Advances in CFD Modeling of Urban Wind Applied to Aerial Mobility
Abstract
:1. Introduction
2. Turbulence Models
- MITRAS [34], defined by authors as a “microscale obstacle-resolving model”, computes the wind components, temperature, humidity, and precipitation fields, explicitly resolving obstacles, such as buildings, which are represented by impermeable grid cells at the building positions so that the wind speed vanishes in these grid cells.
- PALM [35], which is an abbreviation for “Parallelized Large-Eddy Simulation Model”, has been widely used to model the atmospheric layer both in the ocean and on land. It uses an LES turbulence model and is especially focused on parallelization. PALM has been used to study ventilation at the pedestrian level, to study wind in street canyons, and even to simulate entire cities. In this regard, the simulation of the city of Macau stands out [36]. The simulation domain has an extension of 30 km2 and a spatial resolution of 1 m. The simulation time was about one hour, while the results required 128 CPUs in parallel, running for 1.5 h.
- ASMUS [37] has been specifically designed to simulate wind and temperature distribution in cities. The turbulence model is RANS and employs the Prandtl–Kolmogorov relation to fulfill the kinetic energy of turbulence modeling. They achieved mesh resolutions of 2 m and were able to simulate more than 44 h. However, the total CPU time is not included in the original paper and it appears that no other studies since 2014 have used this software.
- ENVI-met [38] is built on RANS equations using a 1.5 order turbulence closure model. Some studies [39] mentioned that this closure model tends to overestimate the turbulent production in areas with high acceleration or deceleration, such as the flow around a building. ENVI-met is the detailed vegetation model, in which plants are not only symbolized as a porous media to solar insolation and wind flow, but could actually interact with the surrounding environment by evapotranspiration [40] It has been used to study the wind pattern in cities such as Bilbao [39]. Unlike the other options, it is a paid software.
3. Meshing
4. Boundary Conditions
- One of the most common options is known as extrapolation [54]. In this method, only one of the mesoscale model profiles is imposed on an entire inlet face of the CFD domain, while the mesoscale wind data are extrapolated in the grid points outside that profile. This method is the easiest to implement; however, the distributions of the wind velocity on the boundary is uniform in the horizontal direction and, as a consequence, extrapolation is not capable of appropriately coupling the mesoscale and CDF solvers over complex terrains.
- Imposing the zero-gradient boundary conditions at the outflow boundaries and a space-varying inlet condition is another solution [55]. The problem with this solution is in determining which boundary is an inlet and which one is outlet, and how that configuration can change from one day to another.
- The side and top surfaces are modeled as spatially and time-varying velocity inflow and outflow conditions, and the data are extracted from the mesoscale model solutions using interpolation [56]. This solution is the most robust while it comes at the price of implementation complexity.
- Baik, Park, and Kim [64], using the turbulence model RNG , estimated the viscosity dissipation using following the equation:
- Mochida et al. [65] calculated the viscous dissipation based on the length scale of the precedent mesoscale domain. In order to do it, they used the following equation:
- Another method is considered by Tewari et al. [63]. They used the definition of the viscous dissipation:
5. Dimensionality Reduction Methods
6. Data Assimilation and Validation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Closure constant | |
Mathematical constant | |
DF | Darcy–Forchheimer model |
DNS | Direct numerical simulation |
DMD | Dynamic mode decomposition |
DTM | Digital terrain model |
IDW | Inverse distance weighting interpolation |
G | Filtering kernel |
GIS | Geographic information system |
Turbulence kinetic energy | |
LES | Large-eddy simulation |
Static pressure | |
P | Mean component of the pressure |
POD | Proper orthogonal decomposition |
p | Fluctuating component of the pressure |
RANS | Reynolds-averaged Navier–Stokes equations |
UAV | Unmanned aerial vehicle |
i-the component of the fluid velocity | |
Mean component of the velocity | |
Fluctuating component of the velocity | |
Shear velocity | |
Viscous stresses | |
Turbulence dissipation | |
von Kárman constant | |
fluid density | |
Specific rate of dissipation of turbulence kinetic energy |
References
- Barrado, C.; Boyero, M.; Brucculeri, L.; Ferrara, G.; Hately, A.; Hullah, P.; Martin-Marrero, D.; Pastor, E.; Rushton, A.P.; Volkert, A. U-Space Concept of Operations: A Key Enabler for Opening Airspace to Emerging Low-Altitude Operations. Aerospace 2020, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Lieb, J.; Volkert, A. Unmanned Aircraft Systems Traffic Management: A comparison on the FAA UTM and the European CORUS ConOps based on U-space. In Proceedings of the 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), San Antonio, TX, USA, 11 October 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Sunil, E.; Sun, J.; Koerse, R.; van Selling, S.; van Doorn, J.-W.; Brinkman, T. METSIS: Hyperlocal Wind Nowcasting for U-space Knowledge extraction from large-scale air traffic data View project METSIS: Hyperlocal Wind Nowcasting for U-space. In Proceedings of the 11th SESAR Innovation Days, Virtual Event, 7 December 2021; pp. 1–8. [Google Scholar]
- Gonzalo, J.; Domínguez, D.; López, D.; García-Gutiérrez, A. An analysis and enhanced proposal of atmospheric boundary layer wind modelling techniques for automation of air traffic management. Chin. J. Aeronaut. 2021, 34, 129–144. [Google Scholar] [CrossRef]
- Kadaverugu, R.; Sharma, A.; Matli, C.; Biniwale, R. High Resolution Urban Air Quality Modeling by Coupling CFD and Mesoscale Models: A Review. Asia-Pac. J. Atmos. Sci. 2019, 55, 539–556. [Google Scholar] [CrossRef]
- Grushin, A.; Tyagi, A.; Gluck, J.; Mohseni, S.; Nigam, N.; Klopfenstein, M.; Lee, R.S. Gump: General urban area microclimate predictions tool. In Proceedings of the AIAA AVIATION 2020 FORUM, Virtual Event, 15–19 June 2020; pp. 1–17. [Google Scholar] [CrossRef]
- Sofos, F.; Stavrogiannis, C.; Exarchou-Kouveli, K.K.; Akabua, D.; Charilas, G.; Karakasidis, T.E. Current Trends in Fluid Research in the Era of Artificial Intelligence: A Review. Fluids 2022, 7, 116. [Google Scholar] [CrossRef]
- Vuppala, R.K.S.S.; Kara, K. A Novel Approach in Realistic Wind Data Generation for the Safe Operation of Small Unmanned Aerial Systems in Urban Environment. In Proceedings of the AIAA AVIATION 2021 FORUM, Virtual Event, 2–6 August 2021. [Google Scholar] [CrossRef]
- Grauwin, S.; Jensen, P. Mapping scientific institutions. Scientometrics 2011, 89, 943–954. [Google Scholar] [CrossRef] [Green Version]
- Karniadakis, G.E.; Orszag, S.A. Nodes, Modes and Flow Codes. Phys. Today 2008, 46, 34. [Google Scholar] [CrossRef] [Green Version]
- Mansouri, Z.; Verma, S.; Selvam, R.P. Teaching Modeling Turbulent Flow around Building Using LES Turbulence Method and Open-source Software OpenFOAM. In Proceedings of the 2021 ASEE Midwest Section Conference, Virtual Event, 17 November 2021. [Google Scholar] [CrossRef]
- Heinz, S. A review of hybrid RANS-LES methods for turbulent flows: Concepts and applications. Prog. Aerosp. Sci. 2020, 114, 100597. [Google Scholar] [CrossRef]
- Toparlar, Y.; Blocken, B.; Maiheu, B.; van Heijst, G. A review on the CFD analysis of urban microclimate. Renew. Sustain. Energy Rev. 2017, 80, 1613–1640. [Google Scholar] [CrossRef]
- García-Sánchez, C.; van Beeck, J.; Gorlé, C. Predictive large eddy simulations for urban flows: Challenges and opportunities. Build. Environ. 2018, 139, 146–156. [Google Scholar] [CrossRef]
- Schatzmann, M.; Leitl, B. Issues with validation of urban flow and dispersion CFD models. J. Wind Eng. Ind. Aerodyn. 2011, 99, 169–186. [Google Scholar] [CrossRef]
- Blocken, B. LES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion? Build. Simul. 2018, 11, 821–870. [Google Scholar] [CrossRef] [Green Version]
- Gorlé, C. Improving Predictions of the Urban Wind Environment Using Data. Technol. Archit. Des. 2019, 3, 137–141. [Google Scholar] [CrossRef]
- Ricci, A.; Kalkman, I.; Blocken, B.; Burlando, M.; Repetto, M.P. Impact of turbulence models and roughness height in 3D steady RANS simulations of wind flow in an urban environment. Build. Environ. 2020, 171, 106617. [Google Scholar] [CrossRef]
- Zheng, X.; Montazeri, H.; Blocken, B. CFD simulations of wind flow and mean surface pressure for buildings with balconies: Comparison of RANS and LES. Build. Environ. 2020, 173, 106747. [Google Scholar] [CrossRef]
- Temel, O.; Porchetta, S.; Bricteux, L.; van Beeck, J. RANS closures for non-neutral microscale CFD simulations sustained with inflow conditions acquired from mesoscale simulations. Appl. Math. Model. 2018, 53, 635–652. [Google Scholar] [CrossRef] [Green Version]
- Shirzadi, M.; Tominaga, Y.; Mirzaei, P.A. Experimental and steady-RANS CFD modelling of cross-ventilation in moderately-dense urban areas. Sustain. Cities Soc. 2020, 52, 101849. [Google Scholar] [CrossRef]
- Temel, O.; van Beeck, J. Adaptation of mesoscale turbulence parameterisation schemes as RANS closures for ABL simulations. J. Turbul. 2016, 17, 966–997. [Google Scholar] [CrossRef]
- Longo, R.; Ferrarotti, M.; Sánchez, C.G.; Derudi, M.; Parente, A. Advanced turbulence models and boundary conditions for flows around different configurations of ground-mounted buildings. J. Wind Eng. Ind. Aerodyn. 2017, 167, 160–182. [Google Scholar] [CrossRef] [Green Version]
- Jian, Z.; Bo, L.; Mingyue, W. Study on windbreak performance of tree canopy by numerical simulation method. J. Comput. Multiph. Flows 2018, 10, 259–265. [Google Scholar] [CrossRef]
- Koutsourakis, N.; Bartzis, J.G.; Markatos, N.C. Evaluation of Reynolds stress, k-ε and RNG k-ε turbulence models in street canyon flows using various experimental datasets. Environ. Fluid Mech. 2012, 12, 379–403. [Google Scholar] [CrossRef]
- Zhao, Z.; Xiao, Y.; Li, C.; Wang, J.; Hu, G. New consideration of lateral boundary treatment for meso- and micro-scale nested PBL simulations over complex terrain. Atmos. Res. 2021, 105507, 1–18. [Google Scholar] [CrossRef]
- Antoniou, N.; Montazeri, H.; Neophytou, M.; Blocken, B. CFD simulation of urban microclimate: Validation using high-resolution field measurements. Sci. Total Environ. 2019, 695, 133743. [Google Scholar] [CrossRef] [PubMed]
- Blocken, B. Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Build. Environ. 2015, 91, 219–245. [Google Scholar] [CrossRef] [Green Version]
- Verbruggen, S.W.; Keulemans, M.; van Walsem, J.; Tytgat, T.; Lenaerts, S.; Denys, S. CFD modeling of transient adsorption/desorption behavior in a gas phase photocatalytic fiber reactor. Chem. Eng. J. 2016, 292, 42–50. [Google Scholar] [CrossRef]
- Koch, K.; Samson, R.; Denys, S. Aerodynamic characterisation of green wall vegetation based on plant morphology: An experimental and computational fluid dynamics approach. Biosyst. Eng. 2019, 178, 34–51. [Google Scholar] [CrossRef]
- Cassiani, M.; Katul, G.G.; Albertson, J.D. The Effects of Canopy Leaf Area Index on Airflow across Forest Edges: Large-eddy Simulation and Analytical Results. Bound.-Layer Meteorol. 2007, 126, 433–460. [Google Scholar] [CrossRef] [Green Version]
- Serra-Neto, E.M.; Martins, H.S.; Dias-Júnior, C.Q.; Santana, R.A.; Brondani, D.V.; Manzi, A.O.; de Araújo, A.C.; Teixeira, P.R.; Sörgel, M.; Mortarini, L. Simulation of the Scalar Transport above and within the Amazon Forest Canopy. Atmosphere 2021, 12, 1631. [Google Scholar] [CrossRef]
- Liu, S.; Pan, W.; Zhang, H.; Cheng, X.; Long, Z.; Chen, Q. CFD simulations of wind distribution in an urban community with a full-scale geometrical model. Build. Environ. 2017, 117, 11–23. [Google Scholar] [CrossRef]
- Salim, M.H.; Heinke Schlünzen, K.; Grawe, D.; Boettcher, M.; Gierisch, A.M.U.; Fock, B.H. The Microscale Obstacle Resolving Meteorological Model MITRAS: Model Theory. Geosci. Model Dev. 2018, 11, 3427–3445. [Google Scholar] [CrossRef] [Green Version]
- Gronemeier, T.; Surm, K.; Harms, F.; Leitl, B.; Maronga, B.; Raasch, S. Evaluation of the dynamic core of the PALM model system 6.0 in a neutrally stratified urban environment: Comparison between les and wind-tunnel experiments. Geosci. Model Dev. 2021, 14, 3317–3333. [Google Scholar] [CrossRef]
- Urban Large-Eddy Simulation. Available online: https://av.tib.eu/media/14368 (accessed on 17 July 2022).
- Gross, G. Effects of different vegetation on temperature in an urban building environment. Micro-scale numerical experiments. Meteorol. Z. 2012, 21, 399–412. [Google Scholar] [CrossRef]
- Müller, N.; Kuttler, W.; Barlag, A.B. Counteracting urban climate change: Adaptation measures and their effect on thermal comfort. Theor. Appl. Climatol. 2014, 115, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Acero, J.A.; Arrizabalaga, J. Evaluating the performance of ENVI-met model in diurnal cycles for different meteorological conditions. Theor. Appl. Climatol. 2018, 131, 455–469. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, W.; Jim, C.Y.; Morakinyo, T.E.; Shi, Y.; Ng, E. Heat mitigation benefits of urban green and blue infrastructures: A systematic review of modeling techniques, validation and scenario simulation in ENVI-met V4. Build. Environ. 2021, 200, 107939. [Google Scholar] [CrossRef]
- Eichhorn, J.; Kniffka, A. The numerical flow model MISKAM: State of development and evaluation of the basic version. Meteorol. Z. 2010, 19, 81–90. [Google Scholar] [CrossRef]
- Farkas, O.; Török, Á. Dust deposition, microscale flow-and dispersion model of particulate matter, examples from the city center of Budapest. J. Hung. Meteorol. Serv. 2019, 123, 39–55. [Google Scholar] [CrossRef] [Green Version]
- Bächler, P.; Müller, T.K.; Warth, T.; Yildiz, T.; Dittler, A. Impact of ambient air filters on PM concentration levels at an urban traffic hotspot (Stuttgart, Am Neckartor). Atmospheric Pollut. Res. 2021, 12, 101059. [Google Scholar] [CrossRef]
- Elfverson, D.; Lejon, C. Use and Scalability of OpenFOAM for Wind Fields and Pollution Dispersion with Building- and Ground-Resolving Topography. Atmosphere 2021, 12, 1124. [Google Scholar] [CrossRef]
- Gallagher, J.; Gill, L.W.; McNabola, A. Numerical modelling of the passive control of air pollution in asymmetrical urban street canyons using refined mesh discretization schemes. Build. Environ. 2012, 56, 232–240. [Google Scholar] [CrossRef]
- Li, M.; Qiu, X.; Shen, J.; Xu, J.; Feng, B.; He, Y.; Shi, G.; Zhu, X. CFD Simulation of the Wind Field in Jinjiang City Using a Building Data Generalization Method. Atmosphere 2019, 10, 326. [Google Scholar] [CrossRef] [Green Version]
- Saeedrashed, Y.S.; Benim, A.C. Validation Methods of Geometric 3D-CityGML Data for Urban Wind Simulations. E3S Web Conf. 2019, 128, 10006. [Google Scholar] [CrossRef]
- Girindran, R.; Boyd, D.S.; Rosser, J.; Vijayan, D.; Long, G.; Robinson, D. On the Reliable Generation of 3D City Models from Open Data. Urban Sci. 2020, 4, 47. [Google Scholar] [CrossRef]
- Atazadeh, B.; Halalkhor Mirkalaei, L.; Olfat, H.; Rajabifard, A.; Shojaei, D. Integration of cadastral survey data into building information models. Geo-Spat. Inf. Sci. 2021, 24, 387–402. [Google Scholar] [CrossRef]
- Technical Guidance for the Implementation of INSPIRE Download Services|INSPIRE. Available online: https://inspire.ec.europa.eu/documents/technical-guidance-implementation-inspire-download-services (accessed on 13 June 2022).
- Kadaverugu, R.; Purohit, V.; Matli, C.; Biniwale, R. Improving accuracy in simulation of urban wind flows by dynamic downscaling WRF with OpenFOAM. Urban Clim. 2021, 38. [Google Scholar] [CrossRef]
- Zajaczkowski, F.J.; Haupt, S.E.; Schmehl, K.J. A preliminary study of assimilating numerical weather prediction data into computational fluid dynamics models for wind prediction. J. Wind Eng. Ind. Aerodyn. 2011, 99, 320–329. [Google Scholar] [CrossRef]
- Franke, J.; Hellsten, A.; Schlünzen, K.H.; Carissimo, B. The COST 732 Best Practice Guideline for CFD simulation of flows in the urban environment: A summary. Int. J. Environ. Pollut. 2011, 44, 419–427. [Google Scholar] [CrossRef]
- Laporte, L.; Dupont, É.; Carissimo, B.; Musson-Genon, L.; Sécolier, C. Atmospheric CFD simulations coupled to mesoscale analyses for wind resource assessment in complex terrain. In Proceedings of the European Wind Energy Conference, Marseille, France, 15–17 March 2009. [Google Scholar]
- A Pre-Processing Utility for Coupling WRF and Openfoam. Available online: https://scholar.googleusercontent.com/scholar?q=cache:dqmW-oxctV8J:scholar.google.com/&hl=en&as_sdt=0,5 (accessed on 31 March 2022).
- Li, S.; Sun, X.; Zhang, S.; Zhao, S.; Zhang, R. A Study on Microscale Wind Simulations with a Coupled WRF–CFD Model in the Chongli Mountain Region of Hebei Province, China. Atmosphere 2019, 10, 731. [Google Scholar] [CrossRef] [Green Version]
- Lundquist, K.A.; Chow, F.K.; Lundquist, J.K. An Immersed Boundary Method Enabling Large-Eddy Simulations of Flow over Complex Terrain in the WRF Model. Month. Weather Rev. 2012, 140, 3936–3955. [Google Scholar] [CrossRef]
- Li, S.; Sun, X.; Zhang, R.; Zhang, C. A Feasibility Study of Simulating the Micro-Scale Wind Field for Wind Energy Applications by NWP/CFD Model with Improved Coupling Method and Data Assimilation. Energies 2019, 12, 2549. [Google Scholar] [CrossRef] [Green Version]
- Wiersema, D.J.; Lundquist, K.A.; Chow, F.K. Mesoscale to Microscale Simulations over Complex Terrain with the Immersed Boundary Method in the Weather Research and Forecasting Model. Month. Weather Rev. 2020, 148, 577–595. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, C.; Xiao, Y.; Wang, J.; Hu, G.; Xiao, K. Multiscale modelling of planetary boundary layer flow over complex terrain: Implementation under near-neutral conditions. Environ. Fluid Mech. 2021, 21, 759–790. [Google Scholar] [CrossRef]
- García-Gutiérrez, A.; Domínguez, D.; López, D.; Gonzalo, J. Atmospheric Boundary Layer Wind Profile Estimation Using Neural Networks Applied to Lidar Measurements. Sensors 2021, 21, 3659. [Google Scholar] [CrossRef] [PubMed]
- Probst, O.; Cárdenas, D. State of the Art and Trends in Wind Resource Assessment. Energies 2010, 3, 1087–1141. [Google Scholar] [CrossRef] [Green Version]
- Tewari, M.; Kusaka, H.; Chen, F.; Coirier, W.J.; Kim, S.; Wyszogrodzki, A.A.; Warner, T.T. Impact of coupling a microscale computational fluid dynamics model with a mesoscale model on urban scale contaminant transport and dispersion. Atmospheric Res. 2010, 96, 656–664. [Google Scholar] [CrossRef]
- Baik, J.J.; Park, S.B.; Kim, J.J. Urban Flow and Dispersion Simulation Using a CFD Model Coupled to a Mesoscale Model. J. Appl. Meteorol. Clim. 2009, 48, 1667–1681. [Google Scholar] [CrossRef]
- Mochida, A.; Iizuka, S.; Tominaga, Y.; Lun, I.Y.F. Up-scaling CWE models to include mesoscale meteorological influences. J. Wind Eng. Ind. Aerodyn. 2011, 99, 187–198. [Google Scholar] [CrossRef]
- Rajeswari, J.R.; Srinivas, C.V.; Mohan, P.R.; Venkatraman, B. Impact of Boundary Layer Physics on Tropical Cyclone Simulations in the Bay of Bengal Using the WRF Model. Pure Appl. Geophys. 2020, 177, 5523–5550. [Google Scholar] [CrossRef]
- Giannakopoulou, E.M.; Nhili, R. WRF model methodology for offshore wind energy applications. Adv. Meteorol. 2014, 2014, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Schmid, P.J.; Garciá-Gutierrez, A.; Jiménez, J. Description and detection of burst events in turbulent flows. J. Phys. Conf. Ser. 2018, 1001, 012015. [Google Scholar] [CrossRef]
- Oehler, S.; Garcia–Gutiérrez, A.; Illingworth, S. Linear estimation of coherent structures in wall-bounded turbulence at Reτ = 2000. J. Phys. Conf. Ser. 2018, 1001, 012006. [Google Scholar] [CrossRef] [Green Version]
- Masoumi-Verki, S.; Haghighat, F.; Eicker, U. A review of advances towards efficient reduced-order models (ROM) for predicting urban airflow and pollutant dispersion. Build. Environ. 2022, 216, 1–13. [Google Scholar] [CrossRef]
- Ding, S.; Yang, R. Reduced-order modelling of urban wind environment and gaseous pollutants dispersion in an urban-scale street canyon. J. Saf. Sci. Resil. 2021, 2, 238–245. [Google Scholar] [CrossRef]
- Masoumi-Verki, S.; Gholamalipour, P.; Haghighat, F.; Eicker, U. Embedded LES of thermal stratification effects on the airflow and concentration fields around an isolated high-rise building: Spectral and POD analyses. Build. Environ. 2021, 206, 108388. [Google Scholar] [CrossRef]
- Wu, Z.; Laurence, D.; Utyuzhnikov, S.; Afgan, I. Proper orthogonal decomposition and dynamic mode decomposition of jet in channel crossflow. Nucl. Eng. Des. 2019, 344, 54–68. [Google Scholar] [CrossRef]
- Quilodrán-Casas, C.; Arcucci, R.; Pain, C.; Guo, Y. Adversarially Trained LSTMs on Reduced Order Models of Urban Air Pollution Simulations. arXiv 2021, preprint. arXiv:2101.01568. [Google Scholar] [CrossRef]
- Quilodrán-Casas, C.; Arcucci, R.; Mottet, L.; Guo, Y.; Pain, C.C. Adversarial Autoencoders and Adversarial LSTM for Improved Forecasts of Urban Air Pollution Simulations. arXiv 2021, preprint. arXiv:2104.06297. [Google Scholar] [CrossRef]
- Xiao, D.; Fang, F.; Heaney, C.E.; Navon, I.M.; Pain, C.C. A domain decomposition method for the non-intrusive reduced order modelling of fluid flow. Comput. Methods Appl. Mech. Eng. 2019, 354, 307–330. [Google Scholar] [CrossRef]
- Xiao, D.; Heaney, C.E.; Fang, F.; Mottet, L.; Hu, R.; Bistrian, D.A.; Aristodemou, E.; Navon, I.M.; Pain, C.C. A domain decomposition non-intrusive reduced order model for turbulent flows. Comput. Fluids 2019, 182, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Xiao, D.; Heaney, C.E.; Mottet, L.; Fang, F.; Lin, W.; Navon, I.M.; Guo, Y.; Matar, O.K.; Robins, A.G.; Pain, C.C. A reduced order model for turbulent flows in the urban environment using machine learning. Build. Environ. 2019, 148, 323–337. [Google Scholar] [CrossRef] [Green Version]
- Xiang, S.; Zhou, J.; Fu, X.; Zheng, L.; Wang, Y.; Zhang, Y.; Yi, K.; Liu, J.; Ma, J.; Tao, S. Fast simulation of high resolution urban wind fields at city scale. Urban Clim. 2021, 39, 100941. [Google Scholar] [CrossRef]
- Xiang, S.; Fu, X.; Zhou, J.; Wang, Y.; Zhang, Y.; Hu, X.; Xu, J.; Liu, H.; Liu, J.; Ma, J.; et al. Non-intrusive reduced order model of urban airflow with dynamic boundary conditions. Build. Environ. 2021, 187, 107397. [Google Scholar] [CrossRef]
- Na, J.; Jeon, K.; Lee, W.B. Toxic gas release modeling for real-time analysis using variational autoencoder with convolutional neural networks. Chem. Eng. Sci. 2018, 181, 68–78. [Google Scholar] [CrossRef]
- Fu, R.; Xiao, D.; Navon, I.M.; Wang, C. A data driven reduced order model of fluid flow by Auto-Encoder and self-attention deep learning methods. arXiv 2021, arXiv:2109.02126. [Google Scholar]
- Franke, J.; Sturm, M.; Kalmbach, C. Validation of OpenFOAM 1.6.x with the German VDI guideline for obstacle resolving micro-scale models. J. Wind Eng. Ind. Aerodyn. 2012, 104–106, 350–359. [Google Scholar] [CrossRef]
- Brozovsky, J.; Simonsen, A.; Gaitani, N. Validation of a CFD model for the evaluation of urban microclimate at high latitudes: A case study in Trondheim, Norway. Build. Environ. 2021, 205, 108175. [Google Scholar] [CrossRef]
- Toja-Silva, F.; Kono, T.; Peralta, C.; Lopez-Garcia, O.; Chen, J. A review of computational fluid dynamics (CFD) simulations of the wind flow around buildings for urban wind energy exploitation. J. Wind Eng. Ind. Aerodyn. 2018, 180, 66–87. [Google Scholar] [CrossRef]
- Klok, L.; Zwart, S.; Verhagen, H.; Mauri, E. The surface heat island of Rotterdam and its relationship with urban surface characteristics. Resour. Conserv. Recycl. 2012, 64, 23–29. [Google Scholar] [CrossRef]
- Gonzalo, J.; Domínguez, D.; López, D.; Fernández, J. Lighter-than-air particle velocimetry for wind speed profile measurement. Renew. Sustain. Energy Rev. 2014, 33, 323–332. [Google Scholar] [CrossRef]
- Khassenova, Z.T.; Kussainova, A.T. Applying data assimilation on the urban environment. Commun. Comput. Inf. Sci. 2019, 998, 125–134. [Google Scholar] [CrossRef]
- Ashrafi, M.; Chua, L.H.C.; Irvine, K.N.; Yang, P. Spatiotemporal Modeling of the Wind Field over an Urban Lake Subject to Wind Sheltering. J. Appl. Meteorol. Clim. 2022, 61, 489–501. [Google Scholar] [CrossRef]
- Sousa, J.; Gorlé, C. Computational urban flow predictions with Bayesian inference: Validation with field data. Build. Environ. 2019, 154, 13–22. [Google Scholar] [CrossRef]
- Patrikar, J.; Moon, B.; Scherer, S. Wind and the City: Utilizing UAV-Based In-Situ Measurements for Estimating Urban Wind Fields—The Robotics Institute Carnegie Mellon University. In Proceedings of the International Conference on Intelligent Robots and Systems, Kyoto, Japan, 23–27 October 2020; pp. 1254–1260. [Google Scholar]
- Wang, R.; Chen, B.; Qiu, S.; Zhu, Z.; Ma, L.; Qiu, X.; Duan, W. Real-time data driven simulation of air contaminant dispersion using particle filter and UAV sensory system. In Proceedings of the 2017 IEEE/ACM 21st International Symposium on Distributed Simulation and Real Time Applications (DS-RT), Rome, Italy, 18–20 October 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Oh, H.; Kim, S. Persistent standoff tracking guidance using constrained particle filter for multiple UAVs. Aerosp. Sci. Technol. 2019, 84, 257–264. [Google Scholar] [CrossRef]
- Sousa, J.; García-Sánchez, C.; Gorlé, C. Improving urban flow predictions through data assimilation. Build. Environ. 2018, 132, 282–290. [Google Scholar] [CrossRef]
- Papadopoulou, M.; Raphael, B.; Smith, I.F.C.; Sekhar, C. Optimal Sensor Placement for Time-Dependent Systems: Application to Wind Studies around Buildings. J. Comput. Civ. Eng. 2015, 30, 04015024. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Gutiérrez, A.; Gonzalo, J.; López, D.; Delgado, A. Advances in CFD Modeling of Urban Wind Applied to Aerial Mobility. Fluids 2022, 7, 246. https://doi.org/10.3390/fluids7070246
García-Gutiérrez A, Gonzalo J, López D, Delgado A. Advances in CFD Modeling of Urban Wind Applied to Aerial Mobility. Fluids. 2022; 7(7):246. https://doi.org/10.3390/fluids7070246
Chicago/Turabian StyleGarcía-Gutiérrez, Adrián, Jesús Gonzalo, Deibi López, and Adrián Delgado. 2022. "Advances in CFD Modeling of Urban Wind Applied to Aerial Mobility" Fluids 7, no. 7: 246. https://doi.org/10.3390/fluids7070246