A Model for Stokes Flow in Domains with Permeable Boundaries
Abstract
:1. Introduction
2. The Model Formulation
2.1. A Different Formulation of the Problem
2.2. The Proposed Regularized Formulation of the Problem
Derivation of the Source Doublet Solution
2.3. Choice of Blobs
3. Numerical Examples
3.1. Example 1: A Circular Permeable Membrane under Tension
3.2. Example 2: A Circular Permeable Membrane with Circular Equilibrium
3.3. Example 3: Computing the Pressure
3.4. Example 4: Flow in a Channel with Permeable Walls
3.5. Example 5: Flow in a Capillary with Protein Concentration
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stillwell, W.; Ehringer, W.; Jenski, L.J. Docosahexaenoic acid increases permeability of lipid vesicles and tumor cells. Lipids 1993, 28, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.J.; Hinner, M.J. Getting across the cell membrane: An overview for small molecules, peptides, and proteins. Methods Mol. Biol. 2015, 1266, 29–53. [Google Scholar] [CrossRef] [PubMed]
- Michel, C.; Curry, F. Microvascular permeability. Physiol. Rev. 1999, 79, 703–761. [Google Scholar] [CrossRef] [PubMed]
- Nagy, J.A.; Benjamin, L.; Zeng, H.; Dvorak, A.M.; Dvorak, H.F. Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis 2008, 11, 109–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennell, J.P.; Lacy, F.B.; Jamison, R.L. An in vivo study of the concentrating process in the descending limb of Henle’s loop. Kidney Int. 1974, 5, 337–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knepper, M.A.; Danielson, R.A.; Saidel, G.M.; Post, R.S. Quantitative analysis of renal medullary anatomy in rats and rabbits. Kidney Int. 1977, 12, 313–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Layton, A.T. Mathematical modeling of kidney transport. Wiley Interdiscip. Rev. Syst. Biol. Med. 2013, 5, 557–573. [Google Scholar] [CrossRef] [Green Version]
- Jackson, E.A.; Hillmyer, M.A. Nanoporous membranes derived from block copolymers: From drug delivery to water filtration. ACS Nano 2010, 4, 3548–3553. [Google Scholar] [CrossRef]
- Baronas, R.; Ivanauskas, F.; Kaunietis, I.; Laurinavicius, V. Mathematical Modeling of Plate- gap Biosensors with an Outer Porous Membrane. Sensors 2006, 6, 727–745. [Google Scholar] [CrossRef] [Green Version]
- Hurk, R.v.d.; Evoy, S. A review of membrane-based biosensors for pathogen detection. Sensors 2015, 15, 14045–14078. [Google Scholar] [CrossRef]
- Stamatialis, D.F.; Papenburg, B.J.; Girones, M.; Saiful, S.; Bettahalli, S.N.; Schmitmeier, S.; Wessling, M. Medical applications of membranes: Drug delivery, artificial organs and tissue engineering. J. Membr. Sci. 2008, 308, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Ugrozov, V.V.; Elkina, I.B. Mathematical modeling of influence of porous structure a membrane on its vapour-conductivity in the process of membrane distillation. Desalination 2002, 147, 167–171. [Google Scholar] [CrossRef]
- Yun, M.A.; Yeon, K.M.; Park, J.S.; Lee, C.H.; Chun, J.; Lim, D.J. Characterization of biofilm structure and its effect on membrane permeability in MBR for dye wastewater treatment. Water Res. 2006, 40, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.K.; Kanduč, M.; Roa, R.; Dzubiella, J. Tuning the Permeability of Dense Membranes by Shaping Nanoscale Potentials. Phys. Rev. Lett. 2019, 122, 108001. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.K.; Chudoba, R.; Milster, S.; Roa, R.; Kanduč, M.; Dzubiella, J. Tuning the selective permeability of polydisperse polymer networks. Soft Matter 2020, 16, 8144–8154. [Google Scholar] [CrossRef]
- Holmqvist, P.; Mohanty, P.S.; Nägele, G.; Schurtenberger, P.; Heinen, M. Structure and Dynamics of Loosely Cross-Linked Ionic Microgel Dispersions in the Fluid Regime. Phys. Rev. Lett. 2012, 109, 048302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daddi-Moussa-Ider, A.; Gekle, S. Brownian motion near an elastic cell membrane: A theoretical study. Eur. Phys. J. E 2018, 41, 19. [Google Scholar] [CrossRef] [Green Version]
- Bächer, C.; Gekle, S. Computational modeling of active deformable membranes embedded in three-dimensional flows. Phys. Rev. E 2019, 99, 062418. [Google Scholar] [CrossRef] [Green Version]
- Herschlag, G.; Liu, J.G.; Layton, A.T. An Exact Solution for Stokes Flow in a Channel with Arbitrarily Large Wall Permeability. SIAM J. Appl. Math. 2014, 75, 2246–2267. [Google Scholar] [CrossRef] [Green Version]
- Herschlag, G.; Liu, J.G.; Layton, A. Fluid extraction across pumping and permeable walls in the viscous limit. Phys. Fluids 2016, 28, 041902. [Google Scholar] [CrossRef] [Green Version]
- Stockie, J.M. Modelling and simulation of porous immersed boundaries. Comput. Struct. 2009, 87, 701–709. [Google Scholar] [CrossRef] [Green Version]
- Layton, A.T. Modeling Water Transport across Elastic Boundaries Using an Explicit Jump Method. SIAM J. Sci. Comput. 2006, 28, 2189–2207. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Peskin, C. 2–D Parachute Simulation by the Immersed Boundary Method. SIAM J. Sci. Comput. 2006, 28, 2294–2312. [Google Scholar] [CrossRef]
- Natali, D.; Pralits, J.O.; Mazzino, A.; Bagheri, S. Stabilizing effect of porosity on a flapping filament. J. Fluids Struct. 2016, 61, 362–375. [Google Scholar] [CrossRef]
- Mayo, A. The fast solution of Poisson’s and the biharmonic equations on irregular regions. SIAM J. Numer. Anal. 1984, 21, 285–299. [Google Scholar] [CrossRef]
- LeVeque, R.J.; Li, Z. The Immersed Interface Method for Elliptic Equations With Discontinuous Coefficients and Singular Sources. SIAM J. Numer. Anal. 1992, 31, 332–364. [Google Scholar]
- Pepona, M.; Favier, J. A coupled Immersed Boundary–Lattice Boltzmann method for incompressible flows through moving porous media. J. Comput. Phys. 2016, 321, 1170–1184. [Google Scholar] [CrossRef] [Green Version]
- Berman, A.S. Laminar flow in channels with porous walls. J. Appl. Phys. 1953, 24, 1232–1235. [Google Scholar] [CrossRef]
- Yuan, S. Laminar Pipe Flow with Injection and Suction through a Porous Wall; Technical Report; James Forrestal Research Center, Princeton University: Princeton, NJ, USA, 1955. [Google Scholar]
- Wah, T. Laminar flow in a uniformly porous channel. Aeronaut. Q. 1964, 15, 299–310. [Google Scholar] [CrossRef]
- Terrill, R.M.; Shrestha, G.M. Laminar flow through parallel and uniformly porous walls of different permeability. Z. Angew. Math. Phys. ZAMP 1965, 16, 470–482. [Google Scholar] [CrossRef]
- Cortez, R. The method of regularized Stokeslets. SIAM J. Sci. Comput. 2001, 23, 1204–1225. [Google Scholar] [CrossRef]
- Cortez, R.; Fauci, L.; Medovikov, A. The method of regularized Stokeslets in Three Dimensions: Analysis, Validation and Application to Helical Swimming. Phys. Fluids 2005, 17, 031504. [Google Scholar] [CrossRef]
- Beale, J.T. A Convergent Boundary Integral Method for Three-Dimensional Water Waves. Math. Comput. 2001, 70, 977–1029. [Google Scholar] [CrossRef] [Green Version]
- Tlupova, S.; Beale, J.T. Regularized single and double layer integrals in 3D Stokes flow. J. Comput. Phys. 2019, 386, 568–584. [Google Scholar] [CrossRef] [Green Version]
- Shea, S.M. Glomerular hemodynamics and vascular structure: The pattern and dimensions of a single rat glomerular capillary network reconstructed from ultrathin sections. Microvasc. Res. 1979, 18, 129–143. [Google Scholar] [CrossRef]
- Arendshorst, W.; Navar, L. Renal circulation and glomerular hemodynamics. In Diseases of the Kidney, 8th ed.; Schrier, R., Ed.; Walters Kluwer/Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2007; Chapter 2; Volume 1, pp. 54–95. [Google Scholar]
- Deen, W.; Robertson, C.; Brenner, B. A model of glomerular ultrafiltration in the rat. Am. J. Physiol.-Leg. Content 1972, 223, 1178–1183. [Google Scholar] [CrossRef] [PubMed]
- Deen, W.M.; Bohrer, M.P.; Brenner, B.M. Macromolecule transport across glomerular capillaries: Application of pore theory. Kidney Int. 1979, 16, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Deen, W.M.; Lazzara, M.J.; Myers, B.D. Structural determinants of glomerular permeability. Am. J. Physiol.-Ren. Physiol. 2001, 281, F579–F596. [Google Scholar] [CrossRef]
- Lambert, P.; Aeikens, B.; Bohle, A.; Hanus, F.; Pegoff, S.; Van Damme, M. A network model of glomerular function. Microvasc. Res. 1982, 23, 99–128. [Google Scholar] [CrossRef]
- Remuzzi, A.; Brenner, B.M.; Pata, V.; Tebaldi, G.; Mariano, R.; Belloro, A.; Remuzzi, G. Three-dimensional reconstructed glomerular capillary network: Blood flow distribution and local filtration. Am. J. Physiol.-Ren. Physiol. 1992, 263, F562–F572. [Google Scholar] [CrossRef]
- de Sousa, D.; Ferreira, M.C. Ultrafiltration in Renal Glomerular Capillaries: Theoretical Effects of Ultrastructure. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1994. [Google Scholar]
- Layton, A.T.; Edwards, A. Glomerular Filtration. In Mathematical Modeling in Renal Physiology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 7–41. [Google Scholar]
- Ferrell, N.; Sandoval, R.M.; Bian, A.; Campos-Bilderback, S.B.; Molitoris, B.A.; Fissell, W.H. Shear stress is normalized in glomerular capillaries following 5/6 nephrectomy. Am. J. Physiol.-Ren. Physiol. 2015, 308, F588–F593. [Google Scholar] [CrossRef]
- Wakeham, W.; Salpadoru, N.; Caro, C. Diffusion coefficients for protein molecules in blood serum. Atherosclerosis 1976, 25, 225–235. [Google Scholar] [CrossRef]
- Zatz, R.; Dunn, B.R.; Meyer, T.W.; Anderson, S.; Rennke, H.G.; Brenner, B.M. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J. Clin. Investig. 1986, 77, 1925–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richfield, O.; Cortez, R.; Navar, L.G. Simulations of increased glomerular capillary wall strain in the 5/6-nephrectomized rat. Microcirculation 2021, 28, e12721. [Google Scholar] [CrossRef] [PubMed]
- Cortez, R. Regularized Stokeslet segments. J. Comput. Phys. 2018, 375, 783–796. [Google Scholar] [CrossRef] [Green Version]
N | |||||
---|---|---|---|---|---|
50 | |||||
100 | |||||
200 | |||||
400 | |||||
800 |
N | |||||
---|---|---|---|---|---|
50 | |||||
100 | |||||
200 | |||||
400 | |||||
800 |
Flow Rate | |||
---|---|---|---|
inlet | |||
top | |||
outlet |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortez, R.; Hernandez-Viera, M.; Richfield, O. A Model for Stokes Flow in Domains with Permeable Boundaries. Fluids 2021, 6, 381. https://doi.org/10.3390/fluids6110381
Cortez R, Hernandez-Viera M, Richfield O. A Model for Stokes Flow in Domains with Permeable Boundaries. Fluids. 2021; 6(11):381. https://doi.org/10.3390/fluids6110381
Chicago/Turabian StyleCortez, Ricardo, Marian Hernandez-Viera, and Owen Richfield. 2021. "A Model for Stokes Flow in Domains with Permeable Boundaries" Fluids 6, no. 11: 381. https://doi.org/10.3390/fluids6110381
APA StyleCortez, R., Hernandez-Viera, M., & Richfield, O. (2021). A Model for Stokes Flow in Domains with Permeable Boundaries. Fluids, 6(11), 381. https://doi.org/10.3390/fluids6110381