An Analytical Solution for Unsteady Laminar Flow in Tubes with a Tapered Wall Thickness
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lowe, M.J.; Cawley, P. Long Range Guided Wave Inspection Usage—Current Commercial Capabilities and Research Directions; Department of Mechanical Engineering, Imperial College London: London, UK, 2006; pp. 1–40. [Google Scholar]
- Tennyson, R.C.; Morison, W.D.; Miesner, T. Pipeline Integrity Assessment Using Fiber Optic Sensors. In Pipelines 2005: Optimizing Pipeline Design, Operations and Maintenance in Today’s Economy, Proceedings of the ASCE Pipeline Division Specialty Conference (Pipelines 2005), Houston, TX, USA, 21–24 August 2005; American Society of Civil Engineers: Reston, VA, USA, 2005; pp. 803–817. [Google Scholar]
- Kishawy, H.A.; Gabbar, H.A. Review of pipeline integrity management practices. Int. J. Press. Vessel. Pip. 2010, 87, 373–380. [Google Scholar] [CrossRef]
- Ghidaoui, M.S.; Zhao, M.; McInnis, D.A.; Axworthy, D.H. A Review of Water Hammer Theory and Practice. Appl. Mech. Rev. 2005, 58, 49–76. [Google Scholar] [CrossRef]
- Montgolfier, J.-M. Note sur le bélier hydraulique: Et sur la maniere d’en calculer les effets. J. Mines 1803, 13, 42–51. [Google Scholar]
- Whitehurst, J. Account of a machine for raising water, executed at Oulton, in Cheshire, in 1772. In a letter from Mr. John Whitehurst to Dr. Franklin. Philos. Trans. (1683–1775) 1775, 65, 277–279. [Google Scholar]
- Young, B.W. Design of Hydraulic Ram Pump Systems. Proc. Inst. Mech. Eng. Part A J. Power Energy 1995, 209, 313–322. [Google Scholar] [CrossRef]
- Pan, M.; Johnston, N.; Robertson, J.; Plummer, A.; Hillis, A.; Yang, H. Experimental Investigation of a Switched Inertance Hydraulic System With a High-Speed Rotary Valve. J. Dyn. Syst. Meas. Control. 2015, 137, 121003. [Google Scholar] [CrossRef]
- Yudell, A.C.; Van de Ven, J.D. Soft switching in switched inertance hydraulic circuits. Fluid Power Sys. Tech. 2016, 50060, V001T01A040. [Google Scholar]
- Yuan, C.; Pan, M.; Plummer, A. A Review of Switched Inertance Hydraulic Converter Technology. BATH/ASME 2018 Symp. Fluid Power Motion Control 2018, 51968, V001T01A013. [Google Scholar] [CrossRef]
- Wiens, T.K. Analysis and Mitigation of Valve Switching Losses in Switched Inertance Converters. ASME/BATH 2015 Symp. Fluid Power Motion Control 2015. [Google Scholar] [CrossRef]
- Johnston, N.; Pan, M.; Kudzma, S.; Wang, P. Use of Pipeline Wave Propagation Model for Measuring Unsteady Flow Rate. J. Fluids Eng. 2014, 136, 031203. [Google Scholar] [CrossRef]
- Johnston, D.N. Efficient methods for numerical modelling of laminar friction in fluid lines. J. Dyn. Syst. Meas. Control Trans. ASME 2006, 128, 829–834. [Google Scholar] [CrossRef]
- Wiens, T.; Der Buhs, J.V.; Der Buhs, J.W.V. Transmission Line Modeling of Laminar Liquid Wave Propagation in Tapered Tubes. J. Fluids Eng. 2019, 141, 101103. [Google Scholar] [CrossRef]
- Krus, P.; Weddfelt, K.; Palmberg, J.-O. Fast Pipeline Models for Simulation of Hydraulic Systems. J. Dyn. Syst. Meas. Control. 1994, 116, 132–136. [Google Scholar] [CrossRef]
- Muto, T.; Kinoshita, Y.; Yoneda, R. Dynamic Response of Tapered Fluid Lines: 1st Report, Transfer Matrix and Frequency Response. Bull. JSME 1981, 24, 809–815. [Google Scholar] [CrossRef][Green Version]
- Tahmeen, M.; Muto, T.; Yamada, H. Simulation of Dynamic Responses of Tapered Fluid Lines. JSME Int. J. Ser. B 2001, 44, 247–254. [Google Scholar] [CrossRef][Green Version]
- D’Souza, A.F.; Oldenburger, R. Dynamic Response of Fluid Lines. J. Basic Eng. 1964, 86, 589–598. [Google Scholar] [CrossRef]
- Zielke, W. Frequency-Dependent Friction in Transient Pipe Flow. J. Basic Eng. 1968, 90, 109–115. [Google Scholar] [CrossRef]
- Johnston, D.N. Numerical modelling of unsteady turbulent flow in smooth-walled pipes. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 2011, 225, 1601–1613. [Google Scholar] [CrossRef]
- Goodson, R.E.; Leonard, R.G. A Survey of Modeling Techniques for Fluid Line Transients. J. Basic Eng. 1972, 94, 474–482. [Google Scholar] [CrossRef]
- Sutera, S.P.; Skalak, R. The history of Poiseuille’s law. Annu. Rev. Fluid Mech. 1993, 25, 1–20. [Google Scholar] [CrossRef]
- Williams, T. The Circuit Designer’s Companion; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Olver, F.W.J.; Olde Daalhuis, A.B.; Lozier, D.W.; Schneider, B.I.; Boisvert, R.F.; Clark, C.W.; Miller, B.R.; Saunders, B.V.; Cohl, H.S.; McClain, M.A. (Eds.) NIST Digital Library of Mathematical Functions. Available online: https://dlmf.nist.gov/ (accessed on 22 April 2021).
- Shcherbakov, M.V.; Brebels, A.; Shcherbakova, N.L.; Tyukov, A.P.; Janovsky, T.A.; Kamaev, V.A.E. A survey of forecast error measures. World Appl. Sci. J. 2013, 24, 171–176. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiens, T.; Etminan, E. An Analytical Solution for Unsteady Laminar Flow in Tubes with a Tapered Wall Thickness. Fluids 2021, 6, 170. https://doi.org/10.3390/fluids6050170
Wiens T, Etminan E. An Analytical Solution for Unsteady Laminar Flow in Tubes with a Tapered Wall Thickness. Fluids. 2021; 6(5):170. https://doi.org/10.3390/fluids6050170
Chicago/Turabian StyleWiens, Travis, and Elnaz Etminan. 2021. "An Analytical Solution for Unsteady Laminar Flow in Tubes with a Tapered Wall Thickness" Fluids 6, no. 5: 170. https://doi.org/10.3390/fluids6050170
APA StyleWiens, T., & Etminan, E. (2021). An Analytical Solution for Unsteady Laminar Flow in Tubes with a Tapered Wall Thickness. Fluids, 6(5), 170. https://doi.org/10.3390/fluids6050170