Six-Field Theory for a Polyatomic Gas Mixture: Extended Thermodynamics and Kinetic Models
Abstract
:1. Introduction
2. Macroscopic Model of the Mixture with Dynamic Pressure
2.1. Macroscopic Model of a Single-Component Polyatomic Gas
2.2. Governing Equations for the Mixture of Polyatomic Gases
2.3. Galilean Invariance
2.4. Entropy Principle
2.5. Principal Subsystems of Non-Reacting Mixtures
2.6. Linearized Source Terms in Non-Reacting Mixtures
3. Kinetic Approach to the Mixture with Dynamic Pressure
3.1. Macroscopic Densities as Moments of the Distribution Function
3.2. Macroscopic Equations as Moments of the Boltzmann Equation
3.3. Maximum Entropy Principle for the Six-Field Mixture Model
3.4. Closure of the 6-Moment Mixture Model
3.5. Linearized Source Terms in the Kinetic Approach
4. Macroscopic/Kinetic Closure
4.1. Momentum Balance Laws
4.2. Energy Balance Laws
4.3. Dynamic Pressure Balance Laws
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Main Feld
Appendix B. Hypergeometric Functions
Appendix C. Calculation of the Production Terms
Appendix C.1. Production Term
Appendix C.2. Production Term
Appendix C.3. Production Term
Appendix D. Linearization of Source Terms
Appendix D.1. Production Term
Appendix D.2. Production Term
Appendix D.3. Production Term
References
- De Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; North-Holland Publishing Company: Amsterdam, The Netherlands, 1962. [Google Scholar]
- Giovangigli, V. Multicomponent Flow Modeling; Birkhäuser: Boston, MA, USA, 1999. [Google Scholar]
- Nagnibeda, E.; Kustova, E. Non-Equilibrium Reacting Gas Flows: Kinetic Theory of Transport and Relaxation Processes; Springer: Berlin, Germany, 2009. [Google Scholar]
- Müller, I.; Ruggeri, T. Rational Extended Thermodynamics; Springer: New York, NY, USA, 1998. [Google Scholar]
- Truesdell, C. Rational Thermodynamics; Springer: New York, NY, USA, 1984. [Google Scholar]
- Ruggeri, T.; Simić, S. On the hyperbolic system of a mixture of Eulerian fluids: A comparison between single-and multi-temperature models. Math. Methods Appl. Sci. 2007, 30, 827–849. [Google Scholar] [CrossRef]
- Simić, S.; Pavić-Čolić, M.; Madjarević, D. Non-equilibrium mixtures of gases: Modelling and computation. Riv. Mat. Della Univ. Parma 2015, 6, 135–214. [Google Scholar]
- Gouin, H.; Ruggeri, T. Identification of an average temperature and a dynamical pressure in a multi- temperature mixture of fluids. Phys. Rev. E 2008, 78, 016303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruggeri, T.; Simić, S. Average temperature and maxwellian iteration in multitemperature mixtures of fluids. Phys. Rev. E 2009, 80, 026317. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, T.; Simić, S. Non-equilibrium diffusion temperatures in mixture of gases via Maxwellian iteration. Ric. Mat. 2017, 66, 293–312. [Google Scholar] [CrossRef]
- Madjarević, D.; Simić, S. Shock structure in helium-argon mixture—A comparison of hyperbolic multi-temperature model with experiment. EPL (Europhys. Lett.) 2013, 102, 44002. [Google Scholar] [CrossRef]
- Madjarević, D.; Ruggeri, T.; Simić, S. Shock structure and temperature overshoot in macroscopic multi-temperature model of mixtures. Phys. Fluids 2014, 26, 106102. [Google Scholar] [CrossRef]
- Ruggeri, T.; Taniguchi, S. A complete classification of sub-shocks in the shock structure of a binary mixture of Eulerian gases with different degrees of freedom. Phys. Fluids 2022, 34, 066116. [Google Scholar] [CrossRef]
- Torrilhon, M. Modeling Nonequilibrium Gas Flow Based on Moment Equations. Annu. Rev. Fluid Mech. 2016, 48, 429–458. [Google Scholar] [CrossRef]
- Grad, H. On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 1949, 2, 331–407. [Google Scholar] [CrossRef]
- Kogan, M.N. Rarefied Gas Dynamics; Plenum Press: New York, NY, USA, 1969. [Google Scholar]
- Dreyer, W. Maximisation of the entropy in non-equilibrium. J. Phys. A Math. Gen. 1987, 20, 6505–6517. [Google Scholar] [CrossRef]
- Levermore, C.D. Moment Closure Hierarchies for Kinetic Theories. J. Stat. Phys. 1996, 83, 1021–1065. [Google Scholar] [CrossRef]
- Bisi, M.; Martalò, G.; Spiga, G. Multi-temperature Euler hydrodynamics for a reacting gas from a kinetic approach to rarefied mixtures with resonant collisions. EPL (Europhys. Lett.) 2011, 95, 55002. [Google Scholar] [CrossRef] [Green Version]
- Ruggeri, T.; Sugiyama, M. Rational Extended Thermodynamics Beyond the Monatomic Gas; Springer: New York, NY, USA, 2015. [Google Scholar]
- Ruggeri, T.; Sugiyama, M. Classical and Relativistic Rational Extended Thermodynamics of Gases; Springer Nature: Cham, Switzerland, 2021. [Google Scholar]
- Bourgat, J.-F.; Desvillettes, L.; Le Tallec, P.; Perthame, B. Microreversible collisions for polyatomic gases. Eur. J. Mech. B Fluids 1994, 13, 237–254. [Google Scholar]
- Desvillettes, L.; Monaco, R.; Salvarani, F. A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions. Eur. J. Mech. B Fluids 2005, 24, 219. [Google Scholar] [CrossRef]
- Arima, T.; Taniguchi, S.; Ruggeri, T.; Sugiyama, M. Extended thermodynamics of dense gases. Contin. Mech. Thermodyn. 2012, 24, 271–292. [Google Scholar] [CrossRef]
- Pavić, M.; Ruggeri, T.; Simić, S. Maximum entropy principle for rarefied polyatomic gases. Phys. A 2013, 392, 1302–1317. [Google Scholar] [CrossRef] [Green Version]
- Pavić-Čolić, M.; Simić, S. Moment equations for polyatomic gases. Acta Appl. Math. 2014, 132, 469–482. [Google Scholar] [CrossRef]
- Djordjić, V.; Pavić-Čolić, M.; Spasojević, N. Polytropic gas modelling at kinetic and macroscopic levels. Kinet. Relat. Models 2021, 14, 483–522. [Google Scholar] [CrossRef]
- Pavić-Čolić, M.; Simić, S. Kinetic description of polyatomic gases with temperature-dependent specific heats. Phys. Rev. Fluids 2022, 7, 083401. [Google Scholar] [CrossRef]
- Djordjić, V.; Pavić-Čolić, M.; Torrilhon, M. Consistent, Explicit and Accessible Boltzmann Collision Operator for Polyatomic Gases. Phys. Rev. E 2021, 104, 025309. [Google Scholar] [CrossRef] [PubMed]
- Djordjić, V.; Oblapenko, G.; Pavić-Čolić, M.; Torrilhon, M. Boltzmann collision operator for polyatomic gases in agreement with experimental data and DSMC method. Contin. Mech. Thermodyn. 2022. [CrossRef]
- Arima, T.; Taniguchi, S.; Ruggeri, T.; Sugiyama, M. Extended thermodynamics of real gases with dynamic pressure: An extension of Meixner’s theory. Phys. Lett. A 2012, 376, 2799–2803. [Google Scholar] [CrossRef]
- Arima, T.; Ruggeri, T.; Sugiyama, M.; Taniguchi, S. Non-linear extended thermodynamics of real gases with 6 fields. Int. J. Non Linear Mech. 2015, 72, 6–15. [Google Scholar] [CrossRef]
- Ruggeri, T. Non-linear maximum entropy principle for a polyatomic gas subject to the dynamic pressure. Bull. Inst. Math. Acad. Sin. 2016, 11, 1–22. [Google Scholar]
- Pavić-Čolić, M.; Madjarević, D.; Simić, S. Polyatomic gases with dynamic pressure: Kinetic non-linear closure and the shock structure. Int. J. Non Linear Mech. 2017, 92, 160–175. [Google Scholar] [CrossRef]
- Cramer, M.S. Numerical estimates for the bulk viscosity of ideal gases. Phys. Fluids 2012, 24, 066102. [Google Scholar] [CrossRef] [Green Version]
- Kustova, E.; Mekhonoshina, M.; Kosareva, A. Relaxation processes in carbon dioxide. Phys. Fluids 2019, 31, 046104. [Google Scholar] [CrossRef]
- Kosuge, S.; Aoki, K. Shock-wave structure for a polyatomic gas with large bulk viscosity. Phys. Rev. Fluids 2018, 3, 023401. [Google Scholar] [CrossRef]
- Gamba, I.M.; Pavić-Čolić, M. On the Cauchy problem for Boltzmann equation modelling a polyatomic gas. arXiv 2022, arXiv:2005.01017. [Google Scholar]
- Alonso, R.; Gamba, I.M.; Pavić-Čolić, M. The Cauchy problem for Boltzmann systems modelling the mixing of monatomic and polyatomic gases. Preprint 2022.
- Pavić-Čolić, M. Multi-velocity and multi-temperature model of the mixture of polyatomic gases issuing from kinetic theory. Physics Lett. A 2019, 383, 2829–2835. [Google Scholar] [CrossRef] [Green Version]
- Madjarević, D.; Pavić-Čolić, M.; Simić, S. Shock Structure and Relaxation in the Multi-Component Mixture of Euler Fluids. Symmetry 2021, 13, 955. [Google Scholar] [CrossRef]
- Ruggeri, T. Galilean Invariance and Entropy Principle for Systems of Balance Laws. The Structure of the Extended Thermodynamics. Continuum Mech. Thermodyn. 1989, 1, 3–20. [Google Scholar] [CrossRef]
- Liu, I.-S. Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Ration. Mech. Anal. 1972, 46, 131–148. [Google Scholar] [CrossRef]
- Boillat, G.; Ruggeri, T. Hyperbolic principal subsystems: Entropy convexity and subcharacteristic conditions. Arch. Ration. Mech. Anal. 1997, 137, 305–320. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau of Standards, U.S. Government Printing Office: Washington, DC, USA, 1964. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavić-Čolić, M.; Simić, S. Six-Field Theory for a Polyatomic Gas Mixture: Extended Thermodynamics and Kinetic Models. Fluids 2022, 7, 381. https://doi.org/10.3390/fluids7120381
Pavić-Čolić M, Simić S. Six-Field Theory for a Polyatomic Gas Mixture: Extended Thermodynamics and Kinetic Models. Fluids. 2022; 7(12):381. https://doi.org/10.3390/fluids7120381
Chicago/Turabian StylePavić-Čolić, Milana, and Srboljub Simić. 2022. "Six-Field Theory for a Polyatomic Gas Mixture: Extended Thermodynamics and Kinetic Models" Fluids 7, no. 12: 381. https://doi.org/10.3390/fluids7120381
APA StylePavić-Čolić, M., & Simić, S. (2022). Six-Field Theory for a Polyatomic Gas Mixture: Extended Thermodynamics and Kinetic Models. Fluids, 7(12), 381. https://doi.org/10.3390/fluids7120381