Gas–Liquid Mass Transfer around a Rising Bubble: Combined Effect of Rheology and Surfactant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Material
2.3. Determination of Hydrodynamic Parameters
2.4. Determination of Transfer Parameters
3. Results
3.1. Hydrodynamic Parameters of Bubbles
3.2. Visualization of Oxygen Concentration Field
4. Discussion
4.1. Comparison with Models
4.2. Physicochemical Modifications in the Vicinity of the Interface
4.2.1. Estimation of a Modified Diffusion Coefficient for Oxygen
4.2.2. Estimation of a Modified Value of Oxygen Saturation [O2] *
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Notation | |
a | Width of bubble (mm) |
A | Parameter representing the Gaussian distribution of the oxygen field concentration (mg/L or mg/m3) |
b | Length of bubble (mm) |
B | Parameter representing the Gaussian distribution of the oxygen field concentration (pixel²) |
CMC | Critical micellar concentration |
C | Parameter representing the background noise of the image (-) |
deq | Equivalent diameter of bubbles (mm or m) |
DO2 | Diffusion coefficient of oxygen (m2/s) |
FO2 | Flux of oxygen transferred (mg/s) |
G | Gray level of image in presence of oxygen |
G0 | Gray level of image without oxygen |
I | Maximum signal intensity |
I0 | Minimum signal intensity |
kL | Mass transfer coefficient of oxygen in the liquid side (m/s) |
kLF | Mass transfer coefficient of oxygen in the liquid side predicted by the Frössling correlation (m/s) |
Ksv | Stern–Volmer constant (L/mg) |
mO2 | Total amount of oxygen transferred in a plane perpendicular to the wake (mg·m−1) |
[O2] | Oxygen concentration in the liquid (mg/L or mg/m3) |
[O2] * | Oxygen concentration when the liquid is saturated with oxygen (mg/L or mg/m3) |
Sb | Surface area of the bubble (mm2 or m2) |
Sspot | Area of the diffusion spot (mm2 or m2) |
Ub | Velocity of the bubble (m/s or mm/s) |
xp | Number of the line of the image (pixel) |
x | Horizontal position (m) |
X | Number of the line in the center of the spot (pixel) |
yp | Number of the column of the image (pixel) |
y | Vertical position (m) |
Y | Number of the column in the center of the spot (pixel) |
Greek letters | |
γ | Shear rate (s−1) |
δdf | Thickness of the diffusion layer estimated with the double film theory (µm) |
δdf | Thickness of the diffusion layer estimated with Péclet number (µm) |
η | Viscosity (Pa·s) |
ηD | Fixed parameter for determination of the diffusion coefficient (-). |
σ | Surface tension (mN/m) |
σn | Standard deviation of the background noise |
ρ | Density (kg/m3) |
Dimensionless numbers | |
Pe | Péclet number (Pe = deq × Ub/D) |
Re | Reynolds number (Re = Ub × deq×ρ/η) |
Sc | Schmidt number (Sc = η/(ρ × D)) |
Sh | Sherwood number (Sh = kL × deq/D) |
References
- Charpentier, J.-C. Considérations générales sur les contacteurs gaz-liquide Problèmes fondamentaux et appliqués de métrologie qui se posent. Place de nos recherches. Houille Blanche 1978, 315–317. [Google Scholar] [CrossRef] [Green Version]
- Canado, A.; Tournois, M.; Pages, M.; Roustan, M.; Remus-Borel, W.; Dietrich, N.; Violleau, F.; Hébrard, G. Sudden Decrease of the Dissolved Ozone Concentration in Sprays: A Mass Transfer Phenomenon? Ind. Eng. Chem. Res. 2020, 59, 14914–14924. [Google Scholar] [CrossRef]
- Hreiz, R.; Sialve, B.; Morchain, J.; Escudié, R.; Steyer, J.-P.; Guiraud, P. Experimental and Numerical Investigation of Hydrodynamics in Raceway Reactors Used for Algaculture. Chem. Eng. J. 2014, 250, 230–239. [Google Scholar] [CrossRef]
- Tatin, R.; Moura, L.; Dietrich, N.; Baig, S.; Hébrard, G. Physical Absorption of Volatile Organic Compounds by Spraying Emulsion in a Spray Tower: Experiments and Modelling. Chem. Eng. Res. Des. 2015, 104, 409–415. [Google Scholar] [CrossRef]
- Benizri, D.; Dietrich, N.; Labeyrie, P.; Hébrard, G. A Compact, Economic Scrubber to Improve Farm Biogas Upgrading Systems. Sep. Purif. Technol. 2019, 219, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Roustan, M. Transferts Gaz-Liquide dans les Procédés de Traitement des Eaux et des Effluents Gazeux; Tec & Doc Lavoisier: Paris, France, 2003. [Google Scholar]
- Jimenez, M.; Dietrich, N.; Grace, J.R.; Hébrard, G. Oxygen Mass Transfer and Hydrodynamic Behaviour in Wastewater: Determination of Local Impact of Surfactants by Visualization Techniques. Water Res. 2014, 58, 111–121. [Google Scholar] [CrossRef]
- Bouaifi, M.; Hebrard, G.; Bastoul, D.; Roustan, M. A Comparative Study of Gas Hold-up, Bubble Size, Interfacial Area and Mass Transfer Coefficients in Stirred Gas–Liquid Reactors and Bubble Columns. Chem. Eng. Process. Process Intensif. 2001, 40, 97–111. [Google Scholar] [CrossRef]
- Cockx, A.; Roustan, M.; Line, A.; Hébrard, G. Modeling of Mass-Transfer Coefficient K-L in Bubble-Columns. Chem. Eng. Res. Des. 1995, 73, 627–631. [Google Scholar]
- Djebbar, R.; Roustan, M.; Line, A. Numerical Computations of Turbulent Gas-Liquid Dispersion in Mechanically Agitated Vessels. Chem. Eng. Res. Des. 1996, 74, 492–498. [Google Scholar]
- Hebrard, G.; Zeng, J.; Loubiere, K. Effect of Surfactants on Liquid Side Mass Transfer Coefficients: A New Insight. Chem. Eng. J. 2009, 148, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, N.; Poncin, S.; Pheulpin, S.; Huai, Z.L. Passage of a Bubble through a Liquid-Liquid Interface. AIChE J. 2008, 54, 594–600. [Google Scholar]
- Dietrich, N.; Poncin, S.; Li, H. Dynamical Deformation of a Flat Liquid–Liquid Interface. Exp. Fluids 2011, 50, 1293–1303. [Google Scholar] [CrossRef]
- Xie, X.; Dietrich, N.; Fillaudeau, L.; Le Men, C.; Schmitz, P.; Liné, A. Local Hydrodynamics Investigation within a Dynamic Filtration Unit under Laminar Flow. Chem. Eng. Res. Des. 2018, 132, 954–965. [Google Scholar] [CrossRef]
- Xie, X.; Le Men, C.; Dietrich, N.; Schmitz, P.; Fillaudeau, L. Local Hydrodynamic Investigation by PIV and CFD within a Dynamic Filtration Unit under Laminar Flow. Sep. Purif. Technol. 2018, 198, 38–51. [Google Scholar] [CrossRef]
- Bouayed, N.; Cavalier, A.; Lafforgue, C.; Dietrich, N.; Lee, C.-H.; Guigui, C. Hydrodynamics Characterization of the Impact of Free-Moving Particles in an Air-Lift Membrane Bioreactor. Ind. Eng. Chem. Res. 2020, 59, 7943–7954. [Google Scholar] [CrossRef]
- Couvert, A.; Bastoul, D.; Roustan, M.; Line, A.; Chatellier, P. Prediction of Liquid Velocity and Gas Hold-up in Rectangular Air-Lift Reactors of Different Scales. Chem. Eng. Process. Process Intensif. 2001, 40, 113–119. [Google Scholar] [CrossRef]
- Dani, A.; Guiraud, P.; Cockx, A. Local Measurement of Oxygen Transfer around a Single Bubble by Planar Laser-Induced Fluorescence. Chem. Eng. Sci. 2007, 62, 7245–7252. [Google Scholar] [CrossRef]
- Jamnongwong, M.; Loubiere, K.; Dietrich, N.; Hébrard, G. Experimental Study of Oxygen Diffusion Coefficients in Clean Water Containing Salt, Glucose or Surfactant: Consequences on the Liquid-Side Mass Transfer Coefficients. Chem. Eng. J. 2010, 165, 758–768. [Google Scholar] [CrossRef] [Green Version]
- Loubière, K.; Hébrard, G.; Guiraud, P. Dynamics of Bubble Growth and Detachment from Rigid and Flexible Orifices. Can. J. Chem. Eng. 2003, 81, 499–507. [Google Scholar] [CrossRef] [Green Version]
- Painmanakul, P. Analyse Locale Du Transfert de Matière Associé à La Formation de Bulles Générées Par Différents Types d’orifices Dans Différentes Phases Liquides Newtoniennes: Étude Expérimentale et Modélisation. Ph.D. Thesis, Institut National des Sciences Appliquées de Toulouse, Toulouse, France, 2005. [Google Scholar]
- Ahmia, A.C.; Idouhar, M.; Wongwailikit, K.; Dietrich, N.; Hébrard, G. Impact of Cellulose and Surfactants on Mass Transfer of Bubble Columns. Chem. Eng. Technol. 2019, 42, 2465–2475. [Google Scholar] [CrossRef]
- Nekoeian, S.; Aghajani, M.; Alavi, S.M.; Sotoudeh, F. Effect of Surfactants on Mass Transfer Coefficients in Bubble Column Contactors: An Interpretative Critical Review Study. Rev. Chem. Eng. 2019. [Google Scholar] [CrossRef]
- Alves, S.S.; Orvalho, S.P.; Vasconcelos, J.M.T. Effect of Bubble Contamination on Rise Velocity and Mass Transfer. Chem. Eng. Sci. 2005, 60, 1–9. [Google Scholar] [CrossRef]
- Caskey, J.A.; Barlage, W.B. A Study of the Effects of Soluble Surfactants on Gas Absorption Using Liquid Laminar Jets. J. Colloid Interface Sci. 1972, 41, 52–62. [Google Scholar] [CrossRef]
- Painmanakul, P.; Hébrard, G. Effect of Different Contaminants on the α-Factor: Local Experimental Method and Modeling. Chem. Eng. Res. Des. 2008, 86, 1207–1215. [Google Scholar] [CrossRef]
- Gómez-Díaz, D.; Navaza, J.M.; Sanjurjo, B. Mass-Transfer Enhancement or Reduction by Surfactant Presence at a Gas−Liquid Interface. Ind. Eng. Chem. Res. 2009, 48, 2671–2677. [Google Scholar] [CrossRef]
- Rosso, D.; Huo, D.L.; Stenstrom, M.K. Effects of Interfacial Surfactant Contamination on Bubble Gas Transfer. Chem. Eng. Sci. 2006, 61, 5500–5514. [Google Scholar] [CrossRef] [Green Version]
- Sardeing, R.; Painmanakul, P.; Hébrard, G. Effect of Surfactants on Liquid-Side Mass Transfer Coefficients in Gas–Liquid Systems: A First Step to Modeling. Chem. Eng. Sci. 2006, 61, 6249–6260. [Google Scholar] [CrossRef]
- Dietrich, N.; Loubière, K.; Jimenez, M.; Hébrard, G.; Gourdon, C. A New Direct Technique for Visualizing and Measuring Gas–Liquid Mass Transfer around Bubbles Moving in a Straight Millimetric Square Channel. Chem. Eng. Sci. 2013, 100, 172–182. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, N.; Hebrard, G. Visualisation of Gas-Liquid Mass Transfer around a Rising Bubble in a Quiescent Liquid Using an Oxygen Sensitive Dye. Heat Mass Transf. 2018, 54, 2163–2171. [Google Scholar] [CrossRef]
- Yang, L.; Loubière, K.; Dietrich, N.; Le Men, C.; Gourdon, C.; Hébrard, G. Local Investigations on the Gas-Liquid Mass Transfer around Taylor Bubbles Flowing in a Meandering Millimetric Square Channel. Chem. Eng. Sci. 2017, 165, 192–203. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Dietrich, N.; Hébrard, G.; Loubière, K.; Gourdon, C. Optical Methods to Investigate the Enhancement Factor of an Oxygen-Sensitive Colorimetric Reaction Using Microreactors. AIChE J. 2017, 63, 2272–2284. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Dietrich, N.; Loubière, K.; Gourdon, C.; Hébrard, G. Visualization and Characterization of Gas–Liquid Mass Transfer around a Taylor Bubble Right after the Formation Stage in Microreactors. Chem. Eng. Sci. 2016, 143, 364–368. [Google Scholar] [CrossRef] [Green Version]
- Kherbeche, A.; Milnes, J.; Jimenez, M.; Dietrich, N.; Hébrard, G.; Lekhlif, B. Multi-Scale Analysis of the Influence of Physicochemical Parameters on the Hydrodynamic and Gas–Liquid Mass Transfer in Gas/Liquid/Solid Reactors. Chem. Eng. Sci. 2013, 100, 515–528. [Google Scholar] [CrossRef]
- Kherbeche, A.; Mei, M.; Thoraval, M.-J.; Hébrard, G.; Dietrich, N. Hydrodynamics and Gas-Liquid Mass Transfer around a Confined Sliding Bubble. Chem. Eng. J. 2020, 386, 121461. [Google Scholar] [CrossRef]
- Mei, M.; Felis, F.; Hébrard, G.; Dietrich, N.; Loubière, K. Hydrodynamics of Gas–Liquid Slug Flows in a Long In-Plane Spiral Shaped Milli-Reactor. Theor. Found. Chem. Eng. 2020, 54, 25–47. [Google Scholar] [CrossRef]
- Mei, M.; Hébrard, G.; Dietrich, N.; Loubière, K. Gas-Liquid Mass Transfer around Taylor Bubbles Flowing in a Long, in-Plane, Spiral-Shaped Milli-Reactor. Chem. Eng. Sci. 2020, 222, 115717. [Google Scholar] [CrossRef]
- Hiby, J.W.; Braun, D.; Eickel, K.H. Eine Fluoreszenzmethode Zur Untersuchung Des Stoffübergangs Bei Der Gasabsorption Im Rieselfilm. Chem. Ing. Tech. 1967, 39, 297–301. [Google Scholar] [CrossRef]
- Kong, G.; Buist, K.A.; Peters, E.A.J.F.; Kuipers, J.A.M. Dual Emission LIF Technique for PH and Concentration Field Measurement around a Rising Bubble. Exp. Therm. Fluid Sci. 2018, 93, 186–194. [Google Scholar] [CrossRef]
- Someya, S.; Bando, S.; Song, Y.; Chen, B.; Nishio, M. DeLIF Measurement of PH Distribution around Dissolving CO2 Droplet in High Pressure Vessel. Int. J. Heat Mass Transf. 2005, 48, 2508–2515. [Google Scholar] [CrossRef]
- Stöhr, M.; Schanze, J.; Khalili, A. Visualization of Gas–Liquid Mass Transfer and Wake Structure of Rising Bubbles Using PH-Sensitive PLIF. Exp. Fluids 2009, 47, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Valiorgue, P.; Souzy, N.; Hajem, M.E.; Hadid, H.B.; Simoëns, S. Concentration Measurement in the Wake of a Free Rising Bubble Using Planar Laser-Induced Fluorescence (PLIF) with a Calibration Taking into Account Fluorescence Extinction Variations. Exp. Fluids 2013, 54, 1501. [Google Scholar] [CrossRef]
- Huang, J.; Saito, T. Influences of Gas–Liquid Interface Contamination on Bubble Motions, Bubble Wakes, and Instantaneous Mass Transfer. Chem. Eng. Sci. 2017, 157, 182–199. [Google Scholar] [CrossRef]
- Lacassagne, T.; Simoëns, S.; El Hajem, M.; Champagne, J.-Y. Ratiometric, Single-Dye, PH-Sensitive Inhibited Laser-Induced Fluorescence for the Characterization of Mixing and Mass Transfer. ExFl 2018, 59, 21. [Google Scholar] [CrossRef]
- Kováts, P.; Thévenin, D.; Zähringer, K. Influence of Viscosity and Surface Tension on Bubble Dynamics and Mass Transfer in a Model Bubble Column. Int. J. Multiph. Flow 2020, 123, 103174. [Google Scholar] [CrossRef]
- Vaughn, W.M.; Weber, G. Oxygen Quenching of Pyrenebutyric Acid Fluorescence in Water. Dynamic Probe of the Microenvironment. Biochemistry 1970, 9, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Wolff, L.M.; Liu, Z.-C.; Hanratty, T.J. A Fluorescence Technique to Measure Concentration Gradients near an Interface; ASCE: Reston, VA, USA, 1991; pp. 210–218. [Google Scholar]
- Wolff, L.M.; Hanratty, T.J. Instantaneous Concentration Profiles of Oxygen Accompanying Absorption in a Stratified Flow. Exp. Fluids 1994, 16, 385–392. [Google Scholar] [CrossRef]
- Woodrow, P.T.; Duke, S.R. Laser-Induced Fluorescence Studies of Oxygen Transfer Across Unsheared Flat and Wavy Air−Water Interfaces. Ind. Eng. Chem. Res. 2001, 40, 1985–1995. [Google Scholar] [CrossRef]
- Butler, C.; Lalanne, B.; Sandmann, K.; Cid, E.; Billet, A.-M. Mass Transfer in Taylor Flow: Transfer Rate Modelling from Measurements at the Slug and Film Scale. Int. J. Multiph. Flow 2018, 105, 185–201. [Google Scholar] [CrossRef] [Green Version]
- Butler, C.; Cid, E.; Billet, A.-M. Modelling of Mass Transfer in Taylor Flow: Investigation with the PLIF-I Technique. Chem. Eng. Res. Des. 2016, 115 Pt B, 292–302. [Google Scholar] [CrossRef] [Green Version]
- Roudet, M.; Billet, A.-M.; Cazin, S.; Risso, F.; Roig, V. Experimental Investigation of Interfacial Mass Transfer Mechanisms for a Confined High-Reynolds-Number Bubble Rising in a Thin Gap. AIChE J. 2017, 63, 2394–2408. [Google Scholar] [CrossRef] [Green Version]
- Roudet, M.; Loubiere, K.; Gourdon, C.; Cabassud, M. Hydrodynamic and Mass Transfer in Inertial Gas–Liquid Flow Regimes through Straight and Meandering Millimetric Square Channels. Chem. Eng. Sci. 2011, 66, 2974–2990. [Google Scholar] [CrossRef] [Green Version]
- Bork, O.; Schlueter, M.; Raebiger, N. The Impact of Local Phenomena on Mass Transfer in Gas-Liquid Systems. Can. J. Chem. Eng. 2005, 83, 658–666. [Google Scholar] [CrossRef]
- Francois, J.; Dietrich, N.; Guiraud, P.; Cockx, A. Direct Measurement of Mass Transfer around a Single Bubble by Micro-PLIFI. Chem. Eng. Sci. 2011, in press, corrected proof. [Google Scholar] [CrossRef]
- Kück, U.D.; Schlüter, M.; Räbiger, N. Local Measurement of Mass Transfer Rate of a Single Bubble with and without a Chemical Reaction. J. Chem. Eng. Jpn. 2012, 45, 708–712. [Google Scholar] [CrossRef]
- Jimenez, M. Etude Du Transfert de Matière Gaz/Liquide En Milieux Complexes: Quantification Du Transfert d’oxygène Par Techniques Optiques. Ph.D. Thesis, INSA, Toulouse, France, 2013. [Google Scholar]
- Frössling, N. Uber Die Verdunstung Fallender Tropfen. Beitr Geophys. Gerlands 1938, 52, 170–216. [Google Scholar]
- Higbie, R. The Rate of Absorption of a Pure Gas into Still Liquid during Short Periods of Exposure; New York: New York, NY, USA, 1935. [Google Scholar]
- Xu, F.; Cockx, A.; Hébrard, G.; Dietrich, N. Mass Transfer and Diffusion of a Single Bubble Rising in Polymer Solutions. Ind. Eng. Chem. Res. 2018, 57, 15181–15194. [Google Scholar] [CrossRef]
- Frank, X.; Charpentier, J.-C.; Ma, Y.; Midoux, N.; Li, H. A Multiscale Approach for Modeling Bubbles Rising in Non-Newtonian Fluids. Ind. Eng. Chem. Res. 2011, 51, 2084–2093. [Google Scholar] [CrossRef]
- Stern, O.; Volmer, M. On the quenching-time of fluorescence. Phys. Z 1919, 20, 183–188. [Google Scholar]
- Dietrich, N.; Francois, J.; Jimenez, M.; Cockx, A.; Guiraud, P.; Hébrard, G. Fast Measurements of the Gas-Liquid Diffusion Coefficient in the Gaussian Wake of a Spherical Bubble. Chem. Eng. Technol. 2015, 38, 941–946. [Google Scholar] [CrossRef]
- Jimenez, M.; Dietrich, N.; Hébrard, G. Mass Transfer in the Wake of Non-Spherical Air Bubbles Quantified by Quenching of Fluorescence. Chem. Eng. Sci. 2013, 100, 160–171. [Google Scholar] [CrossRef]
- Xu, F.; Jimenez, M.; Dietrich, N.; Hébrard, G. Fast Determination of Gas-Liquid Diffusion Coefficient by an Innovative Double Approach. Chem. Eng. Sci. 2017, 170, 68–76. [Google Scholar] [CrossRef]
- Clift, R.; Grace, J.R.; Weber, M.E.; Weber, M.F. Bubbles, Drops, and Particles; Academic Press: Cambridge, MA, USA, 1978. [Google Scholar]
- Lewis, W.; Whitman, W. Principle of Gas Absorption. Ind. Eng. Chem. 1924, 16, 1215–1220. [Google Scholar] [CrossRef]
- Moore, D. The Boundary Layer on a Spherical Gas Bubble. J. Fluid Mech. 1963, 16, 161–176. [Google Scholar] [CrossRef]
- Weiner, A.; Timmermann, J.; Pesci, C.; Grewe, J.; Hoffmann, M.; Schlüter, M.; Bothe, D. Experimental and Numerical Investigation of Reactive Species Transport around a Small Rising Bubble. Chem. Eng. Sci. X 2019, 1, 100007. [Google Scholar] [CrossRef]
σ (mN/m) | ρ (kg/m3) | η (Pa·s) | deq (mm) | Ub (mm/s) | χ (-) | |
---|---|---|---|---|---|---|
Water | 71.25 ± 0.16 | 998.00 ± 0.09 | 1 ± 0.001 × 10−3 | 1.27 ± 0.04 | 321 ± 2 | 1.4 |
PAAm 0.1% in water [61] | 69.80 | 998.00 | 13γ−0.35 | 1.00 ± 0.04 | 81 ± 1 | 1.04 |
Triton X-100 0.02 g/L in water | 48.38 ± 0.26 | 997.63 ± 0.04 | 1.001 ± 0.001 × 10–3 | 1.25 ± 0.04 | 142 ± 1 | 1.05 |
PAAm 0.1% and Triton X-100 0.02 g/L in water | 47.20 ± 0.25 | 997.92 ± 0.05 | 13γ−0.35 | 1.44 ± 0.04 | 118 ± 1 | 1.03 |
Integral (10−5 mg/m) | kL (10−4 m/s) | DO2 (10−9 m2/s) | Re (-) | Sc (-) | Sh (-) | |
---|---|---|---|---|---|---|
Water | 7.0 ± 0.2 | 4.9 ± 0.07 | 2.13 ± 0.06 | 407 | 470 | 290 |
PAAm 0.1% in water [61] | 3.48 | 1.06 ± 0.09 | 1.88 ± 0.02 | 30 | 1490 | 60 |
Triton X-100 0.02 g/L in water | 2.41 ± 0.13 | 0.76 ± 0.02 | 1.82 ± 0.14 | 177 | 550 | 50 |
PAAm 0.1% and Triton X-100 0.02 g/L in water | 3.1 ± 0.2 | 0.62 ± 0.02 | 1.75 ± 0.13 | 68 | 1580 | 50 |
kL (10−4 m/s) | kLFrössling (10−4 m/s) | kLHigbie (10−4 m/s) | δdf (µm) | δPe (µm) | |
---|---|---|---|---|---|
Water | 4.91 ± 0.07 | 1.73 | 8.32 | 4.3 | 2.9 |
PAAm 0.1% in water [61] | 1.06 ± 0.09 | 0.79 | 4.40 | 17.7 | 4.8 |
Triton X-100 0.02 g/L in water | 0.76 ± 0.02 | 1.06 | 5.13 | 23.9 | 4.0 |
PAAm 0.1% and Triton X-100 0.02 g/L in water | 0.62 ± 0.02 | 0.74 | 4.27 | 28.2 | 4.6 |
kL Experimental (10−4 m/s) | DO2 in the Diffusion Layer (10−10 m2/s) | kLFrössling Modified (10−4 m/s) | kLHigbie Modified (10−4 m/s) | |
---|---|---|---|---|
PAAm 0.1% in water [61] | 1.06 ± 0.09 | 5.1 | 0.21 | 2.29 |
Triton X-100 0.02 g/L in water | 0.76 ± 0.02 | 3.04 | 0.18 | 2.1 |
PAAm 0.1% and Triton X-100 0.02 g/L in water | 0.62 ± 0.02 | 2.84 | 0.12 | 1.74 |
kL Experimental (10−4 m/s) | kLFrössling (10−4 m/s) | [O2] * Experimental (mg/L) | [O2] * Modified (mg/L) | |
---|---|---|---|---|
Triton X-100 0.02 g/L in water | 0.76 ± 0.02 | 1.06 | 9.18 ± 0.02 | 6.59 |
PAAm 0.1% and Triton X-100 0.02 g/L in water | 0.62 ± 0.02 | 0.74 | 9.15 ± 0.02 | 7.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebrun, G.; Xu, F.; Le Men, C.; Hébrard, G.; Dietrich, N. Gas–Liquid Mass Transfer around a Rising Bubble: Combined Effect of Rheology and Surfactant. Fluids 2021, 6, 84. https://doi.org/10.3390/fluids6020084
Lebrun G, Xu F, Le Men C, Hébrard G, Dietrich N. Gas–Liquid Mass Transfer around a Rising Bubble: Combined Effect of Rheology and Surfactant. Fluids. 2021; 6(2):84. https://doi.org/10.3390/fluids6020084
Chicago/Turabian StyleLebrun, Gaelle, Feishi Xu, Claude Le Men, Gilles Hébrard, and Nicolas Dietrich. 2021. "Gas–Liquid Mass Transfer around a Rising Bubble: Combined Effect of Rheology and Surfactant" Fluids 6, no. 2: 84. https://doi.org/10.3390/fluids6020084
APA StyleLebrun, G., Xu, F., Le Men, C., Hébrard, G., & Dietrich, N. (2021). Gas–Liquid Mass Transfer around a Rising Bubble: Combined Effect of Rheology and Surfactant. Fluids, 6(2), 84. https://doi.org/10.3390/fluids6020084