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Abstract: The coupled nonlinear Schrödinger equation (CNLSE) is a wave envelope evolution
equation applicable to two crossing, narrow-banded wave systems. Modulational instability (MI),
a feature of the nonlinear Schrödinger wave equation, is characterized (to first order) by an exponential
growth of sideband components and the formation of distinct wave pulses, often containing extreme
waves. Linear stability analysis of the CNLSE shows the effect of crossing angle, θ, on MI, and reveals
instabilities between 0◦ < θ < 35◦, 46◦ < θ < 143◦, and 145◦ < θ < 180◦. Herein, the modulational
stability of crossing wavetrains seeded with symmetrical sidebands is determined experimentally
from tests in a circular wave basin. Experiments were carried out at 12 crossing angles between
0◦ ≤ θ ≤ 88◦, and strong unidirectional sideband growth was observed. This growth reduced
significantly at angles beyond θ ≈ 20◦, reaching complete stability at θ = 30–40◦. We find satisfactory
agreement between numerical predictions (using a time-marching CNLSE solver) and experimental
measurements for all crossing angles.

Keywords: surface waves; crossing seas; modulational/Benjamin-Feir instability; coupled nonlinear
Schrödinger equation (CNLSE); experiments

1. Introduction

Crossing seas, in which waves travel in multiple directions, have been identified as an important
challenge to offshore operations, linked to an increased probability of extreme waves [1,2]. In addition
to specific environmental forcing such as wind or (sudden) changes in bathymetry, two important
mechanisms play a role in the formation of so-called rogue waves in the ocean, namely random
dispersive focusing enhanced by weak bound-wave nonlinearity and modulational instability [3–6].
Herein, we contribute to the understanding of extreme waves in crossing seas by reporting on
an experimental study of modulational instability in waves crossing at angles between 0◦ ≤ θ ≤ 88◦.

For long-crested or unidirectional seas, it is well established that weakly nonlinear regular
wavetrains in sufficiently deep water rapidly evolve into pulses of wave groups through modulational
instability (MI) [7,8]. Extreme waves can form within such groups, making MI a topic of considerable
interest in the context of rogue wave events. The nonlinear Schrödinger equation (NLSE) provides the
simplest mathematical framework for studying MI, and permits unstable solutions including breathers
and plane Stokes waves [9,10]. Breather waves are characterized by a sudden increase in amplitude
of initially regular waves to either three or five times their initial value [11,12], and provide close
approximations to rogue waves in long-crested seas. However, experimentally, breather waves
are particularly sensitive to initial conditions, which must be specified precisely for the waves
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to attain maximum amplitude [13]. Particularly, in the case of the Peregrine breather, which is
localized in both time and space, precise initial conditions lead to an extreme wave only once
during its evolution. Although precise reproduction of specific breather solutions in the laboratory
requires special input conditions at the wavemaker, such initial conditions do not exist in the ocean.
Nevertheless, clear evidence of breather trains has been observed in measured ocean wave data sets
through the nonlinear Fourier method [14]. Moreover, in the laboratory, breather trains have been
observed to be stable to disturbances such as from wind [15].

The unstable regular Stokes wave seeded with sideband components to the carrier has periodic
modulations that grow, facilitating straightforward measurement of wavetrain stability, such as in the
seminal paper by Lake et al. [16]. In this idealized problem, energy is returned from the sidebands
to the carrier wave at later times, leading to periodic modulation and demodulation on very long
time scales known as Fermi–Pasta–Ulam (FPU) recurrence [17–19]. Strictly, FPU recurrence only exists
in conservative systems and is prevented by the occurrence of breaking. In the case of breaking,
the principle of time-reversibility also does not apply [20]. However, even in the presence of breaking
waves, energy from sidebands returns to a central carrier wave after some time, giving rise to FPU-type
modulation-demodulation cycles [16,21]. This paper avoids these complications in all experiments by
considering only the initial stages of modulational instability, before breaking takes place.

Although extensively studied both theoretically and experimentally in one dimension,
the applicability of the 1D+1 NLSE to the open ocean is limited by the equation’s unidirectionality.
In the open ocean, waves may be created from multiple sources, interact, and cross at an angle.
Additionally, in fetch-limited seas it has been observed that spectral components above and below the
peak frequency become bimodal with energy naturally spreading symmetrically to angles above and
below that of the peak frequency direction [22,23]. As derived for deep-water by Onorato et al. [24]
from the 2D+1 Zakharov equation [25], the coupled nonlinear Schrödinger equation (CNLSE) is
a system of nonlinear wave equations describing the interaction of two narrow-banded weakly
nonlinear wave systems propagating at an angle (see also [26]). This deep-water CNLSE has since
been extended to finite depth by Kundu et al. [27]. However, for practical purposes, the experiments
presented herein were performed in deep water. The CNLSE enables both MI and crossing effects to be
explored simultaneously. By invoking the assumptions of symmetrical propagation about the x-axis at
angle ±θ and shared group velocity along the x-axis, the CNLSE simplifies and readily lends itself to
linear stability analysis. The results define both low angle and high angle instability regions separated
at θ = 35.26◦ and θ = 144.74◦ (see also [28]). Discussions concerning linear stability of CNLSE and the
effect of the changing values of CNLSE coefficients with crossing angle have highlighted increased
amplification factors but decreased growth rates of breather and soliton solutions in crossing seas for
angles approaching 35.26◦ [29,30]. Within this paper, crossing angle, θ is the angle at which waves
propagate to the x-axis, i.e., when two waves cross at ±θ the angle of bisection is 2θ. Along with the
general investigation into plane wave stability, rogue wave solutions to the CNLSE are known to exist
and have been classified and, through numerical computations, compared to their 1D+1 analogue,
the Peregrine breather [31].

Laboratory experiments by Toffoli et al. [32] have measured the long-term statistical behaviour
of deep-water weakly nonlinear crossing waves up to crossing angles of 20◦ (see Figure 1b for
these experimental angles). Numerical solutions using a higher-order spectral method were used
to confirm these findings and additionally, to study crossing angles up to 90◦ and found increases
in kurtosis for crossing angles in the range 20◦ < θ < 30◦ [33]. Additionally, the effect of oblique
sideband perturbations (of up to 37◦) to plane waves propagating over finite depth were investigated
experimentally and sideband growth was reported [33]. The existence of short-crested crossing breather
waves (slanted breather solutions to the 2D+1 NLSE) has also been confirmed experimentally [34].

In addition to possible MI, changes to the second-order bound waves occur when waves cross.
The wave-averaged free surface, represented spectrally by second-order difference waves, is the
local mean surface elevation formed by temporal averaging over the rapidly varying waves that
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make up the slowly varying group. Whereas a set-down of the wave-averaged free surface is
expected in the absence of crossing, packets are accompanied by a set-up for sufficiently large crossing
angles. This can be theoretically predicted [35–38] based on second-order interaction kernels [39–42].
Set-up has been observed in field data [43–45] and recently in detailed laboratory experiments [46].
For the Draupner wave, recorded in the North Sea on the 1st of January 1995 [47], the observation
of set-up can be seen as evidence for crossing [43,48,49]. In fact, linear dispersive focusing enhanced
by bound-wave nonlinearity but without MI may be sufficient to explain observations such as the
Draupner wave [50,51].

Recently, a number of additional numerical studies have examined extreme waves and MI in
crossing seas. Støle-Hentschel et al. [52] have shown, using numerical simulations and laboratory
experiments, that a small amount of energy travelling in exactly the opposing direction can significantly
reduce the kurtosis of the surface elevation. Gramstad et al. [53], using random simulations of the
Zakharov equation, found that, for unimodal spectra, kurtosis increased at crossing angles close to 50◦

and at very small crossing angles when compared to the unidirectional case. Kurtosis was found to be
at a minimum at 90◦.

In this paper, we report on regular wave experiments with seeded sidebands for two crossing
wavetrains in a circular wave basin. These experiments are the crossing-wave counterpart of the
classical experiments by Lake et al. [16] and cover both stable and unstable regions of the (K, θ) space,
through the range 0◦ ≤ θ ≤ 88◦, where K is the perturbation wavenumber. We measure the growth of
sidebands and compare this to results from linear stability analysis of the CNLSE, as well as numerical
solutions of this equation.

This paper is laid out as follows. First, Section 2 reviews the theoretical background, followed by
an exposition of our experimental methodology in Section 3. Experimental results are presented and
compared to solutions of the CNLSE in Section 4. Finally, conclusions are drawn in Section 5.

2. Theoretical Background

2.1. Coupled Nonlinear Schrödinger Equation (CNLSE)

The coupled nonlinear Schrödinger equation (CNLSE), derived by [24] from the 2D+1 Zakharov
equation [25], is a narrow-banded wave equation describing the evolution of coupled, complex
wave envelopes A and B. Both wave envelopes propagate on an associated carrier wave whose
properties define the CNLSE coefficients and thus (along with the initial conditions) the envelope
evolution. Scaled for water waves, and under the assumption of identical but symmetrical carrier
waves (about the x-axis) with distinct amplitude envelopes, the CNLSE is given, in a Cartesian
coordinate system (x, y, t), by [24],

∂A
∂t

+ Cx
∂A
∂x

+ Cy
∂A
∂y
− iα

∂2 A
∂x2 − iβ

∂2 A
∂y2 + iγ

∂2 A
∂x∂y

+ i(ξ|A|2 + 2ζ|B|2)A = 0, (1)

∂B
∂t

+ Cx
∂B
∂x
− Cy

∂B
∂y
− iα

∂2B
∂x2 − iβ

∂2B
∂y2 − γ

∂2B
∂x∂y

+ i(ξ|B|2 + 2ζ|A|2)B = 0, (2)

where carrier properties: frequency, ω0; x-axis wavenumber, k; y-axis wavenumber, l; and absolute
wavenumber, k0 =

√
k2 + l2, define the group velocities Cx and Cy along their respective axes,

Cx =
ω0

2k2
0

k and Cy =
ω0

2k2
0

l, (3)

the linear coefficients α, β, and γ are given by,

α =
ω0

8k4
0
(2l2 − k2), β =

ω0

8k4
0
(2k2 − l2), and γ = −3ω0

4k4
0

lk, (4)
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and the nonlinear coefficients ξ and ζ by,

ξ =
ω0

2k0

k5 − k3l2 − 3kl4 − 2k4k0 + 2k2l2k0 + 2l4k0

(k− 2k0)k0
and ζ =

2ξ

ω0k2
0

. (5)

The carrier frequency ω0 and absolute wavenumber k0 are related through the deep-water
dispersion relation, ω0 =

√
k0g, with g denoting the gravitational constant.

In the special case of envelopes propagating along the x-axis, a Galilean transformation into the
group reference frame reduces the CNLSE to [24],

∂A
∂t
− iα

∂2 A
∂X2 + i(ξ|A|2 + 2ζ|B|2)A =0, (6)

∂B
∂t
− iα

∂2B
∂X2 + i(ξ|B|2 + 2ζ|A|2)B =0, (7)

where X = x − Cxt. From the wave packet amplitudes, the (linear) free surface elevation is
reconstructed by reintroducing the carrier waves through,

η = Re
[

Aei(kx+ly−ω0t) + Bei(kx−ly−ω0t)
]

. (8)

2.2. Linear Stability Analysis

Linear stability analysis of the CNLSE reveals many properties of the equation and, using a seeded
carrier solution, allows prediction of the initial sideband growth rate. Identical plane waves are
admitted as solutions to (6) and (7) and we therefore add perturbations of infinitesimal amplitude and
phase to obtain (see also [24]),

A = a0(1 + δa)e−i(ω0t+δφa) and B = b0(1 + δb)e−i(ω0t+δφb), (9)

where a0 and b0 are carrier amplitudes, and δa, δb, δφa, and δφb are small perturbations in amplitude
and phase. In this linear stability analysis, the assumed form of the sideband solutions aδ and bδ is,

aδ = aδ,0ei(Ωt±Kx) ≡ a0δa and bδ = bδ,0ei(Ωt±Kx) ≡ b0δb, (10)

where aδ,0 and bδ,0 are the initial sideband amplitudes, K is the perturbation wavenumber, and Ω
is the perturbation frequency. The relationship between K and Ω is found through linear stability
analysis as [24],

Ω = ±
√

αK2[(ξ(a2
0 + b2

0 + αK2)±
√

ξ2(a2
0 − b2

0)
2 + 16ζ2a2

0b2
0], (11)

where it is apparent that Ω may take either real or imaginary values. Following substitution of this
relationship into (10), either oscillatory (when Ω ∈ Re) or exponential (when Ω ∈ Im) behaviour can
be expected from the sidebands.

Figure 1 presents the instability regions in (K, θ)-space with stability boundaries denoted by the
critical perturbation wavenumber function, Kc(θ). Three regions of instability exist: at low angle,
0◦ < θ < 35◦; medium angle, 46◦ < θ < 143◦; and high angle, 145◦ < θ < 180◦, in which θ is
related to the carrier wavenumbers through θ = arctan(l/k). We note that the asymmetry around 90◦

(i.e., comparing the region from 0◦ towards an increasing angle θ and the region from 180◦ towards
decreasing θ) arises because the perturbation always travels in the positive x-direction. Figure 1a also
shows where in (K, θ) space the experiments reported on herein lie, with Figure 1b displaying the
locations of experiments previously reported by Toffoli et al. [32]. These experiments are restricted to
angles 0◦ < θ < 20◦ and are carried out with a continuous spectrum instead of discrete sidebands,
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as illustrated by the horizontal lines in Figure 1b, with 85% of their energy bounded by the y-axis and
the black crosses.

Figure 1. Surfaces showing the growth rate obtained from linear stability analysis of the coupled
nonlinear Schrödinger equation (from (11)). Panel (a) presents our experimental parameters where
experiments 2a-h are indicated by dots (results presented in main text) and experiments 2i-l by
open circles (results presented in Appendix B). The crossing angles of experiments performed by
Toffoli et al. [32] are shown as solid lines in panel (b) with the crosses and y-axis marking the boundary
containing 85% of the spectral energy (note that the crossing angle, β, in Toffoli et al. [32] is equivalent
to 2θ). The dashed lines indicate boundaries of stability regions, while the dot-dashed lines show the
boundary between complex (0 < K ≤ Kc/2) and simple (Kc/2 < K < Kc) evolution.

For unidirectional waves, MI behaves as described by the standard NLSE but with increased
instability due to the presence of two carrier waves, with a consequent doubling of steepness.
As the crossing angle is progressively increased, the region of instability extends further along the
wavenumber axis, whereas the magnitude of the instability decreases gradually. At θ ≈ 35.26◦ (exactly,
θ = arctan(1/

√
2)), the low angle instability region ends, having encompassed all wavenumbers.

At approximately 46◦, the medium-angle instability region begins to take shape, starting close to zero
wavenumber and expanding along the wavenumber axis until the crossing angle reaches approximately
143◦. Finally, the high-angle region commences as a sharp boundary at approximately 145◦ and ends as
a mirrored version, similar to the low-angle region (with both waves travelling at 180◦ from the x-axis).

2.3. Characteristics of Modulational Instability: Complex vs. Simple Evolution

Figure 2 presents the spectral and temporal evolution of two modulated wavetrains with different
perturbation wavenumbers propagating from the initial conditions (9) with θ = 20◦ and aδ,0 = 0.1a0,
obtained using a numerical solver of the CNLSEs (see Appendix A). The effect of MI is instantly
recognizable from the increase in amplitude of the sidebands closest to the carrier wave (primary
sidebands). As the primary sideband amplitudes increase, the carrier amplitude begins to decrease.
Further in the evolution process, secondary sidebands appear at integer multiples of the primary
sideband wavenumber. The effect of this initial stage of instability is seen in the packet amplitude in
Figure 2b as a rapid increase in the group amplitude. Following the exponential sideband amplitude
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growth, Fermi–Pasta–Ulam recurrence is observed. During idealized FPU recurrence, energy is
exchanged periodically between modes, and the system returns to its original state [17–19]. However,
in water waves, energy may be lost to wave breaking resulting in a nonconservative system but we
note that FPU recurrence is a long-term behaviour, and strong MI is required to observe it in the space
available in most experimental facilities.

Figure 2. Spectral and temporal evolution obtained from the time-marching of the CNLSE for two
unstable modulated wavetrains crossing at θ = 20◦. Panels (a,b) show complex (0 < K ≤ Kc/2)
evolution, whilst panels (c,d) display simple (Kc/2 < K < Kc) evolution. Temporal axes have been
normalized by the carrier wave period, T0.

Figure 2a,b show the wavetrain propagating with complex recurrence, whereas Figure 2c,d show
simple recurrence. Complex recurrence is expected when K lies less than (or at) half-way through
the instability region (0 < K ≤ Kc/2), and primary sidebands themselves act as unstable carriers,
continually spawning new sidebands. When K lies more than half way to the stability boundary
(Kc/2 < K < Kc) new sidebands will lie in the stable region, and simple recurrence is observed.

3. Experimental Methodology

3.1. Facility

The aim of our experiments was to measure sideband growth at extreme crossing angles up to 90◦.
In order to achieve this, physical tests were performed in the FloWave Ocean Energy Research Facility
at the University of Edinburgh, which is capable of omnidirectional wave creation and absorption.
The basin (depicted in Figure 3a,b) has a diameter of 25 m, a working depth of 2 m, and is encircled
by 168 actively absorbing force-feedback wavemakers. A Cartesian coordinate system was defined
with its origin at the centre of the basin. The primary direction of propagation of the waves was in the
positive x direction. In crossing wave experiments, the carrier waves travelled at an angle, θ, from the
x-axis, as defined in Figure 3a. Wave generation in the facility was controlled using software based on
linear wave theory. Ten resistance type wave gauges at a spacing of 1.5 m were mounted on a gantry
spanning the basin x-axis (see Figure 3b for coordinates). Wave gauges were calibrated each day before



Fluids 2018, 4, 105 7 of 15

tests commenced. A 20 min settling period was imposed between each test, allowing residual basin
motion to settle to an acceptable level.
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Figure 3. (a) FloWave Ocean Energy Research Facility at The University of Edinburgh, showing wave
gauge locations relative to the centre of the basin (0, 0) (units in m) and direction of wave system
components (figure adapted from [54]). (b) Sectional view of the FloWave basin with key dimensions.
(c) Amplitude profiles of unseeded carrier waves ( f0 = 1.5 Hz) travelling at an angle, θ, and measured
along the basin x-axis (Part I).

3.2. Matrix of Experiments

The experimental campaign was split into two parts. Part I aimed to quantify the effect of
finite-length crests in the facility in the absence of seeded sidebands, which is a manifestation of the
inability of a finite number of wavemakers encircling a finite-size circular basin to create perfectly
long-crested waves spanning the entire basin diameter. This finite-crest effect needed to be quantified
in order to estimate the length over which components travelling with different directions would
interact. Part II aimed to measure the growth of frequency sidebands about carrier waves travelling at
crossing angles ±θ. Crossing carrier and sideband waves only interact fully in regions of total crest
overlap, and so the extent that these regions cover the chosen wave gauge locations is defined by
the carrier crest length and angle. Experiments 1a–d (Part I) were therefore designed to determine the
effective sideband evolution region in the basin at each angle. In these experiments, a single unseeded
carrier wave was propagated at the angles given in Table 1 (Part I).

Table 1. Experiment labels and their corresponding crossing angles for both Part I (single, unseeded regular
wave) and Part II (seeded waves). All experiments used carrier parameters of f0 = 1.5 Hz, k0a0 = 0.16,
and k0d = 18. Experiments 2a–l used sideband parameters of K = 3.02 m−1, and aδ,0 = 0.003 m.

Part I Part II

Expt. 1a 1b 1c 1d 2a 2b 2c 2d 2e 2f 2g 2h 2i 2j 2k 2l

θ (◦) 0 30 60 90 0 5 10 20 25 32 41 47 60 68 83 88

For Part I, the amplitude profiles of experiments 1a–d are presented in Figure 3c and allow
estimation of the carrier crest length in the FloWave facility. Experiment 1d (θ = 90◦) shows that,
for high angle experiments, a reasonable region in which to expect full sideband-carrier interactions
occupies approximately 10 wavelengths centred about the basin origin. However, the effective length
is extended significantly to more than 20 wavelengths for crossing angles up to 30◦, the region of
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greatest interest in Part II. As expected, for waves in the x-direction (θ = 0◦), the region covers all wave
gauge locations. The results from the Part I tests were interpolated in order to estimate the finite-crest
effect at all crossing angles.

All experiments in Part II were performed with constant values of carrier frequency, f0 = 1.5 Hz,
carrier amplitudes a0 = b0 = 0.018 m, and initial sideband amplitude aδ,0 = 0.003 m, giving a depth
parameter k0d = 18, and steepness of a single carrier, k0a0 = 0.16. Figure 1a shows the expected growth
rates, crossing angles, and sideband wavenumbers for the Part II tests. A simple system of four plane
waves, consisting of two carrier waves propagating at±θ to the x-axis, and two sidebands propagating
along the x-axis was used as input to the wave generation software. Explicitly, we thus have,

η(x0, y, t) = Re
[

a0e−i(ω0t−yk0 sin θ) + b0e−i(ω0t+yk0 sin θ) + aδ,0

(
e−i(ω0+ωδ)t + e−i(ω0−ωδ)t

)]
, (12)

where x0 is the x-position of the wavemaker along y = 0 (the axis of propagation of the sidebands).
The relatively high carrier frequency was chosen to slow group velocity, increasing the effective
evolution distance. The carrier amplitude was subsequently calculated to give a moderate steepness
of k0a0 = 0.16, required for prominent instability but to avoid breaking. Each experiment was
repeated 3 times.

3.3. Data Processing

The calibrated wave gauge outputs (free surface time histories) from each experiment were
band-pass filtered to eliminate higher-order and low-frequency bound waves. The recorded free
surface elevation time series length was limited to eliminate reflected waves. A Tukey window with
a tapering parameter of 0.2 was used to create a transient signal and limit the lobe effect associated
with windowing. The length of the Tukey window was determined using the estimated linear group
velocity of the wavetrain. The amplitude spectrum was determined at each location (see Figure 4),
and the evolution of the primary sidebands (frequency components located closest to the carrier wave)
used to identify MI. The true frequency of these components was determined at the first gauge location.
These component amplitudes were then tracked across all the remaining wave gauges. Sideband and
carrier amplitudes at the first wave gauge location were used as initial conditions for a CNLSE solver
(using the Fourier, split-step method, see Appendix A) and as inputs to the prediction by the linear
stability analysis (11). The experimental evolution of the sidebands is compared to these numerical
solutions, as well as the linear stability analysis (11) below.

4. Results

Figure 4 shows the evolution of the amplitude spectra along the tank’s x-axis (the direction of
propagation of the perturbation) for the different crossing angles considered in experiments in Part
II. This figure shows both the finite-crest effect we studied in Part I and the effect of modulational
instability. Figure 5 presents the evolution of the primary sideband amplitudes of experiments 2a–l.
In order to separate out the finite-crest effect and modulational instability, we also show, as light grey
thick lines, the amplitude of unseeded regular waves (from Part I). In doing so we identify the region
over which the finite-crest effect does not play a role (i.e., the region over which the light grey thick
lines are horizontal) and we can exclusively examine modulational instability.

Also shown in Figure 5 are the numerical results from the CNLSE time-marching scheme and
the linear stability analysis. For brevity, only experiments 2a–h are presented (see Appendix B for
experiments 2i–l, which show stability, as predicted). Each experimental repeat was solved across the
spatial domain using the CNLSE solver. The results of the solver were then averaged and the standard
deviation across repeats was calculated. Error bars for experimental measurements and dashed lines
for the numerical scheme are used to indicate one standard deviation from the mean across repeats.
The carrier amplitude evolution is denoted by dark grey lines and the interpolated measurements
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from Part I are denoted by light grey lines, indicating the region over which an unseeded carrier wave
can be considered of constant amplitude.

Figure 4. Amplitude spectra for experiments 2 (a–h) (Part II) obtained using the measured free
surface time series along the primary wave propagation direction (see Figure 3a for gauge locations)
for different crossing angles, θ. Dashed lines follow the amplitudes of the carrier (light blue),
lower sideband (red), and upper sideband (dark blue).

4.1. Unidirectional Waves: θ = 0◦

The unidirectional experiment 2a, presented in Figure 5a, shows the most significant growth in
sideband amplitude, with the lower sideband increasing by more than a factor of three. An increase in
amplitude can also be observed in the upper sideband and the beginnings of FPU recurrence appear.
The numerical solution in Figure 5a also shows significant growth and follows the average of the
upper and lower sideband amplitudes well, displaying many of the same characteristics (such as FPU
recurrence). However, the lower sideband grows much more quickly than the upper sideband, which is
subject to initial growth followed by considerable attenuation, a feature not predicted by the NLSE but
predicted in the modified NLSE [55] and commonly observed in unidirectional experiments [21].
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Figure 5. Comparison of the evolution of sideband amplitude along the centreline of the basin for
experiments 2 (a–h) (Part II) from measurements, numerical solutions (crosses) of the CNLSE (thin blue
and red lines) and linear stability analysis (thin black lines). Lower and upper sidebands are indicated
in red and blue, respectively. Error bars and dashed lines represent one standard deviation from the
mean across repeats for the measured data and the CNLSE solution, respectively. Thick lines represent
the mean seeded (dark grey) and unseeded (light grey) carrier waves across repeats.

The effect of sideband growth and MI on free surface elevation is shown by the formation of
pulses in Figure 6. Extreme waves occur in these pulses when carrier crests come in phase with the
group centre, as demonstrated in Figure 6a at x/λ0 ≈ 3, where a cluster of three waves has more
than doubled in amplitude within 13λ0. Figure 4a presents the amplitude spectra for experiment
2a. Substantial growth in secondary sidebands is evident. These secondary sideband frequency
components, located at multiples of the perturbation frequency, contribute to the growth of wave
group amplitudes and further enhance the strong decline of the carrier amplitude.

Figure 6. Measured free surface elevation time series for experiments 2 (a–h) (Part II) shifted by the

linear group velocity cg =
√

C2
x + C2

y and normalized by the carrier period, T0, with the positive
vertical axis also representing increasing distance along the basin.
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4.2. Crossing Waves: 0◦ < θ ≤ 47◦

Figure 5b–d show that the growth observed in the unidirectional case continues but slows as
the crossing angle is increased to 20◦. In these experiments, the maximum amplification factor of the
lower sideband generally reduces compared to the unidirectional case, whereas the upper sideband
appears relatively unaffected, with no strong growth in either case. The pulse formations seen in
experiment 2a persist in Figure 6b–d along with the sideband growth in Figure 4b–d, though with
reduced magnitude. The unseeded carrier wave amplitude profiles of Figure 5b–d (measured in Part I)
remain largely unchanged along the length of the basin, indicating that the effective length, over which
crests reach their full amplitudes, is sufficiently long. Between θ = 25◦ and θ = 41◦ (Figure 5e–g),
the transition to stability takes places. Throughout the transition to stability, the amplitude of unseeded
regular waves show some drop in amplitude at their fringes. These drops in amplitude indicate the
edges of the interaction region caused by the finite-crest effect of the tank. However, up to θ = 47◦,
15 wavelengths of interaction distance remain, a distance seen in the unidirectional case to be sufficient
for sideband growth to occur. Experiments at angles of 41◦ and higher (Figure 5g,h, and Appendix B
for the measurements from experiments 2i–l) are stable.

5. Conclusions

We have experimentally investigated the effects of crossing angle on the modulational stability of
two crossing nonlinear surface gravity wavetrains seeded with sideband perturbations and compared
the measurements to predictions by the the coupled nonlinear Schrödinger equation (CNLSE).
The results demonstrate that sideband growth, as predicted by linear stability analysis of the CNLSE,
can be reproduced in physical experiments undertaken in a circular wave basin. Strong modulation
occurred in the unidirectional case, where the beginnings of recurrence were observed. The growth rate
reduced as the crossing angle was increased; negligible growth was measured at and beyond a crossing
angle of approximately 30◦. Due to the reduced growth rate and the finite length of the basin, we have
not been able to observe the increased amplification factors associated with angles approaching the
medium and high angle instability regions. An unseeded, regular wave was used to estimate the
finite-crest effect (an experimental limitation for a finite-size circular basin), which started to become
significant at 42◦, well beyond the theoretical stability boundary of 35.26◦. Taking into account the
reduction in evolution length imposed by the finite-crest effect, no growth in sidebands was found
to occur at these high angles. Future work should seek to extend experimental measurements into
the second (high-angle) unstable region. To complete this successfully, the finite-crest effect must be
considered allowing sidebands enough interaction evolution distance to grow. We envisage this will
be challenging in the FloWave basin.
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Appendix A. Split-Step Time Marching Technique

The split-step method (also known as the Fourier method) takes advantage of the fact that the
linear and nonlinear components can be separated and then solved exactly [56]. The linear component
is solved in Fourier space, whereas the nonlinear is solved in the time or space domain (depending
on the form of the equation). In the split-step method, the linear and nonlinear components of the
CNLSEs are treated independently and the predictions combined immediately after each time step
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as the full solution advances forward. A known error of O(ε3) (where ε = k0a0, the carrier wave
steepness) is associated with the independence assumption. The split-step method is second-order
accurate in ∆t and to all orders in ∆x, it is unconditionally stable [57].

First, the CNLSE is rearranged and split into its linear and nonlinear components (here only (6) is
considered for brevity),

L :
∂A
∂t

= iα
∂2 A
∂x2 , N :

∂A
∂t

= −i(ξ|A|2 + 2ζ|B|2)A. (A1)

The nonlinear component is integrated forwards in the time domain as follows,

Ai+1 = Aie−i∆t(ξ|Ai |2+2ζ|Bi |2), (A2)

whereas the linear component is Fourier-transformed,

∂Â
∂t

= iÂα(ik)2, (A3)

= −iαÂk2, (A4)

and then integrated in time to give,
Âi+1 = Âie−i∆tαk2

. (A5)

Combining the linear and nonlinear components, at each time step we have the explicit expression,

Ai+1 = F−1
(

Âie−i∆tαk2
+F

(
Aie−i∆t(ξ|Ai |2+2ζ|Bi |2)

))
. (A6)

The same process is applied to (7). The results of advancing A and B individually are combined in the
current time step to give the full system state to be passed to the next step.

Appendix B. Experiments 2i–l: 60◦ ≤ θ ≤ 88◦

Figure A1. Measured free surface elevation time series for experiments 2i–l (Part II) shifted by the linear

group velocity cg =
√

C2
x + C2

y and normalized by the carrier period, T0, with the positive vertical
representing increasing distance along the basin.
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Figure A2. Amplitude spectra for experiments 2i–l (Part II) obtained using the measured free
surface time series along the primary wave propagation direction (see Figure 3a for gauge locations)
for different crossing angles, θ. Dashed lines follow the amplitudes of the carrier (light blue),
lower sideband (red), and upper sideband (dark blue).

Figure A3. Comparison of the evolution of sideband amplitude along the centreline of the basin for
experiments 2i–l (Part II) from measurements, numerical solutions (crosses) of the CNLSE (thin blue
and red lines) and linear stability analysis (thin black lines). Lower and upper sidebands are indicated in
red and blue, respectively. Error bars and dashed lines represent one standard deviation from the mean
across repeats for the measured data and the CNLSE solution, respectively. Thick lines represent carrier
wave amplitudes from the seeded (Part II, dark grey) and unseeded (Part I, light grey) experiments.

References

1. Bitner-Gregersen, E.; Gramstad, O. Rogue waves impact on ships and offshore structures. In Det Norske
Veritas Germanischer Lloyd Strategic Research and Innovation Position Paper; DNV GL: Oslo, Norway, 2015.

2. Cavaleri, L.; Bertotti, L.; Torrisi, L.; Bitner-Gregersen, E.; Serio, M.; Onorato, M. Rogue waves in crossing
seas: The Louis Majesty accident. J. Geophys. Res. Oceans 2012, 117. [CrossRef]

3. Kharif, C.; Pelinovsky, E. Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B Fluid 2003,
22, 603–634. [CrossRef]

4. Dysthe, K.; Krogstad, H.E.; Müller, P. Oceanic rogue waves. Annu. Rev. Fluid Mech. 2008, 40, 287–310.
[CrossRef]

5. Onorato, M.; Residori, S.; Bortolozzo, U.; Montina, A.; Arecchi, F. Rogue waves and their generating
mechanisms in different physical contexts. Phys. Rep. 2013, 528, 47–89. [CrossRef]

6. Adcock, T.A.; Taylor, P.H. The physics of anomalous (‘rogue’) ocean waves. Rep. Prog. Phys. 2014, 77, 105901.
[CrossRef]

7. Yuen, H.C.; Lake, B.M. Nonlinear dynamics of deep-water gravity waves. In Advances in Applied Mechanics;
Elsevier: Amsterdam, The Netherlands, 1982; Volume 22, pp. 67–229.

8. Benjamin, T.B.; Feir, J. The disintegration of wave trains on deep water Part 1. Theory. J. Fluid Mech. 1967,
27, 417–430. [CrossRef]

9. Ma, Y.C. The perturbed plane-wave solutions of the cubic Schrödinger equation. Stud. Appl. Math. 1979,
60, 43–58. [CrossRef]

http://dx.doi.org/10.1029/2012JC007923
http://dx.doi.org/10.1016/j.euromechflu.2003.09.002
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102203
http://dx.doi.org/10.1016/j.physrep.2013.03.001
http://dx.doi.org/10.1088/0034-4885/77/10/105901
http://dx.doi.org/10.1017/S002211206700045X
http://dx.doi.org/10.1002/sapm197960143


Fluids 2018, 4, 105 14 of 15

10. Peregrine, D.H. Water waves, nonlinear Schrödinger equations and their solutions. ANZIAM J. 1983,
25, 16–43. [CrossRef]

11. Akhmediev, N.; Ankiewicz, A.; Taki, M. Waves that appear from nowhere and disappear without a trace.
Phys. Lett. A 2009, 373, 675–678. [CrossRef]

12. Chabchoub, A.; Hoffmann, N.; Onorato, M.; Akhmediev, N. Super rogue waves: Observation of a
higher-order breather in water waves. Phys. Rev. X 2012, 2, 011015. [CrossRef]

13. Chabchoub, A.; Hoffmann, N.; Akhmediev, N. Rogue wave observation in a water wave tank. Phys. Rev. Lett.
2011, 106, 204502. [CrossRef] [PubMed]

14. Osborne, A.R.; Resio, D.T.; Costa, A.; de León, S.P.; Chirivì, E. Highly nonlinear wind waves in Currituck
Sound: Dense breather turbulence in random ocean waves. Ocean Dyn. 2019, 69, 187–219. [CrossRef]

15. Chabchoub, A.; Hoffmann, N.; Branger, H.; Kharif, C.; Akhmediev, N. Experiments on wind-perturbed
rogue wave hydrodynamics using the Peregrine breather model. Phys. Fluids 2013, 25, 101704. [CrossRef]

16. Lake, B.M.; Yuen, H.C.; Rungaldier, H.; Ferguson, W.E. Nonlinear deep-water waves: Theory and experiment.
Part 2. Evolution of a continuous wave train. J. Fluid Mech. 1977, 83, 49–74. [CrossRef]

17. Fermi, E.; Pasta, P.; Ulam, S.; Tsingou, M. Studies of the Nonlinear Problems; Technical Report; Los Alamos
Scientific Lab.: Los Alamos, NM, USA, 1955.

18. Ford, J. The Fermi-Pasta-Ulam problem: Paradox turns discovery. Phys. Rep. 1992, 213, 271–310. [CrossRef]
19. Janssen, P.A.E.M. Modulational instability and the Fermi-Pasta-Ulam recurrence. Phys. Fluids 1981, 24, 23–26.

[CrossRef]
20. Chabchoub, A.; Fink, M. Time-reversal generation of rogue waves. Phys. Rev. Lett. 2014, 112, 124101.

[CrossRef] [PubMed]
21. Melville, W. The instability and breaking of deep-water waves. J. Fluid Mech. 1982, 115, 165–185. [CrossRef]
22. Young, I.; Verhagen, L.; Banner, M. A note on the bimodal directional spreading of fetch-limited wind waves.

J. Geophys. Res. Oceans 1995, 100, 773–778. [CrossRef]
23. Ewans, K.C. Observations of the directional spectrum of fetch-limited waves. J. Phys. Oceanogr. 1998,

28, 495–512. [CrossRef]
24. Onorato, M.; Osborne, A.R.; Serio, M. Modulational instability in crossing sea states: A possible mechanism

for the formation of freak waves. Phys. Rev. Lett. 2006, 96, 014503. [CrossRef] [PubMed]
25. Zakharov, V.E. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech.

Tech. Phy. 1968, 9, 190–194. [CrossRef]
26. Hammack, J.L.; Henderson, D.M.; Segur, H. Progressive waves with persistent two-dimensional surface

patterns in deep water. J. Fluid Mech. 2005, 532, 1–52. [CrossRef]
27. Kundu, S.; Debsarma, S.; Das, K. Modulational instability in crossing sea states over finite depth water.

Phys. Fluids 2013, 25, 066605. [CrossRef]
28. Ruban, V. Giant waves in weakly crossing sea states. J. Exp. Theor. Phys. 2010, 110, 529–536. [CrossRef]
29. Onorato, M.; Proment, D.; Toffoli, A. Freak waves in crossing seas. Eur. Phys. J. Spec. Top. 2010, 185, 45–55.

[CrossRef]
30. Ablowitz, M.J.; Horikis, T.P. Interacting nonlinear wave envelopes and rogue wave formation in deep water.

Phys. Fluids 2015, 27, 012107. [CrossRef]
31. Degasperis, A.; Lombardo, S.; Sommacal, M. Rogue Wave Type Solutions and Spectra of Coupled Nonlinear

Schrödinger Equations. Fluids 2019, 4, 57. [CrossRef]
32. Toffoli, A.; Bitner-Gregersen, E.M.; Osborne, A.R.; Serio, M.; Monbaliu, J.; Onorato, M. Extreme waves

in random crossing seas: Laboratory experiments and numerical simulations. Geophys. Res. Lett. 2011,
38, L06605. [CrossRef]

33. Toffoli, A.; Fernandez, L.; Monbaliu, J.; Benoit, M.; Gagnaire-Renou, E.; Lefevre, J.; Cavaleri, L.; Proment, D.;
Pakozdi, C.; Stansberg, C.; et al. Experimental evidence of the modulation of a plane wave to oblique
perturbations and generation of rogue waves in finite water depth. Phys. Fluids 2013, 25, 091701. [CrossRef]

34. Chabchoub, A.; Mozumi, K.; Hoffman, N.; Babanin, A.V.; Toffoli, A.; Steer, J.N.; van den Bremer, T.S.;
Akhmediev, N.; Onorato, M.; Waseda, T. Observation of short-crested slanted solitons and breathers.
Proc. Natl. Acad. Sci. USA 2019, forthcoming.

35. Okihiro, M.; Guza, R.T.; Seymour, R.J. Bound infra-gravity waves. J. Geophys. Res. 1992, 97, 453–469.
[CrossRef]

http://dx.doi.org/10.1017/S0334270000003891
http://dx.doi.org/10.1016/j.physleta.2008.12.036
http://dx.doi.org/10.1103/PhysRevX.2.011015
http://dx.doi.org/10.1103/PhysRevLett.106.204502
http://www.ncbi.nlm.nih.gov/pubmed/21668234
http://dx.doi.org/10.1007/s10236-018-1232-y
http://dx.doi.org/10.1063/1.4824706
http://dx.doi.org/10.1017/S0022112077001037
http://dx.doi.org/10.1016/0370-1573(92)90116-H
http://dx.doi.org/10.1063/1.863242
http://dx.doi.org/10.1103/PhysRevLett.112.124101
http://www.ncbi.nlm.nih.gov/pubmed/24724652
http://dx.doi.org/10.1017/S0022112082000706
http://dx.doi.org/10.1029/94JC02218
http://dx.doi.org/10.1175/1520-0485(1998)028<0495:OOTDSO>2.0.CO;2
http://dx.doi.org/10.1103/PhysRevLett.96.014503
http://www.ncbi.nlm.nih.gov/pubmed/16486462
http://dx.doi.org/10.1007/BF00913182
http://dx.doi.org/10.1017/S0022112005003733
http://dx.doi.org/10.1063/1.4811695
http://dx.doi.org/10.1134/S1063776110030155
http://dx.doi.org/10.1140/epjst/e2010-01237-8
http://dx.doi.org/10.1063/1.4906770
http://dx.doi.org/10.3390/fluids4010057
http://dx.doi.org/10.1029/2011GL046827
http://dx.doi.org/10.1063/1.4821810
http://dx.doi.org/10.1029/92JC00270


Fluids 2018, 4, 105 15 of 15

36. Herbers, T.H.C.; Elgar, S.; Guza, R.T. Infragravity-frequency (0.005–0.05 Hz) motions on the shelf. Part I:
Forced waves. J. Phys. Oceanogr. 1994, 24, 917–927. [CrossRef]

37. Toffoli, A.; Onorato, M.; Monbaliu, J. Wave statistics in unimodal and bimodal seas from a second-order
model. Eur. J. Mech. B-Fluid 2006, 25, 649–661. [CrossRef]

38. Christou, M.; Tromans, P.; Vanderschuren, L.; Ewans, K. Second-order crest statistics of realistic sea
states. In Proceedings of the 11th International Workshop on Wave Hindcasting and Forecasting, Halifax,
NS, Canada, 18–23 October 2009; pp. 18–23.

39. Hasselmann, K. On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory.
J. Fluid Mech. 1962, 12, 481–500. [CrossRef]

40. Sharma, J.N.; Dean, R.G. Second-order directional seas and associated wave forces. Soc. Pet. Eng. J. 1981,
21, 129–140. [CrossRef]

41. Dalzell, J.F. A note on finite depth second-order wave–wave interactions. Appl. Ocean Res. 1999, 21, 105–111.
[CrossRef]

42. Forristall, G.Z. Wave crest distributions: Observations and second-order theory. J. Phys. Oceanogr. 2000,
30, 1931–1943. [CrossRef]

43. Walker, D.A.G.; Taylor, P.H.; Eatock Taylor, R. The shape of large surface waves on the open sea and the
Draupner New Year wave. Appl. Ocean Res. 2004, 26, 73–83. [CrossRef]

44. Toffoli, A.; Monbaliu, J.; Onorato, M.; Osborne, A.R.; Babanin, A.V.; Bitner-Gregersen, E.M. Second-order
theory and setup in surface gravity waves: A comparison with experimental data. J. Phys. Oceanogr. 2007,
37, 2726–2739. [CrossRef]

45. Santo, H.; Taylor, P.H.; Eatock Taylor, R.; Choo, Y.S. Average properties of the largest waves in Hurricane
Camille. J. Offshore Mech. Arct. Eng. 2013, 135, 011602. [CrossRef]

46. McAllister, M.L.; Adcock, T.A.A.; Taylor, P.H.; van den Bremer, T.S. The set-down and set-up of directionally
spread and crossing surface gravity wave groups. J. Fluid Mech. 2018, 835, 131–169. [CrossRef]

47. Haver, S. A possible freak wave event measured at the Draupner jacket January 1 1995. In Proceedings of
the 2004 Rogue Waves, Brest, France, 20–22 October 2004; pp. 1–8.

48. Adcock, T.; Taylor, P.; Yan, S.; Ma, Q.; Janssen, P. Did the Draupner wave occur in a crossing sea? Proc. R. Soc. A
2011, 467, 3004–3021. [CrossRef]

49. McAllister, M.L.; Draycott, S.; Adcock, T.A.A.; Taylor, P.H.; van den Bremer, T.S. Laboratory recreation of the
Draupner wave and the role of breaking in crossing seas. J. Fluid Mech. 2019, 860, 767–786. [CrossRef]

50. Fedele, F.; Brennan, J.; De León, S.P.; Dudley, J.; Dias, F. Real world ocean rogue waves explained without
the modulational instability. Sci. Rep. 2016, 6, 27715. [CrossRef] [PubMed]

51. Brennan, J.; Dudley, J.M.; Dias, F. Extreme waves in crossing sea states. Int. J. Ocean Coast. Eng. 2018,
1, 1850001. [CrossRef]

52. Støle-Hentschel, S.; Trulsen, K.; Rye, L.B.; Raustøl, A. Extreme wave statistics of counter-propagating,
irregular, long-crested sea states. Phys. Fluids 2018, 30, 067102. [CrossRef]

53. Gramstad, O.; Bitner-Gregersen, E.; Trulsen, K.; Nieto Borge, J.C. Modulational instability and rogue waves
in crossing sea states. J. Phys. Oceanogr. 2018, 48, 1317–1331. [CrossRef]

54. Noble, D.R. Combined wave-current scale model testing at FloWave. Eng.D. Thesis, The University of
Edinburgh, Edinburgh, UK, August 2017.

55. Dysthe, K.B.; Trulsen, K.; Krogstad, H.E.; Socquet-Juglard, H. Evolution of a narrow-band spectrum of
random surface gravity waves. J. Fluid Mech. 2003, 478, 1–10. [CrossRef]

56. Weideman, J.; Herbst, B. Split-step methods for the solution of the nonlinear Schrödinger equation.
SIAM J. Numer. Anal. 1986, 23, 485–507. [CrossRef]

57. Taha, T.R.; Ablowitz, M.I. Analytical and numerical aspects of certain nonlinear evolution equations. II.
Numerical, nonlinear Schrödinger equation. J. Comput. Phys. 1984, 55, 203–230. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1175/1520-0485(1994)024<0917:IFHMOT>2.0.CO;2
http://dx.doi.org/10.1016/j.euromechflu.2006.01.003
http://dx.doi.org/10.1017/S0022112062000373
http://dx.doi.org/10.2118/8584-PA
http://dx.doi.org/10.1016/S0141-1187(99)00008-5
http://dx.doi.org/10.1175/1520-0485(2000)030<1931:WCDOAS>2.0.CO;2
http://dx.doi.org/10.1016/j.apor.2005.02.001
http://dx.doi.org/10.1175/2007JPO3634.1
http://dx.doi.org/10.1115/1.4006930
http://dx.doi.org/10.1017/jfm.2017.774
http://dx.doi.org/10.1098/rspa.2011.0049
http://dx.doi.org/10.1017/jfm.2018.886
http://dx.doi.org/10.1038/srep27715
http://www.ncbi.nlm.nih.gov/pubmed/27323897
http://dx.doi.org/10.1142/S252980701850001X
http://dx.doi.org/10.1063/1.5034212
http://dx.doi.org/10.1175/JPO-D-18-0006.1
http://dx.doi.org/10.1017/S0022112002002616
http://dx.doi.org/10.1137/0723033
http://dx.doi.org/10.1016/0021-9991(84)90003-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Theoretical Background
	Coupled Nonlinear Schrödinger Equation (CNLSE)
	Linear Stability Analysis
	Characteristics of Modulational Instability: Complex vs. Simple Evolution

	Experimental Methodology
	Facility
	Matrix of Experiments
	Data Processing

	Results
	Unidirectional Waves: =0
	Crossing Waves: 0<47

	Conclusions
	Split-Step Time Marching Technique
	Experiments 2i–l: 6088
	References

