# Linear Non-Modal Growth of Planar Perturbations in a Layered Couette Flow

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Linear Equations for the Evolution of Small Perturbations

## 3. Modal Characteristics of the TCI

## 4. Non-Modal Growth of Perturbations

## 5. Discussion

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

TCI | Taylor–Caulfield Instability |

## References

- Caulfield, C.P. Layering, Instabilities, and Mixing in Turbulent Stratified Flows. Annu. Rev. Fluid Mech.
**2021**, 53, 113–145. [Google Scholar] [CrossRef] - Helmholtz, H.V. On discontinuous movement of fluids. Philos. Mag.
**1868**, 36, 337–346. [Google Scholar] [CrossRef] - Kelvin, L. Hydrokinetic solutions and observations. Philos. Mag.
**1871**, 42, 362–377. [Google Scholar] - Rayleigh, L. On the stability, or instability, of certain fluid motions. Proc. Lond. Math. Soc.
**1880**, 11, 57–70. [Google Scholar] [CrossRef] - Drazin, P.G.; Reid, W.H. Hydrodynamic Stability; Cambridge University Press: Cambridge, UK, 1981. [Google Scholar]
- Thorpe, S.A. Experiments on instability and turbulence in a stratified shear flow. J. Fluid Mech.
**1973**, 61, 731–751. [Google Scholar] [CrossRef] - Caulfield, C.P.; Peltier, W.R. The anatomy of the mixing transition in homogeneous and stratified free shear layers. J. Fluid Mech.
**2000**, 317, 179–193. [Google Scholar] [CrossRef] - Mashayek, A.; Peltier, W.R. The ‘zoo’ of secondary instabilities precursory to stratified shear flow transition. Part 1. Shear aligned convection, pairing and braid instabilities. J. Fluid Mech.
**2012**, 708, 5–44. [Google Scholar] [CrossRef] - Mashayek, A.; Peltier, W.R. The ‘zoo’ of secondary instabilities precursory to stratified shear flow transition. Part 2. The influence of stratification. J. Fluid Mech.
**2012**, 708, 45–70. [Google Scholar] [CrossRef] - Holmboe, J. On the behavior of symmetric waves in stratified shear layers. Geofys. Publ.
**1962**, 24, 67–113. [Google Scholar] - Lawrence, G.A.; Browand, F.K.; Redekopp, L.G. The stability of a sheared density interface. Phys. Fluids A Fluid Dyn.
**1991**, 3, 2360–2370. [Google Scholar] [CrossRef] - Thorpe, S.A. Experiments on the instability of stratified shear flows: Miscible fluids. J. Fluid Mech.
**1971**, 46, 299–319. [Google Scholar] [CrossRef] - Pouliquen, J.; Chomaz, M.; Huere, P. Propagating Holmboe waves at the interface between two immiscible fluids. J. Fluid Mech.
**1994**, 266, 277–302. [Google Scholar] [CrossRef] - Tedford, E.W.; Pieters, R.; Lawrence, G.A. Symmetric Holmboe instabilities in a laboratory exchange flow. J. Fluid Mech.
**2009**, 636, 137–153. [Google Scholar] [CrossRef] - Smyth, W.D.; Klaassen, G.P.; Peltier, W.R. Finite amplitude Holmboe waves. Geophys. Astrophys. Fluid Dyn.
**1988**, 43, 181–222. [Google Scholar] [CrossRef] - Sutherland, B.R.; Caulfield, C.P.; Peltier, W.R. Internal gravity wave generation and hydrodynamic instability. J. Atmos. Sci.
**1994**, 51, 3261–3280. [Google Scholar] [CrossRef][Green Version] - Smyth, W.D.; Carpenter, J.R.; Lawrence, G.A. Mixing in symmetric Holmboe waves. J. Phys. Oceanogr.
**2007**, 37, 1566–1583. [Google Scholar] [CrossRef][Green Version] - Taylor, G.I. Effect of variation in density on the stability of superposed streams of fluid. Proc. R. Soc. A
**1931**, 132, 499–532. [Google Scholar] [CrossRef][Green Version] - Caulfield, C.P. Multiple linear instability of layered stratified shear flow. J. Fluid Mech.
**1994**, 258, 255–285. [Google Scholar] [CrossRef] - Caulfield, C.P.; Peltier, W.R.; Yoshida, S.; Ohtani, M. An experimental investigation of the instability of a shear flow with multilayered density stratification. Phys. Fluids
**1995**, 7, 3028–3041. [Google Scholar] [CrossRef] - Lee, V.; Caulfield, C.P. Nonlinear evolution of a layered stratified shear flow. Dyn. Atmos. Oceans
**2001**, 34, 103–124. [Google Scholar] [CrossRef] - Balmbforth, N.J.; Roy, A.; Caulfield, C.P. Dynamics of vorticity defects in stratified shear flow. J. Fluid Mech.
**2012**, 694, 292–331. [Google Scholar] [CrossRef] - Eaves, T.S.; Caulfield, C.P. Multiple instability of layered stratified plane Couette flow. J. Fluid Mech.
**2017**, 813, 250–278. [Google Scholar] [CrossRef][Green Version] - Eaves, T.S.; Balmforth, N.J. Instability of sheared density interfaces. J. Fluid Mech.
**2019**, 860, 145–171. [Google Scholar] [CrossRef][Green Version] - Phillips, O.M. Turbulence in a strongly stratified fluid—Is it unstable? Deep-Sea Res.
**1972**, 19, 79–81. [Google Scholar] [CrossRef] - Fitzgerald, J.G.; Farrell, B.F. Statistical state dynamics analysis of buoyancy layer formation via the Phillips mechanism in two-dimensional stratified turbulence. J. Fluid Mech.
**2019**, 864, R3. [Google Scholar] [CrossRef][Green Version] - Brethouwer, G.; Billant, P.; Lindborg, E.; Chomaz, J.M. Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech.
**2007**, 585, 343–368. [Google Scholar] [CrossRef][Green Version] - Oglethorpe, R.L.F.; Caulfield, C.P.; Woods, A.W. Spontaneous layering in stratified turbulent Taylor-Couette flow. J. Fluid Mech.
**2013**, 721, R3. [Google Scholar] [CrossRef] - Balmbforth, N.J.; Llewellyn Smith, S.; Young, W.R. Dynamics of interfaces and layers in a stratified turbulent fluid. J. Fluid Mech.
**1998**, 694, 329–358. [Google Scholar] [CrossRef][Green Version] - Ponetti, G.; Balmforth, T.S.; Eaves, T.S. Instabilities in a staircase stratified shear flow. Geophys. Astrophys. Fluid Dyn.
**2018**, 112, 1–19. [Google Scholar] [CrossRef] - Goldstein, S. On the stability of superposed streams of fluid of different densities. Proc. R. Soc. Lond. Ser. A
**1931**, 132, 524–548. [Google Scholar] [CrossRef] - Bretherton, F.P. Baroclinic instability and the short wave cut-off in terms of potential vorticity. Q. J. R. Meteorol. Soc.
**1966**, 92, 335–345. [Google Scholar] [CrossRef] - Carpenter, J.; Tedford, E.; Heifetz, E.; Lawrence, G. Instability in Stratified Shear Flow: Review of a Physical Interpretation Based on Interacting Waves. Appl. Mech. Rev.
**2011**, 64, 060801. [Google Scholar] [CrossRef] - Heifetz, E.; Bishop, C.H.; Alpert, P. Counter-propagating Rossby waves in the barotropic Rayleigh model of shear instability. Q. J. R. Meteorol. Soc.
**1999**, 125, 2835. [Google Scholar] [CrossRef] - Baines, P.G.; Mitsudera, H. On the mechanism of shear flow instabilities. J. Fluid Mech.
**1994**, 276, 327–342. [Google Scholar] [CrossRef][Green Version] - Alexakis, A. On Holmboe’s instability for smooth shear and density profiles. Phys. Fluids
**2005**, 17, 08413. [Google Scholar] [CrossRef][Green Version] - Trefethen, L.N.; Trefethen, A.E.; Reddy, S.C.; Driscoll, T.A. Hydrodynamic stability without eigenvalues. Science
**1993**, 261, 578–584. [Google Scholar] [CrossRef] [PubMed][Green Version] - Farrell, B.F.; Ioannou, P.J. Generalized Stability. Part I: Autonomous operators. J. Atmos. Sci.
**1996**, 53, 2025–2040. [Google Scholar] [CrossRef] - Schmid, P.J.; Henningson, D.S. Stability and Transition in Shear Flows; Springer: New York, NY, USA, 2001. [Google Scholar]
- Heifetz, E.; Methven, J. Relating optimal growth to counterpropagating Rossby waves in shear instability. Phys. Fluids
**2005**, 17, 064107. [Google Scholar] [CrossRef] - Guha, A.; Lawrence, G.A. A wave interaction approach to studying non-modal homogeneous and stratified shear instabilities. J. Fluid Mech.
**2014**, 755, 336–364. [Google Scholar] [CrossRef][Green Version] - Case, K.M. Stability of inviscid plane Couette flow. Phys. Fluids
**1960**, 3, 143. [Google Scholar] [CrossRef] - Lin, C.C. Some mathematical problems in the theory of the stability of parallel flows. J. Fluid Mech.
**1961**, 10, 430. [Google Scholar] [CrossRef] - Kelvin, L. Stability of fluid motion: Rectilinear motion of viscous fluid between two parallel planes. Philos. Mag.
**1887**, 24, 188–196. [Google Scholar] - Orr, W.M. Stability or instability of the steady motions of a perfect fluid. Proc. R. Ir. Acad.
**1907**, 27, 9–69. [Google Scholar] - Farrell, B.F.; Ioannou, P.J. Transient development of perturbations in stratified shear flow. J. Atmos. Sci.
**1993**, 50, 2201. [Google Scholar] [CrossRef][Green Version] - Bakas, N.A.; Ioannou, P.J.; Kefaliakos, G.E. The Emergence of Coherent Structures in Stratified Shear Flow. J. Atmos. Sci.
**2001**, 58, 2790–2806. [Google Scholar] [CrossRef][Green Version] - Constantinou, N.C.; Ioannou, P.J. Optimal excitation of two dimensional Holmboe instabilities. Phys. Fluids
**2011**, 23, 074102. [Google Scholar] [CrossRef][Green Version] - Arratia, C.; Caulfield, C.P.; Chomaz, J.M. Transient perturbation growth in time dependent mixing layers. J. Fluid Mech.
**2013**, 717, 90–133. [Google Scholar] [CrossRef][Green Version] - Kaminski, A.K.; Caulfield, C.P.; Taylor, J.R. Transient growth in strongly stratified shear layers. J. Fluid Mech.
**2014**, 758, R4. [Google Scholar] [CrossRef][Green Version] - Park, J.; Billant, P.; Baik, J. Instabilities and transient growth of the stratified Taylor–Couette flow in a Rayleigh-unstable regime. J. Fluid Mech.
**2017**, 822, 80–108. [Google Scholar] [CrossRef] - Jose, S.; Roy, A.; Bale, R.; Iyer, K.; Govindarajan, R. Optimal energy growth in a stably stratified shear flow. Fluid Dyn. Res.
**2018**, 50, 011421. [Google Scholar] [CrossRef][Green Version] - Bakas, N.A.; Ioannou, B.F. Modal and nonmodal growth of inviscid planar perturbations in shear flows with a free surface. Phys. Fluids
**2009**, 21, 024102. [Google Scholar] [CrossRef] - Mallios, C.; Bakas, N.A. Generalized stability of a shear flow with a free surface with respect to three-dimensional perturbations. Phys. Rev. Fluids
**2017**, 2, 023901. [Google Scholar] [CrossRef] - Heifetz, E.; Guha, A.; Carpenter, J.R. Wave interactions in neutrally stable shear layers: Regular and singular modes, and non-modal growth. Phys. Fluids
**2020**, 32, 074106. [Google Scholar] [CrossRef] - Kaminski, A.K.; Caulfield, C.P.; Taylor, J.R. Nonlinear evolution of linear optimal perturbations of strongly stratified shear layers. J. Fluid Mech.
**2017**, 825, 213–244. [Google Scholar] [CrossRef][Green Version] - Vitoshkin, H.; Gelfgat, A. Non-Modal Three-Dimensional Optimal Perturbation Growth in Thermally Stratified Mixing Layers. Fluids
**2021**, 6, 731–751. [Google Scholar] [CrossRef] - Smyth, W.D.; Peltier, W.R. Three-dimensional primary instabilities of a stratified, dissipative, parallel flow. Geophys. Astrophys. Fluid Dyn.
**1990**, 52, 249–261. [Google Scholar] [CrossRef] - Alexakis, A. Marginally unstable Holmboe modes. Phys. Fluids
**2007**, 19, 054105. [Google Scholar] [CrossRef][Green Version] - Kelvin, L. On the stability of steady and of periodic fluid motion. Philos. Mag.
**1887**, 23, 459–464. [Google Scholar] - Farrell, B.F.; Ioannou, P.J. Optimal excitation of three-dimensional perturbations in viscous constant shear flow. Phys. Fluids A
**1993**, 5, 1390–1400. [Google Scholar] [CrossRef][Green Version] - Ellingsen, T.; Palm, E. Stability of linear flow. Phys. Fluids
**1975**, 18, 487–488. [Google Scholar] [CrossRef] - Landahl, M.T. A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech.
**1980**, 98, 243–251. [Google Scholar] [CrossRef] - Yih, C.S. Stability of two-dimensional parallel flows for three-dimensional disturbances. Q. J. Appl. Maths
**1955**, 12, 434–435. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**(

**a**) The non-dimensional mean flow velocity $U\left(z\right)=z$. (

**b**) The non-dimensional mean flow density ${\rho}_{0}\left(z\right)-{\rho}_{m}/\mathrm{\Delta}\rho $ with $R=30$.

**Figure 2.**(

**a**) Growth rate of the most unstable modes as a function of wavenumber k and bulk Richardson number J. Also shown is the line $J=2k/9$ for which resonance in the long-wave limit between the gravity edge-waves supported at the interfaces of sharp density gradient is achieved. (

**b**) Phase speed of the most unstable modes with $k=2$ as a function of J (solid line). Also shown are the phase speeds ${c}_{t}^{+}$ (dashed line) and ${c}_{t}^{-}$ (dash-dotted line) of the neutral modes in the $R\to \infty $ limit.

**Figure 3.**Streamfunction (

**a**) and density (

**b**) for the most unstable mode in the TCI branch with ${k}_{max}=1.9$ and ${J}_{max}=0.5$. Streamfunction (

**c**) and density (

**d**) for the most unstable mode in the ‘overtone’ branch with $k=2.6$ and $J=1.7$. Also shown in all panels are the interfaces of large density gradients (dashed lines) and the critical layers of the two modes (dashed-dotted) lines.

**Figure 4.**(

**a**) Optimal growth ${G}_{0}$ at ${T}_{opt}=5$ for an unstratified flow as a function of wavenumber. Also shown is the corresponding growth for an unbounded shear flow $1+{T}_{opt}^{2}$. (

**b**) Optimal growth G at ${T}_{opt}=5$ as a function of wavenumber and bulk Richardson number. (

**c**) Ratio of the optimal growth G at ${T}_{opt}=5$ over the corresponding growth for an unstratified flow (${G}_{0}$) as a function of wavenumber and bulk Richardson number.

**Figure 5.**Finite time Lyapunov exponent $ln\left(G\left({T}_{opt}\right)\right)/2{T}_{opt}$ as a function of wavenumber and bulk Richardson number for (

**a**) ${T}_{opt}=10$, (

**b**) ${T}_{opt}=50$ and (

**c**) ${T}_{opt}=100$.

**Figure 6.**(

**a**) Excitation amplitude ${p}_{i}$ for the unstable modes in the TCI branch by their bi-orthogonals. Also shown is the cut-off scale for the TCI branch (dashed line). (

**b**) Energy evolution for the bi-orthogonal as an initial perturbation (solid) and for the most unstable mode as an initial perturbation (dashed).

**Figure 7.**(

**a**) Streamfunction of the bi-orthogonal to the most unstable mode for ${k}_{max}$ and ${J}_{max}$. (

**b**,

**c**) Snapshots of the streamfunction at (

**b**) $t=4$ and (

**c**) $t=20$ showing the evolution of the bi-orthogonal. In all panels the interfaces of large density gradients are also shown (dashed lines).

**Figure 8.**(

**a**) The evolution of the energy of the optimal perturbations with $k=3$ (solid line), $k=2.5$ (dashed line) and $k=2.475$ (dash-dotted line). The bulk Richardson number is $J=0.5$ and ${T}_{opt}=100$. (

**b**) Hovmöller diagram of the streamfunction of the optimal perturbation for $k=3$. That is, contours of $\Re \left[\widehat{\psi}(z=1/3,t){e}^{ikx}\right]$ as a function of x and t for the optimal perturbation. Also shown (dashed line) is the phase speed of the mode onto which the optimal perturbation projects (see panel (

**c**)). (

**c**) Projection coefficients of the optimal perturbation for $k=3$ on the normal modes and the continuous spectrum modes. Also shown (dashed lines) are the ${c}_{t}^{\pm}$ phase speeds of the neutral normal modes in the $R\to \infty $ limit.

**Figure 9.**The evolution of the optimal perturbation for $k=3$, $J=0.5$ and ${T}_{opt}=100$. (

**a**) The streamfunction of the optimal perturbation. (

**b**) The absolute value of the Fourier amplitude of the streamfunction obtained through a discrete Fourier transform. Note that the minimum wavenumber is $\pi $ leading to the jagged appearance of the line. (

**c**–

**e**) Snapshots of the streamfunction at (

**c**) $t=10$, (

**d**) $t=23$ and (

**e**) $t=29$. (

**f**) The absolute value of the Fourier amplitude of the streamfunction at $t=10$ (solid line) and $t=29$ (dashed line).

**Figure 10.**Late stage of the evolution of the optimal perturbation for $k=3$, $J=0.5$ and ${T}_{opt}=100$. Shown are contours of the streamfunction at (

**a**) $t=100$, (

**b**) $t=105$, (

**c**) $t=111$ and (

**d**) $t=114$.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Iliakis, E.G.; Bakas, N.A.
Linear Non-Modal Growth of Planar Perturbations in a Layered Couette Flow. *Fluids* **2021**, *6*, 442.
https://doi.org/10.3390/fluids6120442

**AMA Style**

Iliakis EG, Bakas NA.
Linear Non-Modal Growth of Planar Perturbations in a Layered Couette Flow. *Fluids*. 2021; 6(12):442.
https://doi.org/10.3390/fluids6120442

**Chicago/Turabian Style**

Iliakis, Emmanouil G., and Nikolaos A. Bakas.
2021. "Linear Non-Modal Growth of Planar Perturbations in a Layered Couette Flow" *Fluids* 6, no. 12: 442.
https://doi.org/10.3390/fluids6120442