# A Monolithic Approach of Fluid–Structure Interaction by Discrete Mechanics

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Discrete Mechanics Formulation

#### 2.1. One-Dimensional Framework

#### 2.2. Extension to Other Space Dimensions

#### 2.3. Equations of Discrete Formulation

#### 2.4. Inertia on Discrete Formulation

#### 2.5. Reduction to Waves Equation

## 3. Numerical Methodology

## 4. Verifications

#### 4.1. Shear between a Fluid and an Elastic Media

#### 4.2. Compression of an Elastic Solid by a Fluid

## 5. Validation

#### Lid-Driven Open Cavity Flow with Flexible Bottom Wall

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Bathe, K.-J.; Zhang, H. Finite element developments for general fluid flows with structural interactions. Int. J. Numer. Methods Eng.
**2004**, 60, 213–232. [Google Scholar] [CrossRef] [Green Version] - Bathe, K.-J.; Zhang, H. A mesh adaptivity procedure for cfd and fuid-structure interactions. Comput. Struc.
**2009**, 87, 604–617. [Google Scholar] [CrossRef] - Hyman, J.; Shashkov, M. Natural discretizations for the divergence, gradient ans curl on logically rectangular grids. SIAM J. Num. Anal.
**1999**, 36, 788–818. [Google Scholar] [CrossRef] [Green Version] - Hyman, J.; Shashkov, M. The orthogonal decomposition theorems for mimetic finite difference methods. SIAM J. Num. Anal.
**1999**, 36, 788–818. [Google Scholar] [CrossRef] [Green Version] - Desbrun, M.; Hirani, A.; Leok, M.; Marsden, J. Discrete exterior calculus. arXiv
**2005**, arXiv:0508341v2. [Google Scholar] - Bordère, S.; Caltagirone, J.-P. A unifying model for fluid flow and elastic solid deformation: A novel approach for fluid structure interaction. J. Fluid Struct.
**2014**, 51, 344–353. [Google Scholar] [CrossRef] - Bordère, S.; Caltagirone, J.-P. A multi-physics and multi-time scale approach for modeling fuid-solid interaction and heat transfer. Comput. Struc.
**2016**, 164, 38–52. [Google Scholar] [CrossRef] - Caltagirone, J.-P.; Vincent, S. On primitive formulation in fluid mechanics and fluid-structure interaction with constant piecewise properties in velocity-potentials of acceleration. Acta Mech.
**2020**, 231, 2155–2171. [Google Scholar] [CrossRef] [Green Version] - Caltagirone, J.-P. On Helmholtz-Hodge decomposition of inertia on a discrete local frame of reference. Phys. Fluids
**2020**, 32, 083604. [Google Scholar] [CrossRef] - Sugiyama, K.; Ii, S.; Takeuchi, S.; Takagi, S.; Matsumoto, Y. A full eulerian finite difference approach for solving fluid-structure coupling problems. J. Comput. Phys.
**2011**, 230, 596–627. [Google Scholar] [CrossRef] [Green Version] - Caltagirone, J.-P. Application of discrete mechanics model to jump conditions in two-phase flows. J. Comp. Phys.
**2021**, 432, 110151. [Google Scholar] [CrossRef] - Shaskov, M. Conservative Finite-Difference Methods on General Grids; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar] [CrossRef]
- Gerbeau, J.; Vidrascu, M. A quasi-newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows. Math. Model. Numer. Anal.
**2003**, 37, 631–647. [Google Scholar] [CrossRef] [Green Version] - Kassiotis, C.; Ibrahimbegovic, A.; Niekamp, R.; Matthies, H. Nonlinear Fluid-Solid-driven cavity flow with flexible bottom structure problem, Part I: Implicit partitioned algorithm, nonlinear stability proof and validation examples. Comput. Mech.
**2011**, 47, 305–323. [Google Scholar] [CrossRef] [Green Version] - Maxwell, J. A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. Lond.
**1865**, 155, 459–512. [Google Scholar] - Liénard, A. Champ électrique et magnétique produit par une charge électrique concentrée en un point et animée d’un mouvement quelconque. L’Éclairage Électrique
**1898**, 27, 5–112. [Google Scholar] - Caltagirone, J.-P. Discrete Mechanics, Concepts and Applications, ISTE; John Wiley & Sons: London, UK, 2019. [Google Scholar] [CrossRef]
- Bruneau, C.; Saad, M. The lid-driven cavity problem revisited. Comput. Fluids
**2006**, 35, 326–348. [Google Scholar] [CrossRef]

**Figure 1.**Discrete geometric structure: a set of primitive planar facets $\mathcal{S}$ are associated with the segment $\Gamma $ of unit vector $\mathbf{t}$ whose ends a and b are distant by a length d. Each facet is defined by a contour ${\Gamma}^{*}$, a collection of three segments $\Gamma $, is oriented according to the normal $\mathbf{n}$ such that $\mathbf{n}\xb7\mathbf{t}=0$; the dual surface $\Delta $ connecting the centroids of the cells is also flat.

**Figure 2.**Fluid–structure interaction between a viscous fluid and an elastic solid; the viscosity of the fluid is equal to $\nu $ = 1 m${}^{2}$ s${}^{-1}$ and the solid shear modulus is equal to $\nu $ = 4 m${}^{2}$ s${}^{-1}$: (

**left**) the velocity of the interface over time is presented; (

**middle**) the velocity $\mathbf{V}$ at steady-state regime is reported; and (

**right**) the displacement of the solid $\mathbf{U}$ is plotted.

**Figure 3.**Evolutions of the density $\rho $ and of the scalar potential ${10}^{-5}\times \varphi $ as a function of the vertical coordinate y for a time $t=100$ s and an injection velocity ${V}_{0}$ = −0.01 m s${}^{-1}$ for a mesh of ${32}^{2}$ cells.

**Figure 4.**Vertical displacement at mid-point of flexible plate in lid-driven open cavity flow with flexible bottom wall, velocity and streamlines at t = 2.5, 15, 20 s.

**Figure 5.**Lid-driven open cavity flow with flexible bottom wall. Evolution of maximum deviation of membrane ${y}_{m}$ over time.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Vincent, S.; Caltagirone, J.-P.
A Monolithic Approach of Fluid–Structure Interaction by Discrete Mechanics. *Fluids* **2021**, *6*, 95.
https://doi.org/10.3390/fluids6030095

**AMA Style**

Vincent S, Caltagirone J-P.
A Monolithic Approach of Fluid–Structure Interaction by Discrete Mechanics. *Fluids*. 2021; 6(3):95.
https://doi.org/10.3390/fluids6030095

**Chicago/Turabian Style**

Vincent, Stéphane, and Jean-Paul Caltagirone.
2021. "A Monolithic Approach of Fluid–Structure Interaction by Discrete Mechanics" *Fluids* 6, no. 3: 95.
https://doi.org/10.3390/fluids6030095