/m3 |
ν | kinematic viscosity, m2/s |
Appendix A
References
- Wang, R.; Wang, L.; Wu, J. Adsorption Refrigeration Technology: Theory and Application; John Wiley & Sons; Singapore Pte. Ltd.: Singapore, 2014. [Google Scholar]
- Meunier, F. Adsorption heat powered heat pumps. Appl. Therm. Eng. 2013, 61, 830–836. [Google Scholar] [CrossRef]
- Jakob, U.; Kohlenbach, P. Recent Developments of Sorption Chillers in Europe. IIR Bull. 2009, 34–40. [Google Scholar]
- Saghir, M.Z. Enhanced Energy Storage Using Pin-Fins in a Thermohydraulic System in the Presence of Phase Change Material. Fluids 2022, 7, 348. [Google Scholar] [CrossRef]
- Ezgi, C. Design and Thermodynamic Analysis of Waste Heat-Driven Zeolite–Water Continuous-Adsorption Refrigeration and Heat Pump System for Ships. Energies 2021, 14, 699. [Google Scholar] [CrossRef]
- Yonezawa, Y.; Matsushita, M.; Oku, K.; Nakano, H.; Okumura, S.; Yoshihara, M.; Sakai, A.; Morikawa, A. Adsorption Refrigeration System. U.S. Patent 4881376, 1989. [Google Scholar]
- Silica Gel Cooling Systems. Available online: https://fahrenheit.cool/en/chillers/adsorption-chillers/ (accessed on 5 December 2022).
- Mitsubishi, AQSOA Adsorption Heat Pump. Available online: http://www.aaasaveenergy.com/products/001/pdf/AQSOA_1210E.pdf (accessed on 5 December 2022).
- Saha, B.; Ng, K.S. (Eds.) Advances in Adsorption Technologies; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2010. [Google Scholar]
- Hastürk, E.; Ernst, S.J.; Janiak, C. Recent advances in adsorption heat transformation focusing on the development of adsorbent materials. Current Opin. In Chem. Eng. 2019, 24, 26–36. [Google Scholar] [CrossRef]
- Miyazaki, T.; Akisawa, A.; Saha, B.B.; El-Sharkawy, I.I.; Chakraborty, A. A new cycle time allocation for enhancing the performance of two-bed adsorption chillers. Int. J. Refrig. 2009, 32, 846–853. [Google Scholar] [CrossRef]
- Choudhury, B.; Saha, B.B.; Chatterjee, P.K.; Sarkar, J.P. An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling. Appl. Energy 2013, 103, 554–567. [Google Scholar] [CrossRef]
- Scherle, M.; Nowak, T.A.; Welzel, S.; Etzold, B.J.M.; Nieken, U. Experimental study of 3D–structured adsorbent composites with improved heat and mass transfer for adsorption heat pumps. Chem. Eng. J. 2022, 431, 133365. [Google Scholar] [CrossRef]
- Kowsari, M.; Niazmand, H.; Tokarev, M. Bed configuration effects on the finned flat-tube adsorption heat exchanger performance: Numerical modeling and experimental validation. Appl. Energy 2018, 213, 540–554. [Google Scholar] [CrossRef]
- Chang, W.; Wang, C.; Shieh, C. Experimental study of a solid adsorption cooling system using flat-tube heat exchangers as adsorption bed. Appl. Therm. Eng. 2007, 27, 2195–2199. [Google Scholar] [CrossRef]
- Grisel, R.J.H.; Smeding, S.F.; de Boer, R. Waste heat driven silica gel/water adsorption cooling in trigeneration. Appl. Therm. Eng. 2010, 30, 1039–1046. [Google Scholar] [CrossRef]
- Verde, M.; Cortés, L.; Corberán, J.M.; Sapienza, A.; Vasta, S.; Restuccia, G. Modelling of an adsorption system driven by engine waste heat for truck cabin A/C. Performance estimation for a standard driving cycle. Appl. Therm. Eng. 2010, 30, 1511–1522. [Google Scholar] [CrossRef] [Green Version]
- Verde, M.; Harby, K.; Corberan, J.M. Optimization of thermal design and geometrical parameters of a flat tube-fin adsorbent bed for automobile air-conditioning. Appl. Therm. Eng. 2017, 111, 489–502. [Google Scholar] [CrossRef] [Green Version]
- Togawa, J.; Kurokawa, A.; Nagano, K. Water sorption property and cooling performance using natural mesoporous siliceous shale impregnated with LiCl for adsorption heat pump. Appl. Therm. Eng. 2020, 173, 115241. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Gong, Z.W.; Ou, B.X.; Wu, C.L. Performance Analysis of Four Types of Adsorbent Beds in a Double-Adsorber Adsorption Refrigerator. Proc. Eng. 2015, 121, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Bendix, P.; Füldner, G.; Möllers, M.; Kummer, H.; Schnabel, L.; Henninger, S.; Henning, H.M. Optimization of power density and metal-to-adsorbent weight ratio in coated adsorbers for adsorptive heat transformation applications. Appl. Therm. Eng. 2017, 124, 83–90. [Google Scholar] [CrossRef]
- Rogala, Z. Adsorption chiller using flat-tube adsorbers–Performance assessment and optimization. Appl. Therm. Eng. 2017, 121, 431–442. [Google Scholar] [CrossRef]
- Papakokkinos, G.; Castro, J.; López, J.; Oliva, A. A generalized computational model for the simulation of adsorption packed bed reactors – Parametric study of five reactor geometries for cooling applications. Appl. Energy 2019, 235, 409–427. [Google Scholar] [CrossRef]
- Khatibi, M.; Kowsari, M.M.; Golparvar, B.; Hamid Niazmand, H.; Sharafian, A. A comparative study to critically assess the designing criteria for selecting an optimal adsorption heat exchanger in cooling applications. Appl. Therm. Eng. 2022, 215, 118960. [Google Scholar] [CrossRef]
- Handbook of Heat Transfer, 3rd ed.; Rohsenow, W.M.; Hartnett, J.P.; Cho, Y.I. (Eds.) McGraw-Hill: London, UK, 1998. [Google Scholar]
- Duarte, J.A. Determination Global Heat Transfer Coefficient in Shell and Tube Type and Plates Heat Exchangers. In Proceedings of the International Refrigeration and Air Conditioning Conference, Paper 1260, Purdue, IN, USA, 16–19 July 2012. [Google Scholar]
- Huang, L.J.; Shah, R.K. Assessment of Calculation Methods for Efficiency of Straight Fins of Rectangular Profile. Int. J. Heat Fluid Flow 1992, 13, 282–293. [Google Scholar] [CrossRef]
- Ezgi, C. Basic Design Methods of Heat Exchanger. Heat Exchangers–Design, Experiment and Simulation; Murshed, S.S., Lopes, M.M., Eds.; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Erdoğan, M.E.; Imrak, C.E. The effects of duct shape on the Nusselt number. Math. Comp. Appl. 2005, 10, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Grekova, A.D.; Tokarev, M.M.; Aristov, Y.I. Applying commercial heat exchangers for adsorption chillers: A finned flat-tube design. Appl. Therm. Eng. 2022; submitted. [Google Scholar]
- Graf, S.; Lanzerath, F.; Bardow, A. The IR-Large-Temperature-Jump method: Determining heat and mass transfer coefficients for adsorptive heat transformers. Appl. Therm. Eng. 2017, 126, 630–642. [Google Scholar] [CrossRef]
- Jiji, L.M. Heat Convection; Springer: Berlin/Heidelberg, Germany, 2009; p. 543. [Google Scholar] [CrossRef]
- Meyer, J.P.; Everts, M.; Coetzee, N.; Grote, K.; Steyn, M. Heat transfer coefficients of laminar, transitional, quasi-turbulent and turbulent flow in circular tubes. Int. Com. Heat Mass Transf. 2019, 105, 84–106. [Google Scholar] [CrossRef]
- Safaei, M.R.; Ahmadi, G.; Goodarzi, M.S.; Kamyar, A.; Kazi, S.N. Boundary Layer Flow and Heat Transfer of FMWCNT/Water Nanofluids over a Flat Plate. Fluids 2016, 1, 31. [Google Scholar] [CrossRef] [Green Version]
- Bertsche, D.; Knipper, P.; Meinicke, S.; Dubil, K.; Wetzel, T. Experimental Investigation on Heat Transfer Enhancement with Passive Inserts in Flat Tubes in due Consideration of an Efficiency Assessment. Fluids 2022, 7, 53. [Google Scholar] [CrossRef]
- Zandi, P.H.R.; Iovieno, M. Heat Transfer in a Non-Isothermal Collisionless Turbulent Particle-Laden Flow. Fluids 2022, 7, 7345. [Google Scholar] [CrossRef]
- Hausen, H. Heat Transfer in Counterflow, Parallel Flow and Cross Flow; McGrawHill: New York, NY, USA, 1983. [Google Scholar]
- Grekova, A.; Tokarev, M. An optimal plate fin heat exchanger for adsorption chilling: Theoretical consideration. Int. J. Thermofl. 2022, 16, 100221. [Google Scholar] [CrossRef]
- Thurnay, K. Thermal Properties of Water; Forschungszentrum Karlsruhe: Karlsruhe, Germany, 1995. [Google Scholar] [CrossRef]
- Harvey, A.H. Thermodynamic Properties of Water: Tabulation from the lAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use; National Institute of Standards and Technology Boulder: Colorado, CO, USA, 1995; pp. 80303–83328. [Google Scholar]
- CoolPack: Refrigerant Calculations (Property Plots, Thermodynamic & Transport Properties, Comparison of Refrigerants). Available online: https://www.ipu.dk/products/coolpack/ (accessed on 6 December 2022).
- SecCool: A Program for Calculating, Comparing and Plotting Thermophysical Properties of Secondary Refrigerants. Available online: https://www.ipu.dk/products/seccool/ (accessed on 6 December 2022).
Radiator | R1 * | R2 ** | R3 *** | R4 **** |
---|---|---|---|---|
Sizes of core, L; X; D, mm | 116; 55; 22 | 125; 43; 26 | 119; 59; 20 | 96; 54; 27 |
Number of channels | 4 | 5 | 8 | 11 |
Fin pitch Δf, mm | 1.8 | 1.5 | 0.8 | 0.9 |
Fin height Hf, mm | 12.7 | 8 | 6.2 | 3.7 |
Fin thickness δf, μm | 103 | 75 | 63 | 50 |
Wall thickness δc, mm | 0.9 | 0.5 | 0.8 | 0.5 |
Internal channel thickness Δc, mm | 2.0 | 1.0 | 1.0 | 0.5 |
Primary surface area A, m2 | 0.0153 | 0.02642 | 0.0319 | 0.0513 |
Surface area of fins Af, m2 | 0.1039 | 0.1281 | 0.2465 | 0.1818 |
Coefficient of surface extension K | 7.79 | 5.85 | 8.73 | 4.54 |
Hydraulic diameter of channel Φc, mm | 3.667 | 1.926 | 1.538 | 0.982 |
Hydraulic diameter of air pass Φair, mm | 3.153 | 2.526 | 1.417 | 1.449 |
Parameter | Source of Error | Abs. Err. | Rel. Err. | Formula and Resulting Error |
---|---|---|---|---|
Heat flow (air) | Flowmeter T-couples | - ±0.1 K | 3% (0.1+0.1)/20 = 1% | Q ~ DT × f ω∑ = 3%+0.3%= 4% |
Heat flow (water) | Flowmeter T-couples | - ±0.1 K | 2% (0.1+0.1)/2 = 10% | Q ~ DT × f ω∑ = 2%+3%= 12% |
LMTD | T-couples | ±0.1 K | (4 × 0.1)/15 = 2.7% | LMTD ~ ΔT/ln(ΔT) ω(lnx) = ωx/ln(x) = 2.7/ln(15) = 1% ω∑ = 2.7%+1%= 3.7% |
Average UA | (4%+12%)/2 + 3.7% = 11.7% |
Radiator | Re | Nu | h2 | Correlation |
---|---|---|---|---|
R1 | 200 ÷ 1200 | 4.6 ÷ 11.2 | 40 ÷ 100 | Nu = 0.648Re0.47Pr1/3 |
R2 | 180 ÷ 650 | 6.3 ÷ 18 | 70 ÷ 190 | Nu = 0.4Re0.59Pr1/3 |
R3 | 50 ÷ 370 | 1 ÷ 14 | 20 ÷ 270 | Nu = 0.14 (Re0.8 − 18.9) |
R4 | 200 ÷ 850 | 3 ÷ 22 | 65 ÷ 400 | Nu = 0.66 (Re0.57 − 15.8) |
Radiator | Calculated UA, W/K | Experimental UA, W/K |
---|---|---|
R1 | 6.0 | 8.0 |
R2 | 9.6 | 10.7 |
R3 | 16.9 | 18.0 |
R4 | 16.3 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grekova, A.; Krivosheeva, I.; Solovyeva, M.; Tokarev, M. Express Method for Assessing Optimality of Industrial Heat Exchangers for Adsorption Heat Transformation. Fluids 2023, 8, 14. https://doi.org/10.3390/fluids8010014
Grekova A, Krivosheeva I, Solovyeva M, Tokarev M. Express Method for Assessing Optimality of Industrial Heat Exchangers for Adsorption Heat Transformation. Fluids. 2023; 8(1):14. https://doi.org/10.3390/fluids8010014
Chicago/Turabian StyleGrekova, Alexandra, Irina Krivosheeva, Marina Solovyeva, and Mikhail Tokarev. 2023. "Express Method for Assessing Optimality of Industrial Heat Exchangers for Adsorption Heat Transformation" Fluids 8, no. 1: 14. https://doi.org/10.3390/fluids8010014
APA StyleGrekova, A., Krivosheeva, I., Solovyeva, M., & Tokarev, M. (2023). Express Method for Assessing Optimality of Industrial Heat Exchangers for Adsorption Heat Transformation. Fluids, 8(1), 14. https://doi.org/10.3390/fluids8010014