# Statistical Mechanics-Based Surrogates for Scalar Transport in Channel Flow

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Physics-Based Approach

#### Physical Setup: Channel Flow with Low Prandtl Number Fluid

#### Energy Cascading

## 3. Theory–Statistics-Based Projection

#### Equivalence to the Advection–Diffusion Equation

## 4. Results and Discussion

#### 4.1. Data Learning: Estimating Moments

#### 4.2. Velocity Data and Surrogate

#### 4.3. Temperature Data and Surrogate

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Gould, D.; Franken, D.; Bindra, H.; Kawaji, M. Transition from molecular diffusion to natural circulation mode air-ingress in high temperature helium loop. Ann. Nucl. Energy
**2017**, 107, 103–109. [Google Scholar] [CrossRef] [Green Version] - Franken, D.; Gould, D.; Jain, P.K.; Bindra, H. Numerical study of air ingress transition to natural circulation in a high temperature helium loop. Ann. Nucl. Energy
**2018**, 111, 371–378. [Google Scholar] [CrossRef] - Ward, B.; Clark, J.; Bindra, H. Thermal stratification in liquid metal pools under influence of penetrating colder jets. Exp. Therm. Fluid Sci.
**2019**, 103, 118–125. [Google Scholar] [CrossRef] - Ward, B.; Wiley, A.; Wilson, G.; Bindra, H. Scaling of thermal stratification or mixing in outlet plena of SFRs. Ann. Nucl. Energy
**2018**, 112, 431–438. [Google Scholar] [CrossRef] - Frisch, U.; Kolmogorov, A.N. Turbulence: The Legacy of AN Kolmogorov; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Sreenivasan, K.R. Turbulent mixing: A perspective. Proc. Natl. Acad. Sci. USA
**2018**, 116, 18175–18183. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Durbin, P. A stochastic model of two-particle dispersion and concentration fluctuations in homogeneous turbulence. J. Fluid Mech.
**1980**, 100, 279–302. [Google Scholar] [CrossRef] - Taylor, G.I. Diffusion by continuous movements. Proc. Lond. Math. Soc.
**1922**, 2, 196–212. [Google Scholar] [CrossRef] - Osborne, D.; Vassilicos, J.; Sung, K.; Haigh, J. Fundamentals of pair diffusion in kinematic simulations of turbulence. Phys. Rev. E
**2006**, 74, 036309. [Google Scholar] [CrossRef] [Green Version] - Jullien, M.C.; Paret, J.; Tabeling, P. Richardson pair dispersion in two-dimensional turbulence. Phys. Rev. Lett.
**1999**, 82, 2872. [Google Scholar] [CrossRef] [Green Version] - Roberts, P.J.; Webster, D.R. Turbulent Diffusion; ASCE Press: Reston, VA, USA, 2002. [Google Scholar]
- Obabko, A.; Fischer, P.; Marin, O.; Merzari, E.; Pointer, D. Verification and Validation of Nek5000; NURETH-16; Thermal Hydraulics: Chicago, IL, USA, 2015. [Google Scholar]
- Thomas, J.; Fanning, T.; Vilim, R.; Briggs, L. Validation of the Integration of CFD and SAS4A/SASSYS-1: Analysis of EBR-II Shutdown Heat Removal Test 17; American Nuclear Society: La Grange Park, IL, USA, 2012; Volume 1, pp. 692–700. [Google Scholar]
- Huber, K.; Fanning, T.H.; Thomas, J.W. Coupled calculations of SAS4A/SASSYS-1 and STAR-CCM+ for the SHRT-45R test in EBR-II. In Proceedings of the 16th International Meeting on Nuclear Reactor Thermal Hydraulics NURETH-16, Chicago, IL, USA, 30 August–4 September 2015. [Google Scholar]
- Baviere, R.; Tauveron, N.; Perdu, F.; Garre, E.; Li, S. A first system/CFD coupled simulation of a complete nuclear reactor transient using CATHARE2 and TRIO_U. Preliminary validation on the Phenix Reactor Natural Circulation Test. Nucl. Eng. Des.
**2014**, 277, 124–137. [Google Scholar] [CrossRef] - Hu, R.; Zhu, Y.; Kraus, A. Advanced Model Developments in SAM for Thermal Stratification Analysis during Reactor Transients; Technical Report; Argonne National Lab.: Lemont, IL, USA, 2018. [Google Scholar]
- Wang, C.; Wu, X.; Kozlowski, T. Surrogate-Based Inverse Uncertainty Quantification of TRACE Physical Model Parameters Using Steady-State PSBT Void Fraction Data. In Proceedings of the 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH 17), Xi’an, China, 3–8 September 2017; pp. 3–8. [Google Scholar]
- Huang, D.; Abdel-Khalik, H.; Rabiti, C.; Gleicher, F. Dimensionality reducibility for multi-physics reduced order modeling. Ann. Nucl. Energy
**2017**, 110, 526–540. [Google Scholar] [CrossRef] - Wu, X.; Kozlowski, T. Inverse uncertainty quantification of reactor simulations under the Bayesian framework using surrogate models constructed by polynomial chaos expansion. Nucl. Eng. Des.
**2017**, 313, 29–52. [Google Scholar] [CrossRef] - Bindra, H.; Uddin, R. Effects of modeling assumptions on the stability domain of BWRs. Ann. Nucl. Energy
**2014**, 67, 13–20. [Google Scholar] [CrossRef] - Liu, Y.; Dinh, N. Validation and Uncertainty Quantification for Wall Boiling Closure Relations in Multiphase-CFD Solver. Nucl. Sci. Eng.
**2019**, 193, 81–99. [Google Scholar] [CrossRef] [Green Version] - Batchelor, G. Diffusion in a field of homogeneous turbulence: II. The relative motion of particles. Math. Proc. Camb. Philos. Soc.
**1952**, 48, 345–362. [Google Scholar] [CrossRef] - Klir, G.J.; Yuan, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications; Prentice Hall PTR New Jersey: Englewood Cliffs, NJ, USA, 1995; Volume 574. [Google Scholar]
- Booker, J.; Ross, T. An evolution of uncertainty assessment and quantification. Sci. Iran.
**2011**, 18, 669–676. [Google Scholar] [CrossRef] [Green Version] - Gairola, A.; Bindra, H. Lattice Boltzmann method for solving non-equilibrium radiative transport problems. Ann. Nucl. Energy
**2017**, 99, 151–156. [Google Scholar] [CrossRef] [Green Version] - Laizet, S.; Lamballais, E. High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy. J. Comput. Phys.
**2009**, 228, 5989–6015. [Google Scholar] [CrossRef] - Renner, C.; Peinke, J.; Friedrich, R. Experimental indications for Markov properties of small-scale turbulence. J. Fluid Mech.
**2001**, 433, 383–409. [Google Scholar] [CrossRef] - Tutkun, M. Markovian properties of velocity increments in boundary layer turbulence. Phys. D Nonlinear Phenom.
**2017**, 351, 53–61. [Google Scholar] [CrossRef] - Peinke, J.; Tabar, M.R.; Wachter, M. The Fokker–Planck approach to complex spatiotemporal disordered systems. Annu. Rev. Condens. Matter Phys.
**2019**, 10, 107–132. [Google Scholar] [CrossRef] - Pope, S.B. Simple models of turbulent flows. Phys. Fluids
**2011**, 23, 011301. [Google Scholar] [CrossRef] - Warhaft, Z. The interference of thermal fields from line sources in grid turbulence. J. Fluid Mech.
**1984**, 144, 363–387. [Google Scholar] [CrossRef] - Risken, H. Fokker-planck equation. In The Fokker-Planck Equation; Springer: Berlin/Heidelberg, Germany, 1996; pp. 63–95. [Google Scholar]
- Friedrich, R.; Peinke, J. Description of a turbulent cascade by a Fokker-Planck equation. Phys. Rev. Lett.
**1997**, 78, 863. [Google Scholar] [CrossRef] - Reif, F. Fundamentals of Statistical and Thermal Physics; Waveland Press: Long Grove, IL, USA, 2009. [Google Scholar]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Moin, P. Revisiting Taylor’s hypothesis. J. Fluid Mech.
**2009**, 640, 1–4. [Google Scholar] [CrossRef] [Green Version] - Gibson, C.H. Zero gradient points in turbulent mixing. In Structure and Mechanisms of Turbulence II; Springer: Berlin/Heidelberg, Germany, 1978; pp. 347–352. [Google Scholar]
- Cioni, S.; Ciliberto, S.; Sommeria, J. Temperature structure functions in turbulent convection at low Prandtl number. EPL Europhys. Lett.
**1995**, 32, 413. [Google Scholar] [CrossRef] - Clay, J.P. Turbulent Mixing of Temperature in Water, Air and Mercury. Ph.D. Thesis, University of California, San Diego, CA, USA, 1974. [Google Scholar]

**Figure 9.**Power Spectral Density (PSD) and probability density functions (PDF) comparison of the velocity fluctuations obtained from direct numerical simulations (DNS) data and model solution.

**Figure 10.**Spectrum of velocity and temperature data showing a significant difference in the scalar turbulence in liquid metal flow.

**Figure 11.**PSD and PDF comparison of the temperature fluctuations obtained from DNS data and model solution.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ross, M.; Bindra, H.
Statistical Mechanics-Based Surrogates for Scalar Transport in Channel Flow. *Fluids* **2021**, *6*, 79.
https://doi.org/10.3390/fluids6020079

**AMA Style**

Ross M, Bindra H.
Statistical Mechanics-Based Surrogates for Scalar Transport in Channel Flow. *Fluids*. 2021; 6(2):79.
https://doi.org/10.3390/fluids6020079

**Chicago/Turabian Style**

Ross, Molly, and Hitesh Bindra.
2021. "Statistical Mechanics-Based Surrogates for Scalar Transport in Channel Flow" *Fluids* 6, no. 2: 79.
https://doi.org/10.3390/fluids6020079