Modelling of Ocean Waves with the Alber Equation: Application to Non-Parametric Spectra and Generalisation to Crossing Seas
Abstract
:1. Introduction
2. Ocean Wave Modelling with the Alber Equation
2.1. Derivation
2.2. The Stability-of-Homogeneity Question
2.3. Implications
2.3.1. Quantifying Stability
2.3.2. Nonparametric Spectra
2.3.3. Emergence of Coherent Structures
3. Main Results
3.1. The Alber Equation for Crossing Seas
3.2. Stability of Unidirectional Nonparametric Spectra and Proximity to Instability (PTI)
3.2.1. The Data
3.2.2. The Algorithm for Checking the Instability Condition
3.2.3. Summary of the Results
Algortithm 1. Pseudo-code for the computation of |
Input (Sampled values of wavenumber-resolved spectrum, ) |
Rescale ( is simply taken to be the peak wavenumber.) |
Interpolate |
Set compl_tol, rel_tol, abs_tol |
For to step |
While rel_err > rel_tol AND abs_err > abs_tol |
Integrate one, generating two approximations, I_fine and I_coarse. (Fine grid has the number of points compared to coarse grid.) |
Set |
End While |
Set |
End For |
Plot the line and the point |
Check whether is inside (This can be achieved with the MATLABinpolygon function.) |
4. Proof of Theorem 1
- The rhs of both equations correspond to the linear free-space solutions (and thus can be treated as known and well behaved functions);
- We can now integrate both equations in the variables and obtain a closed system for the position densities achieving this is in fact the motivation for all the transforms and changes of variables.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Alazard, T.; Burq, N.; Zuily, C. On the Cauchy problem for gravity water waves. Invent. Math. 2014, 198, 71–163. [Google Scholar] [CrossRef]
- Lannes, D. Well-posedness of the water-waves equations. J. Am. Math. Soc. 2005, 18, 605–654. [Google Scholar] [CrossRef]
- Luke, J.C. A variational principle for a fluid with a free surface. J. Fluid Mech. 1967, 27, 395–397. [Google Scholar] [CrossRef]
- Benney, D.J.; Newell, A.C. The propagation of nonlinear wave envelopes. Stud. Appl. Math. 1967, 46, 133–139. [Google Scholar] [CrossRef]
- Trulsen, K.; Dysthe, K.B. A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Motion 1996, 24, 281–289. [Google Scholar] [CrossRef]
- Zakharov, V.E. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 1968, 9, 190–194. [Google Scholar] [CrossRef]
- Athanassoulis, G.A.; Belibassakis, K.A. A consistent coupled-mode theory for the propagation of small-amplitude water waves over variable bathymetry regions. J. Fluid Mech. 1999, 389, 275–301. [Google Scholar] [CrossRef] [Green Version]
- Athanassoulis, G.A.; Papoutsellis, C.E. Exact semi-separation of variables in waveguides with non-planar boundaries. Proc. R. Soc. Math. Phys. Eng. Sci. 2017, 473, 20170017. [Google Scholar] [CrossRef] [Green Version]
- Papoutsellis, C.E.; Charalampopoulos, A.G.; Athanassoulis, G.A. Implementation of a fully nonlinear Hamiltonian Coupled-Mode Theory, and application to solitary wave problems over bathymetry. Eur. J. Mech. B/Fluids 2018, 72, 199–224. [Google Scholar] [CrossRef] [Green Version]
- Dommermuth, D.G.; Yue, D.K.P. A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech. 1987, 184, 267–288. [Google Scholar] [CrossRef]
- West, B.J.; Brueckner, K.A.; Janda, R.S.; Milder, D.M.; Milton, R.L. A new numerical method for surface hydrodynamics. J. Geophys. Res. Ocean. 1987, 92, 11803–11824. [Google Scholar] [CrossRef]
- Gouin, M.; Ducrozet, G.; Ferrant, P. Development and validation of a non-linear spectral model for water waves over variable depth. Eur. J. -Mech. 2016, 57, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, M.; Marchiando, N.; Berti, N.; Kasparian, J. Nonlinear fast growth of water waves under wind forcing. Phys. Lett. Sect. Gen. At. Solid State Phys. 2014, 378, 1025–1030. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, M.; Kasparian, J. Modulational instability in wind-forced waves. Phys. Lett. Sect. Gen. At. Solid State Phys. 2014, 378, 3626–3630. [Google Scholar] [CrossRef] [Green Version]
- Armaroli, A.; Eeltink, D.; Brunetti, M. Nonlinear stage of Benjamin-Feir instability in forced/damped deep-water waves. Phys. Fluids 2018, 30, 017102. [Google Scholar] [CrossRef] [Green Version]
- Bühler, O.; Shatah, J.; Walsh, S.; Zeng, C. On the Wind Generation of Water Waves. Arch. Ration. Mech. Anal. 2016, 222, 827–878. [Google Scholar] [CrossRef] [Green Version]
- Janssen, P.A.E.M. The Interaction of Ocean Waves and Wind; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Greenslade, D.; Hemer, M.; Babanin, A.; Lowe, R.; Turner, I.; Power, H.; Young, I.; Ierodiaconou, D.; Hibbert, G.; Williams, G.; et al. 15 Priorities for Wind-Waves Research: An Australian Perspective. Bull. Am. Meteorol. Soc. 2020, 101, E446–E461. [Google Scholar] [CrossRef] [Green Version]
- Crawford, D.R.; Saffman, P.G.; Yuen, H.C. Evolution of a random inhomogeneous field of nonlinear deep-water gravity waves. Wave Motion 1980, 2, 1–16. [Google Scholar] [CrossRef]
- Andrade, D.; Stiassnie, M. Bound-waves due to sea and swell trigger the generation of freak-waves. J. Ocean. Eng. Mar. Energy 2020, 6, 399–414. [Google Scholar] [CrossRef]
- Andrade, D.; Stiassnie, M. New solutions of the C.S.Y. equation reveal increases in freak wave occurrence. Wave Motion 2020, 97, 102581. [Google Scholar] [CrossRef]
- Hasselmann, K. On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory. J. Fluid Mech. 1962, 12, 481–500. [Google Scholar] [CrossRef]
- Alber, I.E. The Effects of Randomness on the Stability of Two-Dimensional Surface Wavetrains. Proc. R. Soc. Math. Phys. Eng. Sci. 1978, 363, 525–546. [Google Scholar] [CrossRef]
- Stuhlmeier, R.; Vrecica, T.; Toledo, Y. Nonlinear Wave Interaction in Coastal and Open Seas: Deterministic and Stochastic Theory. In Nonlinear Water Waves; Springer: Berlin/Heidelberg, Germany, 2019; pp. 151–181. [Google Scholar] [CrossRef] [Green Version]
- Komen, G.J.; Cavaleri, L.; Donelan, M.; Hasselmann, K.; Hasselmann, S.; Janssen, P.A.E.M. Dynamics and Modelling of Ocean Waves; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Ochi, M.K. Ocean Waves: The Stochastic Approach; Cambridge University Press: Cambridge, UK, 1998; p. 332. [Google Scholar]
- Toffoli, A.; Gramstad, O.; Trulsen, K.; Monbaliu, J.; Bitner-Gregersen, E.; Onorato, M. Evolution of weakly nonlinear random directional waves: Laboratory experiments and numerical simulations. J. Fluid Mech. 2010, 664, 313–336. [Google Scholar] [CrossRef]
- Ribal, A.; Babanin, A.V.; Young, I.; Toffoli, A.; Stiassnie, M. Recurrent solutions of the Alber equation initialized by Joint North Sea Wave Project spectra. J. Fluid Mech. 2013, 719, 314–344. [Google Scholar] [CrossRef]
- Gramstad, O. Modulational Instability in JONSWAP Sea States Using the Alber Equation. In Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, Trondheim, Norway, 25–30 June 2017. [Google Scholar]
- Athanassoulis, A.G.; Athanassoulis, G.A.; Ptashnyk, M.; Sapsis, T. Strong solutions for the Alber equation and stability of unidirectional wave spectra. Kinet. Relat. Model. 2020, 13, 703–737. [Google Scholar] [CrossRef]
- Mei, C.C.; Stiassnie, M.; Yue, D.K.P. Theory and Applications of Ocean Surface Waves; Advanced Series on Ocean Engineering; World Scientific: Singapore, 2005; Volume 23. [Google Scholar] [CrossRef]
- Hammack, J.L.; Henderson, D.M.; Segur, H. Progressive waves with persistent two-dimensional surface patterns in deep water. J. Fluid Mech. 2005, 532, 1–52. [Google Scholar] [CrossRef] [Green Version]
- Onorato, M.; Proment, D.; Toffoli, A. Freak waves in crossing seas. Eur. Phys. J. Spec. Top. 2010, 185, 45–55. [Google Scholar] [CrossRef]
- Gramstad, O.; Bitner-Gregersen, E.; Trulsen, K.; Nieto Borge, J.C. Modulational Instability and Rogue Waves in Crossing Sea States. J. Phys. Oceanogr. 2018, 48, 1317–1331. [Google Scholar] [CrossRef]
- Labeyrie, J. Stationary and transient states of random seas. Mar. Struct. 1990, 3, 43–58. [Google Scholar] [CrossRef]
- Tournadre, J. Time and space scales of significant wave heights. J. Geophys. Res. 1993, 98, 4727–4738. [Google Scholar] [CrossRef]
- Penrose, O. Electrostatic Instabilities of a Uniform Non-Maxwellian Plasma. Phys. Fluids 1960, 3, 258–265. [Google Scholar] [CrossRef]
- Athanassoulis, A.G.; Athanassoulis, G.A.; Sapsis, T. Localized instabilities of the Wigner equation as a model for the emergence of Rogue Waves. J. Ocean. Eng. Mar. Energy 2017, 3, 353–372. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, V.E.; Ostrovsky, L.A. Modulation instability: The beginning. Phys. D Nonlinear Phenom. 2009, 238, 540–548. [Google Scholar] [CrossRef]
- Onorato, M.; Waseda, T.; Toffoli, A.; Cavaleri, L.; Gramstad, O.; Janssen, P.A.; Kinoshita, T.; Monbaliu, J.; Mori, N.; Osborne, A.R.; et al. Statistical properties of directional ocean waves: The role of the modulational instability in the formation of extreme events. Phys. Rev. Lett. 2009, 102, 114502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onorato, M.; Osborne, A.R.; Serio, M. Modulational Instability in Crossing Sea States: A Possible Mechanism for the Formation of Freak Waves. Phys. Rev. Lett. 2006, 96, 014503. [Google Scholar] [CrossRef] [Green Version]
- Onorato, M.; Residori, S.; Bortolozzo, U.; Montina, A.; Arecchi, F.T. Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 2013, 528, 47–89. [Google Scholar] [CrossRef]
- Onorato, M.; Osborne, A.; Fedele, R.; Serio, M. Landau damping and coherent structures in narrow-banded 1 + 1 deep water gravity waves. Phys. Rev. E 2003, 67, 046305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borge, J.C.; Rodríquez, G.; Hessner, K.; González, P.I. Inversion of marine radar images for surface wave analysis. J. Atmos. Ocean. Technol. 2004, 21, 1291–1300. [Google Scholar] [CrossRef]
- Dematteis, G.; Grafke, T.; Vanden-Eijnden, E. Rogue Waves and Large Deviations in Deep Sea. Proc. Natl. Acad. Sci. USA 2018, 115, 855–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitner-Gregersen, E.M.; Gramstad, O.; Magnusson, A.K.; Sames, P.C. Occurrence Frequency of a Triple Rogue Wave Group in the Ocean. In Proceedings of the ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering, Online, 3–7 August 2020. [Google Scholar] [CrossRef]
- Magnusson, A.K.; Trulsen, K.; Aarnes, O.J.; Bitner-Gregersen, E.M.; Malila, M.P. “Three Sisters” Measured As a Triple Rogue Wave Group. In International Conference on Offshore Mechanics and Arctic Engineering; American Society of Mechanical Engineers: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Müller, P.; Garrett, C.; Osborne, A. Rogue waves-The Fourteenth ‘Aha Huliko’a Hawaiian Winter Workshop. Oceanography 2005, 18, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Nikolkina, I.; Didenkulova, I. Rogue waves in 2006–2010. Nat. Hazards Earth Syst. Sci. 2011, 11, 2913–2924. [Google Scholar] [CrossRef]
- Clauss, G.F. Dramas of the sea: Episodic waves and their impact on offshore structures. Appl. Ocean. Res. 2002, 24, 147–161. [Google Scholar] [CrossRef]
- Ankiewicz, A.; Kedziora, D.J.; Akhmediev, N. Rogue wave triplets. Phys. Lett. Sect. Gen. At. Solid State Phys. 2011, 375, 2782–2785. [Google Scholar] [CrossRef]
- Steer, J.N.; Mcallister, M.L.; Borthwick, A.G.L.; Bremer, T.S.V.D. Experimental Observation of Modulational Instability in Crossing Surface Gravity Wavetrains. Fluids 2019, 4, 105. [Google Scholar] [CrossRef] [Green Version]
- Reistad, M.; Breivik, Ø; Haakenstad, H.; Aarnes, O.J.; Furevik, B.R.; Bidlot, J.R. A high-resolution hindcast of wind and waves for the North Sea, the Norwegian Sea, and the Barents Sea. J. Geophys. Res. Ocean. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Janssen, P.A.E.M.; Bidlot, J.R. On the Extension of the Freak Wave Warning System and Its Verification; Technical Report, European Centre for Medium-Range Weather Forecasts (ECMWF); European Centre for Medium-Range Weather Forecasts: Reading, UK, 2009. [Google Scholar]
- Waseda, T.; Kinoshita, T.; Tamura, H. Evolution of a random directional wave and freak wave occurrence. J. Phys. Oceanogr. 2009, 39, 621–639. [Google Scholar] [CrossRef]
- Mori, N.; Onorato, M.; Janssen, P.A. On the estimation of the kurtosis in directional sea states for freak wave forecasting. J. Phys. Oceanogr. 2011, 41, 1484–1497. [Google Scholar] [CrossRef] [Green Version]
- Reed, I.S. On a Moment Theorem for Complex Gaussian Processes. IRE Trans. Inf. Theory 1962, 8, 194–195. [Google Scholar] [CrossRef]
- Miller, K. Moments of complex Gaussian processes. Proc. IEEE 1968, 56, 83–84. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanassoulis, A.G.; Gramstad, O. Modelling of Ocean Waves with the Alber Equation: Application to Non-Parametric Spectra and Generalisation to Crossing Seas. Fluids 2021, 6, 291. https://doi.org/10.3390/fluids6080291
Athanassoulis AG, Gramstad O. Modelling of Ocean Waves with the Alber Equation: Application to Non-Parametric Spectra and Generalisation to Crossing Seas. Fluids. 2021; 6(8):291. https://doi.org/10.3390/fluids6080291
Chicago/Turabian StyleAthanassoulis, Agissilaos G., and Odin Gramstad. 2021. "Modelling of Ocean Waves with the Alber Equation: Application to Non-Parametric Spectra and Generalisation to Crossing Seas" Fluids 6, no. 8: 291. https://doi.org/10.3390/fluids6080291
APA StyleAthanassoulis, A. G., & Gramstad, O. (2021). Modelling of Ocean Waves with the Alber Equation: Application to Non-Parametric Spectra and Generalisation to Crossing Seas. Fluids, 6(8), 291. https://doi.org/10.3390/fluids6080291