Genetic Algorithm Based Optimization of Wing Rotation in Hover
Abstract
1. Introduction
2. Materials and Methods
2.1. Wing Model and Kinematics
2.2. Experimental Setup
2.3. Optimization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PIV | particle image velocimetry |
LED | light-emitting diode |
The following symbols are used in this manuscript: | |
c | chord length |
L | lift force |
D | drag force |
stroke torque | |
pitch torque | |
stroke power | |
pitch power | |
P | aerodynamic power |
lift coefficient | |
drag coefficient | |
power coefficient | |
f | wing stroke frequency |
k | reduced frequency |
distance between the stroke axis and the wing’s root | |
R | wingspan |
radius of the wing’s second moment of area | |
radius of the drag’s point of application | |
Reynolds number | |
average wing tip velocity | |
geometric angle between the wing’s chord and the vertical axis | |
pitching rate | |
efficiency | |
kinematic viscosity | |
density | |
stroke amplitude | |
stroke angular velocity |
References
- Dickinson, M.H. Wing rotation and the aerodynamic basis of insect flight. Science 1999, 284, 1954–1960. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.; Nassef, H.; Pornsinsirirak, N.; Tai, Y.C.; Ho, C.M. Unsteady aerodynamics and flow control for flapping wing flyers. Prog. Aerosp. Sci. 2003, 39, 635–681. [Google Scholar] [CrossRef]
- Shyy, W.; Aono, H.; Chimakurthi, S.; Trizila, P.; Kang, C.K.; Cesnik, C.; Liu, H. Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 2010, 46, 284–327. [Google Scholar] [CrossRef]
- Ma, K.Y.; Chirarattananon, P.; Fuller, S.B.; Wood, R.J. Controlled flight of a biologically inspired, insect-scale robot. Science 2013, 340, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Nakata, T.; Liu, H.; Tanaka, Y.; Nishihashi, N.; Wang, X.; Sato, A. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle. Bioinspir. Biomim. 2011, 6, 045002. [Google Scholar] [CrossRef] [PubMed]
- Keennon, M.; Klingebiel, K.; Won, H. Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle. In Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, USA, 9–12 January 2012. [Google Scholar] [CrossRef]
- De Croon, G.C.H.E.; Groen, M.A.; De Wagter, C.; Remes, B.; Ruijsink, R.; van Oudheusden, B.W. Design, aerodynamics and autonomy of the DelFly. Bioinspir. Biomim. 2012, 7, 025003. [Google Scholar] [CrossRef] [PubMed]
- Floreano, D.; Wood, R.J. Science, technology and the future of small autonomous drones. Nature 2015, 521, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Stafford, N. Spy in the sky. Nature 2007, 445, 808–809. [Google Scholar] [PubMed]
- Hawkes, E.W.; Lentink, D. Fruit fly scale robots can hover longer with flapping wings than with spinning wings. J. R. Soc. Interface 2016, 13, 20160730. [Google Scholar] [CrossRef] [PubMed]
- Bayiz, Y.; Ghanaatpishe, M.; Fathy, H.; Cheng, B. Hovering efficiency comparison of rotary and flapping flight for rigid rectangular wings via dimensionless multi-objective optimization. Bioinspir. Biomim. 2018, 13, 046002. [Google Scholar] [CrossRef] [PubMed]
- Willmott, A.P.; Ellington, C.P. The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight. J. Exp. Biol. 1997, 200, 2705–2722. [Google Scholar] [PubMed]
- Lehmann, F.O.; Dickinson, M.H. The control of wing kinematics and flight forces in fruit flies (Drosophila spp.). J. Exp. Biol. 1998, 201, 385–401. [Google Scholar] [PubMed]
- Liu, Y.; Sun, M. Wing kinematics measurement and aerodynamics of hovering droneflies. J. Exp. Biol. 2008, 211, 2014–2025. [Google Scholar] [CrossRef] [PubMed]
- Ellington, C.P.; van den Berg, C.; Willmott, A.P.; Thomas, A.L.R. Leading-edge vortices in insect flight. Nature 1996, 384, 626. [Google Scholar] [CrossRef]
- Sane, S.P.; Dickinson, M.H. The control of flight force by a flapping wing: Lift and drag production. J. Exp. Biol. 2001, 204, 2607. [Google Scholar] [PubMed]
- Lehmann, F.O.; Sane, S.P.; Dickinson, M.H. The aerodynamic effects of wing-wing interaction in flapping insect wings. J. Exp. Biol. 2005, 208, 3075–3092. [Google Scholar] [CrossRef] [PubMed]
- Lua, K.B.; Lim, T.T.; Yeo, K.S. Effect of wing–wake interaction on aerodynamic force generation on a 2D flapping wing. Exp. Fluids 2011, 51, 177–195. [Google Scholar] [CrossRef]
- Bomphrey, R.J.; Nakata, T.; Phillips, N.; Walker, S.M. Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight. Nature 2017, 544, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization & Machine Learning; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1989. [Google Scholar]
- Milano, M.; Gharib, M. Uncovering the physics of flapping flat plates with artificial evolution. J. Fluid Mech. 2005, 534, 403–409. [Google Scholar] [CrossRef]
- Margerie, E.; Mouret, J.B.; Doncieux, S.; Meyer, J.A.; Ravasi, T.; Martinelli, P.; Grand, C. Flapping-wing flight in bird-sized UAVs for the ROBUR project: From an evolutionary optimization to a real flapping-wing mechanism. In Proceedings of the 3rd US-European Competition and Workshop on Micro Air Vehicle Systems (MAV07), Toulouse, France, 17–21 September 2007. [Google Scholar]
- Tuncer, I.H.; Kaya, M. Optimization of flapping airfoils for maximum thrust and propulsive efficiency. AIAA J. 2005, 43, 2329–2336. [Google Scholar] [CrossRef]
- Stanford, B.K.; Beran, P.S. Analytical sensitivity analysis of an unsteady vortex-lattice method for flapping-wing optimization. J. Aircr. 2010, 47, 647–662. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Haftka, R.T.; Ifju, P.; Chang, K.; Tyler, C.; Schmitz, T. Experimental flapping wing optimization and uncertainty quantification using limited samples. Struct. Multidiscip. Optim. 2015, 51, 957–970. [Google Scholar] [CrossRef]
- Ke, X.; Zhang, W. Wing geometry and kinematic parameters optimization of flapping wing hovering flight. Appl. Sci. 2016, 6, 390. [Google Scholar] [CrossRef]
- Lee, Y.J.; Lua, K.B. Optimization of simple and complex pitching motions for flapping wings in hover. AIAA J. 2018, 56, 2466–2470. [Google Scholar] [CrossRef]
- Liu, H.; Aono, H. Size effects on insect hovering aerodynamics: An integrated computational study. Bioinspir. Biomim. 2009, 4, 015002. [Google Scholar] [CrossRef] [PubMed]
- Lua, K.B.; Lim, T.T.; Yeo, K.S. Scaling of aerodynamic forces of three-dimensional flapping wings. AIAA J. 2014, 52, 1095–1101. [Google Scholar] [CrossRef]
- Luo, G.; Sun, M. The effects of corrugation and wing planform on the aerodynamic force production of sweeping model insect wings. Acta Mech. Sin. 2005, 21, 531–541. [Google Scholar] [CrossRef]
- Krishna, S.; Green, M.A.; Mulleners, K. Flowfield and force evolution for a symmetric hovering flat-plate wing. AIAA J. 2018, 56, 1360–1371. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, M. Wing Kinematics Measurement and Aerodynamic Force and Moments Computation of Hovering Hoverfly. In Proceedings of the 1st International Conference on Bioinformatics and Biomedical Engineering, Wuhan, China, 6–8 July 2007; pp. 452–455. [Google Scholar] [CrossRef]
- Fry, S.N.; Sayaman, R.; Dickinson, M.H. The aerodynamics of hovering flight in Drosophila. J. Exp. Biol. 2005, 208, 2303–2318. [Google Scholar] [CrossRef] [PubMed]
- Willert, C.; Stasicki, B.; Klinner, J.; Moessner, S. Pulsed operation of high-power light emitting diodes for imaging flow velocimetry. Meas. Sci. Technol. 2010, 21, 075402. [Google Scholar] [CrossRef]
- Wang, Z.J. Aerodynamic efficiency of flapping flight: Analysis of a two-stroke model. J. Exp. Biol. 2008, 211, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Chipperfield, A.; Fleming, P.J. The MATLAB Genetic Algorithm Toolbox. In Proceedings of the IEE Colloquium on Applied Control Techniques Using MATLAB, London, UK, 26 January 1995. [Google Scholar] [CrossRef]
- Ishihara, D.; Horie, T.; Niho, T. An experimental and three-dimensional computational study on the aerodynamic contribution to the passive pitching motion of flapping wings in hovering flies. Bioinspir. Biomim. 2014, 9, 046009. [Google Scholar] [CrossRef] [PubMed]
- Bergou, A.J.; Ristroph, L.; Guckenheimer, J.; Cohen, I.; Wang, Z.J. Fruit flies modulate passive wing pitching to generate in-flight turns. Phys. Rev. Lett. 2010, 104. [Google Scholar] [CrossRef] [PubMed]
- Whitney, J.P.; Wood, R.J. Aeromechanics of passive rotation in flapping flight. J. Fluid Mech. 2010, 660, 197–220. [Google Scholar] [CrossRef]
- Beatus, T.; Cohen, I. Wing-pitch modulation in maneuvering fruit flies is explained by an interplay between aerodynamics and a torsional spring. Phys. Rev. E 2015, 92. [Google Scholar] [CrossRef] [PubMed]
- Lua, K.B.; Zhang, X.H.; Lim, T.T.; Yeo, K.S. Effects of pitching phase angle and amplitude on a two-dimensional flapping wing in hovering mode. Exp. Fluids 2015, 56. [Google Scholar] [CrossRef]
- Krishna, S. Unsteady Fluid Dynamics Around a Hovering Flat Plate Wing. Ph.D. Thesis, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland, 2017. [Google Scholar] [CrossRef]
- Sane, S.P.; Dickinson, M.H. The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J. Exp. Biol. 2002, 205, 1087. [Google Scholar] [PubMed]
- Sun, M.; Tang, J. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J. Exp. Biol. 2002, 205, 55–70. [Google Scholar] [PubMed]
- Krishna, S.B.; Green, M.A.; Mulleners, K. Effect of wing rotation on the flow behaviour around a hovering wing. 2018; in preparation. [Google Scholar]
Parameters | Honeybee [3] | Hawkmoth [3] | Hoverfly [32] | Model [31] | ||
---|---|---|---|---|---|---|
Wing stroke frequency | f | () | 232 | 26 | 166 | 0.25 |
Wing chord | c | () | 3 | 18.3 | 2.4 | 34 |
Wing span | R | () | 10 | 48.3 | 9.03 | 107 |
Stroke amplitude | () | 91 | 115 | 148.2 | 180 | |
Reduced frequency | k | 0.3 | 0.3 | 0.32 | 0.32 | |
Reynolds number | 1412 | 5885 | 620 | 2510 |
minimum | 20° | 30° | 30° | 20° | |||
maximum | 60° | 80° | 80° | 60° |
efficiency optimization | |||||||
initial population | |||||||
third population | |||||||
final population | |||||||
lift optimization | |||||||
initial population | |||||||
third population | |||||||
final population |
efficiency optimization | ||
initial population | ||
third population | ||
final population | ||
lift optimization | ||
initial population | ||
third population | ||
final population |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gehrke, A.; De Guyon-Crozier, G.; Mulleners, K. Genetic Algorithm Based Optimization of Wing Rotation in Hover. Fluids 2018, 3, 59. https://doi.org/10.3390/fluids3030059
Gehrke A, De Guyon-Crozier G, Mulleners K. Genetic Algorithm Based Optimization of Wing Rotation in Hover. Fluids. 2018; 3(3):59. https://doi.org/10.3390/fluids3030059
Chicago/Turabian StyleGehrke, Alexander, Guillaume De Guyon-Crozier, and Karen Mulleners. 2018. "Genetic Algorithm Based Optimization of Wing Rotation in Hover" Fluids 3, no. 3: 59. https://doi.org/10.3390/fluids3030059
APA StyleGehrke, A., De Guyon-Crozier, G., & Mulleners, K. (2018). Genetic Algorithm Based Optimization of Wing Rotation in Hover. Fluids, 3(3), 59. https://doi.org/10.3390/fluids3030059