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Abstract: The pitching kinematics of an experimental hovering flapping wing setup are optimized
by means of a genetic algorithm. The pitching kinematics of the setup are parameterized with
seven degrees of freedom to allow for complex non-linear and non-harmonic pitching motions.
Two optimization objectives are considered. The first objective is maximum stroke average efficiency,
and the second objective is maximum stroke average lift. The solutions for both optimization scenarios
converge within less than 30 generations based on the evaluation of their fitness. The pitching
kinematics of the best individual of the initial and final population closely resemble each other for
both optimization scenarios, but the optimal kinematics differ substantially between the two scenarios.
The most efficient pitching motion is smoother and closer to a sinusoidal pitching motion, whereas
the highest lift-generating pitching motion has sharper edges and is closer to a trapezoidal motion.
In both solutions, the rotation or pitching motion is advanced with respect to the sinusoidal stroke
motion. Velocity field measurements at selected phases during the flapping motions highlight why
the obtained solutions are optimal for the two different optimization objectives. The most efficient
pitching motion is characterized by a nearly constant and relatively low effective angle of attack at
the start of the half stroke, which supports the formation of a leading edge vortex close to the airfoil
surface, which remains bound for most of the half stroke. The highest lift-generating pitching motion
has a larger effective angle of attack, which leads to the generation of a stronger leading edge vortex
and higher lift coefficient than in the efficiency optimized scenario.

Keywords: unsteady aerodynamics; flapping wing kinematics; genetic algorithm; optimization;
hovering flight; particle image velocimetry

1. Introduction

The aerodynamics of small natural flyers such as insects and birds have been a research topic of
interest in the past decades [1–4]. The abilities of natural flyers to perform different tasks under varying
flight conditions with high maneuverability are a source of inspiration for the development of micro air
vehicles [5–9]. At low Reynolds numbers (Re < 100), flapping wings can operate more efficiently than
rotating wings while also providing a higher average lift coefficient CL [10,11]. Flapping wings have
the capability to increase the lift and thrust production with respect to fixed wings by creating and
controlling large-scale unsteady vortical flow structures. The unsteady aerodynamic phenomena that
give rise to the exceptional flight characteristics of flapping wing flyers are very susceptible to slight
changes of the kinematics within the flapping cycle. Previous studies have captured and mapped the
wing kinematics of low Reynolds number flyers in order to replicate the complex motion of the wings
and getting a better understanding of the resulting aerodynamic forces [12–14].
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Several lift- and thrust-producing mechanisms in flapping wing flight utilizing the formation
and shedding of vortices have been identified. The delayed stall and the formation of the leading
edge vortex are the main contributors to the remarkable performance of nature’s flyers. Due to the
high angle of attack of the wings during the wing stroke, a shear layer separates at the leading edge,
which feeds a leading edge coherent vortex that stays attached to the wing for a substantial portion
of the wing’s flapping cycle [15,16]. This bound vortex creates a stable low pressure region atop the
suction side of the wing, contributing to the wing’s lift, but also inducing a drag penalty. Once the
vortex has accumulated its maximum circulation, it separates from the shear layer and moves away
from the wing, and its influence on the aerodynamic loads diminishes quickly. In hovering fight, the
wings move back and forth in a symmetric way. At the end of a half stroke, front- or back-stroke, the
wing rotates and can move back into the wake it created on the previous half stroke. This wing-wake
interaction, commonly referred to as wake capture, is another unsteady mechanism that flapping wing
insects rely on to recuperate some of the wake energy from the previously shed vorticity to increase
their efficiency and lift performance [1,17–19].

Human-made flapping wing devices might aspire to a larger flight envelope than their natural
counterparts and request adapted optimal kinematics for different flight conditions. Robust strategies
for optimizing complex flapping wing kinematics with a large numbers of degrees of freedom,
interacting parameters and multiple fitness criteria are desirable. Genetic or evolutionary algorithms
are meta-heuristic optimization procedures based on the mechanics of natural selection that fit these
requirements [20]. Genetic algorithms search through the solution space of a process or function by
applying artificial evolution, also known as a survival of the fittest strategy. Analogous to evolution
in nature, the fittest individuals of a population reproduce through mutation and combination to
ensure advancement of the following generations. The genetic algorithms repeatedly test individuals
of a generation to identify the best according to a predefined fitness function and produce new
generations based on these fittest individuals until a convergence is reached or the optimization ends,
when one or more termination conditions are met. Genetic algorithms select the best individuals
across the most recent populations and not with respect to the initial population. This property in
combination with their derivative-free and non-deterministic nature make genetic algorithms less
susceptible to measurement outliers and experimental fluctuations in time. For this reason, genetic
algorithms are selected for the experimental optimization presented in this paper, even though classical
derivative-based optimization schemes can be found that are equally or more performant in terms of
convergence time.

By probing the solution space, genetic algorithms are capable of identifying optimal solutions,
even in vast and highly non-linear design spaces. Milano and Gharib [21] were among the first to apply
genetic algorithm optimization to flapping wing kinematics in an experimental environment. For a
system with two degrees of freedom, wing translation and rotation, the solution achieving the highest
amount of lift in hovering flight was linked to the production of leading edge vortices of maximum
circulation. A similar approach was used by Margerie et al. [22] to optimize the kinematics of a
bird-like micro air vehicle with twelve degrees of freedom in forward flight through artificial evolution.
Their computational fluid dynamics coupled optimization method achieved results closely resembling
the kinematics of a gull in cruising flight. Alternative approaches use gradient-based optimization
methods for the flapping wing system [23,24]. Tuncer and Kaya [23] evolved the kinematics of a
plunging and pitching airfoil with a steepest ascent method in a numerical study to demonstrate that
high propulsive capabilities could be achieved at the cost of efficiency. For a flapping wing in forward
flight with active shape morphing, Stanford and Beran [24] focused on the propulsive efficiency under
certain lift and thrust constraints by utilizing an inviscid three-dimensional unsteady vortex-lattice
method.

Optimizing flapping wing geometry or kinematics in hovering flight is usually done with two
main objectives in mind, to produce maximum lift or to achieve the highest hovering efficiency.
Chaudhuri et al. [25] introduced a new standard of uncertainty quantification for experimental
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optimizations, which they used to design a high lift flapping wing micro air vehicle. A final design was
reached fast and consistently by a genetic algorithm, including different sampling criteria and multiple
surrogates in the gene evolution process, despite noisy data measurements and small manufacturing
inaccuracies. The combined optimization of wing shape and kinematics by Ke and Zhang [26] led
to solutions with lower flapping frequency, larger wing geometries and lower power density in
comparison to the solutions from the individual optimization of shape and kinematics. Very recently,
Lee and Lua [27] focused on the pitching motion of a hawk moth in hovering flight and used a
two-stage optimization method to identity the influence of the pitch angle evolution to the flapping
wing performance of complex, insect-like motion profiles. After an initial exploration of the parameter
space with a semi-empirical quasi-steady model, they used a computational fluid dynamics simplex
optimization method to demonstrate the potential aerodynamic performance gain of more advanced
pitching kinematics for flapping wing micro air vehicles.

In this study, we parameterize the pitching kinematics of a hovering flapping wing to allow for
complex non-linear and non-harmonic pitching motions. A genetic algorithm is used to identify the
optimal solutions of the parameterized pitching motion given a fixed sinusoidal stroke motion in an
experimental setting. Our interest here goes beyond finding the optimal solution. We are interested in
studying the evolutionary development to further explore the idea of evolution-mimicking, which
bears great potential for advancing human-engineered flying devices in addition to the classical
bio-mimicking approach. In this paper, two optimization objectives are considered. The first objective
is maximum stroke average efficiency, and the second objective is maximum stroke average lift.
The solutions for both optimization scenarios will be compared, and the evolution of the best
individuals in subsequent generations will be discussed, based on aerodynamic force and power
measurements. Additionally, velocity field measurements at selected phases during the flapping
motions will be analyzed to understand why the obtained solutions are optimal for the two different
optimization objectives.

2. Materials and Methods

2.1. Wing Model and Kinematics

The kinematics of an insect wing in hovering flight are parameterized by the temporal evolution
of the angles of the wings with respect to the three rotational axes (Figure 1). The stroke angle φ

describes the sweeping motion of the wing on the horizontal plane and accounts for most of the kinetic
energy of the wing. The pitching angle α is the geometric angle between the wing’s chord and the
vertical axis. The elevation angle θ describes the motion normal to the stroke plane. The amplitude of
the elevation angle during hovering is small compared to the stroke or the pitch angle amplitudes,
and the contribution of the elevation to the lift production is negligible [28]. The elevation is not
considered in this study.

Figure 1. Schematic of the three rotational axis and angles describing the flapping wing kinematics:
stroke φ, elevation θ and pitching α.
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The aerodynamics of flapping wings in hovering flight can be characterized using
two non-dimensional parameters, the reduced frequency k and Reynolds number Re. To assume
similar aerodynamics both k and Re should be of the same order of magnitude (Table 1).

The reduced frequency k is defined by:

k =
πc

2φR2
(1)

with c the wing’s chord length, 2φ the stroke amplitude and R2 =
√∫ R

0 (R0 + r)2dr/R the radius of
the wing’s second moment of area [29,30]. Here, R0 is the root-cut out, which is the distance between
the stroke axis and the root of the wing as indicated in Figure 2. The reduced frequency quantifies the
unsteadiness of the flow by comparing the spatial wavelength of the flow disturbance to the chord
length. It strongly influences the relative contributions of acceleration reaction versus circulatory forces.

The Reynolds number Re is defined by:

Re =
Uc
ν

=
2φ f cR2

ν
(2)

with ν the kinematic viscosity of the fluid and U = 2φ f R2 the stroke average velocity at the second
moment of area.

Figure 2. (a) Flapping wing mechanism. The main shaft controls the stroke motion. Through a belt
transmission, the pitching motion is controlled at the bottom of the main shaft. (b) Wing model with
chord c, span R, root cutout R0 and a rotational axis at quarter chord indicated by the dotted line.

The model wing shown in Figure 2 is similar to the one used by Krishna et al. [31]. The associated
Reynolds number and reduced frequency are in the range of flying insects of the size of bees (Table 1).
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Table 1. Wing parameters of three flying insects and the scaled model submerged in water with
ν20◦C = 1.00× 10−6 m2 s−1.

Parameters Honeybee [3] Hawkmoth [3] Hoverfly [32] Model [31]

Wing stroke frequency f (Hz) 232 26 166 0.25
Wing chord c (mm) 3 18.3 2.4 34
Wing span R (mm) 10 48.3 9.03 107
Stroke amplitude 2φ (◦) 91 115 148.2 180
Reduced frequency k 0.3 0.3 0.32 0.32
Reynolds number Re 1412 5885 620 2510

The stroke motion of many birds and insects in hovering flight closely resembles a harmonic
function [19,28]. The pitching angle profile tends to be more complex and has a stronger impact on
the aerodynamic performance. This makes the pitching angle a promising target for optimization.
A genetic algorithm will be used to optimize a parameterized pitching angle function in an
experimental environment. By analyzing pitching angle profiles exercised by several different species
of flying insects [19,28,33], a function is proposed that can mimic various existing pitching angle
profiles including non-linear and non-harmonic motions.

The parameterized pitching angle function displayed in Figure 3 has four control points
characterizing one half stroke, amounting to a total of seven degrees of freedom. The pitching
angle at the start and end of the half stroke is defined by α0 and −α0, respectively. Three additional
control points are added at times ti with angles αi. All control points are connected through monotonic
cubic interpolation, with periodicity and symmetry constraints. This procedure leads to complex
non-linear and non-harmonic pitching motions.

Figure 3. Control points (0, α0), (t1, α1), (t2, α2), and (t3, α3) for the pitching angle optimization function.

2.2. Experimental Setup

A schematic of the experimental setup is presented in Figure 4. The stroke motion is performed
by a Maxon motor EC40 (120 W, 100 N mm torque, Sachseln, Switzerland) and the pitching motion
by a Maxon motor EC22 (100 W, 49 N mm torque). The motors are controlled via a Galil DMC-40
motion controller (Galil Motion Control, Rocklin, CA, USA). Forces are recorded at the wing root by a
six-axis Nano17 IP68 force-torque transducer with a resolution of 3.13 mN for force and 0.0156 N mm
for torque measurements. The recording is performed at a sampling frequency of 1000 Hz with a
National Instruments data acquisition card.
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Figure 4. Schematic of the experimental setup displaying the flapping mechanism inside an octagonal
tank filled with water, the particle image velocimetry (PIV) light-sheet and PIV camera.

The flapping mechanism is immersed in an octagonal tank filled with water and an outer diameter
of 0.75 m. A 4 mm-thick light-sheet is generated by a high-power light-emitting diode (LED) (LED
Pulsed System, ILA_5150 GmbH, Aachen, Germany) and a cylindrical lens [34]. A 70 mm× 94 mm
field of view is recorded by a pco pixelfly camera (1024 px× 1372 px resolution). Phase-locked particle
image velocimetry (PIV) is carried out by triggering the LED and the camera synchronously to get
a single image pair for a selected stroke angle. By rotating the initial stroke position relative to the
light-sheet, the wing gets captured at different phase angles. A total of 24 flapping cycles are captured
and averaged for 13 different stroke angles. The raw images are processed with a multi-grid algorithm
and a final interrogation window size of 32 px× 32 px with an overlap of 50%. This leads to a physical
resolution of 1 mm or 0.03 c.

To better understand the lift-enhancing and power-reducing unsteady flow effects, a series of PIV
images for the best individuals of the genetic algorithm optimization was taken.

2.3. Optimization

To quantify the performance of the pitching angle evolution, force and power coefficients are
computed from the force and torque measurements. The lift, drag and power coefficients are given by:

CL =
L

1
2 ρRcU2 , CD =

D
1
2 ρRcU2 , CP =

P
1
2 ρRcU3 . (3)

In the present coordinate system, the drag is negative during the upstroke and positive during the
downstroke. The aerodynamic power P is the sum of the pitching power Pp and the stroke power Ps.
The pitching power is calculated as Pp = Tpα̇, with Tp the pitching torque measured by the load cell
and α̇ the pitch angular velocity. The stroke power is estimated by Ps = Tsφ̇, with Ts the torque induced
by the measured drag and φ̇ the stroke angular velocity. To calculate the drag-induced torque Ts we
estimated the radial location Rd where the drag acts such that Ts = RdD. By assuming a span-wise
uniform distribution of the drag, we obtain Rd = 0.75

[
(R0 + R)4 − R4

0

]
/
[
(R0 + R)3 − R3

0

]
. For the

presented experiments, the stroke power accounts for approximately 90% of the total aerodynamic
power. The wing inertia for the pitch and the stroke motions is estimated to account for less than 1% of
the aerodynamic power and has not been subtracted in the presented results. The hovering efficiency
η can be expressed as the ratio between the stroke average lift coefficient CL and the stroke average
power coefficient CP:

η =
CL

CP
. (4)
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This simple expression of efficiency gives us a measure for the lift to effort ratio. More complex
definitions consider the dimensionless aerodynamic power to support a unit weight to define a
hovering efficiency [35]. The use of a more complex efficiency expression would require the weight of
the flying insect or vehicle to be specified.

A genetic algorithm-based optimization of the pitching kinematics using experimental data is
implemented using the MATLAB Global Optimization Toolbox (The MathWorks, Inc., Natick, MA,
USA) [36]. The two objectives considered for the optimization of the parameterized pitching angle
evolution are presented in Figure 3. The first objective is to maximize the hovering efficiency η of the
flapping system, while the second objective is to achieve the highest stroke average lift coefficient CL.

The seven parameters are bounded by the values listed in Table 2. These bounds are chosen to
cover a broad range of insect wing kinematics [28]. The fitness function evaluation is conducted over
4 consecutive flapping cycles. Genetic algorithms are based on the mechanics of natural selection and
start by selecting the best potential solutions or individuals among a randomly-generated selection
or population according to their fitness value. The populations in this paper are composed of
70 individuals, each being a vector of the 7 design function parameters. The initial population is
created through a random uniform distribution constrained by the lower and upper bounds indicated
in Table 2. At the end of a generation, each individual is ranked according to its performance and
receives a score based on the inverse square root of its rank. The best individuals are randomly
mutated and recombined with other fit individuals to create a new generation of offspring. This new
generation includes: individuals that are clones of the previous generation’s elite (5%), individuals
that are a crossover of two parents (60%) and mutated individuals from the previous generation (35%).
The crossover process is guided by the following rule: child = parent 1 + rand× (parent 2− parent 1),
with rand a random number between 0 and 1. After calculating the fitness of the offspring generation,
the best individuals of the new and the previous generation are kept, and the process of mutation
and recombination is repeated until a termination condition has been reached. Convergence of the
optimization process was achieved respectively in 21 and 28 generations for the lift and efficiency
evolution, which were conducted in a total of 24 h of experimental runs. The genetic algorithm was
terminated once the average fitness over the last 10 generations did not improve by more than 5%.

Table 2. Parameter ranges for the pitching motion.

α0 α1 α2 α3 t1 t2 t3

minimum 20◦ 30◦ 30◦ 20◦ 0.05T t1 + 0.2(t3 − t1) 0.32T
maximum 60◦ 80◦ 80◦ 60◦ 0.18T t3 − 0.2(t3 − t1) 0.43T

The convergence towards the most efficient lift production and highest lift production is presented
in Figure 5. The initial efficiency started at a value of η = 1.24 and improved continuously until it
reached a plateau after approximately 20 generations. In later generations, there were some fluctuations
around the asymptotic value of η ≈ 1.58; however, no additional improvement was achieved, and the
optimization was terminated after 27 generations.

The lift optimization converged even faster, and the difference between the initial and the final
value of the stroke average lift was barely 0.03. The values of CL fluctuated between 1.15 and 1.16 after
approximately 10 generations, and the optimization was terminated after 21 generations.
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Figure 5. Convergence of the fitness functions for (a) the maximum stroke average efficiency objective
and (b) the maximum stroke average lift objective. The color of the markers indicates the aerodynamic
energy associated with the pitching motion solutions.

3. Results and Discussion

The pitching kinematics for a flapping wing with a sinusoidally-varying stroke velocity were
optimized by combining experimental measurements of the aerodynamic forces and a genetic
algorithm. Two different objective functions were considered. The first objective was maximum
stroke average efficiency, and the second objective was maximum stroke average lift.

The optimal pitching kinematics of the best individuals of the first, the third and the final
generation for both objectives are presented in Figure 6a,b, and the parameters describing the motions
according to Figure 3 are listed in Table 3. The angle α is the geometric angle between the wing chord
and the vertical axis. During the first half period or half stroke, the wing was considered to move from
left to right such that positive values of α for t/T < 0.5 indicate a positive effective angle of attack
between the wing and the flow velocity relative to the wing. The effective angle of attack during the
first half stroke is given by αeff = 90◦ − α.

Table 3. Parameters describing the pitching motions of the best individuals of the first, third and final
generation for the genetic algorithm efficiency and lift optimization.

α0 α1 α2 α3 t1 t2 t3

efficiency optimization

initial population 44.7◦ 50.4◦ 67.1◦ 36.9◦ 0.05 0.27 0.40
third population 49.3◦ 54.2◦ 66.6◦ 40.3◦ 0.07 0.29 0.40
final population 34.9◦ 57.9◦ 71.2◦ 49.6◦ 0.08 0.29 0.40

lift optimization

initial population 31.1◦ 58.3◦ 37.3◦ 49.5◦ 0.07 0.14 0.40
third population 43.9◦ 55.4◦ 37.8◦ 42.9◦ 0.06 0.16 0.39
final population 34.1◦ 57.8◦ 39.2◦ 47.6◦ 0.07 0.14 0.40
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Figure 6. Phase averaged pitching angle α, lift coefficient CL, drag coefficient CD and power
coefficient CP evolution for an entire flapping cycle for the best individuals from the initial, third
and final population of the genetic algorithm efficiency optimization (left column) and lift optimization
(right column).

The optimization algorithm was terminated after 28 generations for the most efficient kinematics
and after 21 generations for the highest lift kinematics. Surprisingly, the kinematics of the best
individual of the initial random population were already very close to the final optimal solution for
both optimization objectives. The distribution of the phase average lift coefficient values for all 21
populations of the maximal lift optimization scenario is presented in Figure 7 where the colors indicate
the number of the population. The values of CL ranged from 0.72 to 1.11 for the initial population
and from 1.10 to 1.16 for the final population. The optimization potential for CL by modifying the
pitching motion for a given sinusoidal stroke motion was limited by the fact that the stroke motion
dominated the inflow velocity encountered by the wing and the lift generation. Nevertheless, the
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evolution of the distribution of the fitness values over the successive generations presented in Figure 7
suggests an initially unbiased exploration of the solution space and demonstrates a rapid and successful
convergence of the optimization algorithm.

Figure 7. Distribution of the stroke average lift coefficient for the 21 populations tested in the lift
optimization scenario. The colors indicate the number of the population, which all included N = 70
individuals. The vertical dotted line indicates the maximal stroke average lift coefficient reached by the
final optimized solution. The distributions of the first and final population are highlighted by increased
line thickness.

The two optimization objectives considered yielded different final solutions for optimal kinematics.
The most efficient pitching motion (Figure 6a) was smoother and closer to a sinusoidal pitching motion,
whereas the highest lift generating pitching motion (Figure 6b) had sharper edges and was closer to a
trapezoidal motion. The most efficient pitch angle profile closely resembled the crane fly kinematics
observed by Ishihara et al. [37] in their experimental and three-dimensional computational study
on the aerodynamic contribution to passive pitching motions. Recent results of a numerical-based
optimization from Lee and Lua [27] showed similar kinematics for a hawk moth in hovering flight.
The lift optimized solution matched the shape of the pitch angle profiles of hovering fruit flies observed
experimentally by [38], who inferred that insects rely heavily on passive mechanisms for their wing
rotation. From an aeromechanics point of view, the wing hinge acts as a torsional spring that allows for
a wing rotation with minimal active actuation in response to the aerodynamic and inertial forces [37,38].
Mechanical wing models that mimic the passive rotational mechanisms of insects can be designed
using artificial wings with torsional compliance [39] or wing hinges equipped with damped torsional
springs [40]. These passive rotational dynamics have the potential to increase the pitching efficiency
even further and decrease the mechanical complexity and mass of the system [37,39].

To highlight the independence of the solutions from the initial population, the best individuals
from eight different initial populations for the high lift optimization objective are presented in Figure 8.
The solution of the final population of the converged optimization experiment is included in Figure 8
by the dotted line. All eight solutions display a common tendency towards a trapezoidal pitch angle
variation, which is the characteristic feature of the optimal high lift solution. The closer the initial
solutions of α(t) resemble the final solution of the converged optimization, the higher the stroke
average lift coefficient, underlining the repeatability and reliability of the obtained solution.

In both final solutions for the different optimization objectives, the rotation or pitching motion was
advanced with respect to the sinusoidal stroke motion. This was observed by the positive geometric
angle at the start of the stroke motion (t/T = 0). The rotation was advanced if the wing had completed
most of its rotation at the end of each half stroke. This advanced rotation led to several lift and
efficiency enhancing unsteady flow effects, which have been described previously by Lua et al. and
Krishna [41,42]. When the pitching angle relative to the stroke velocity becomes negative in advanced
rotation, it yields a positive effective angle of attack due to the induced velocity of wake vortices
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produced in the previous stroke. The effective angle of attack at the beginning of the half strokes when
the wing’s stroke velocity starts to increase is more favorable in the case of advanced rotation than
in the case of a symmetric pitching motion, where the wing is vertical at stroke reversal. In general,
advanced rotational motions induce stronger leading edge vortices, which are directly linked to a
higher force production [41,43–45]. The genetic algorithm found optimal solutions with advanced
rotation as of the first generation, and the timing of the rotation with respect to the stroke motion
varied only slightly from the first to the final generation. The most efficient pitching kinematics had a
phase shift ∆ts between the wing rotation and the wing stroke of ∆ts = −0.05 in the first generation
of the optimization and became slightly less advanced for the final generation where ∆ts = −0.03.
The phase shift was determined as the non-dimensional time t/T at which α passes through zero.
The phase shift of the highest lift-generating pitching kinematics decreased slightly from ∆ts = −0.03
for the first generation to ∆ts = −0.02 for the final generation.

Figure 8. Pitching kinematics of the best individual of the first population for eight repeated runs of the
high lift optimization. The line color represents the value of the stroke average lift coefficient. The final
solution from the final population is included by the dotted line.

The main difference between the most efficient and the highest lift-generating pitching motion
was created by differences in the second control point α2 and its timing t2. The timing and angle of the
first and third control point did not vary substantially between subsequent generations or between the
optimization scenarios (Table 3). The different coordinates of the second control point of the pitching
motion led to a local maximum in α at the beginning of the half strokes for the highest lift pitching
kinematics, which was not present in the most efficient pitching kinematics. The maximum in α

corresponds to a local minimum in the effective angle of attack αeff. The local extremum and its timing
remained virtually constant between the first and the final generation. After the initial peak, the wing’s
angle remained relatively constant for approximately 40% of the half stroke. The highest value of α,
which corresponds to the lowest effective angle of attack, was reached in the efficiency optimized
scenario around 0.3 T, after the maximum stroke velocity was reached at 0.25 T. This minimum effective
angle of attack decreased from 32.9◦ to 28.8◦ between the first and the final generation. Its timing
varied marginally between generations. The most efficient pitch evolution had larger extreme values,
but varied more smoothly than the highest lift generating pitch variation such that the maximum pitch
rate in both cases was approximately α̇ = 3 ◦ s−1.

The evolution of the phase-averaged lift, drag and power coefficients corresponding to the
different pitching kinematics is presented in Figure 6c–h. To describe the connection between the
pitching kinematics and the aerodynamic forces, selected phase-averaged snapshots of the flow field
around the wing at the mid-span are presented in Figures 9 and 10 for the optimal efficiency and
optimal lift kinematics, respectively. The phase angle and the effective angle of attack αeff = 90◦ − α

corresponding to the individual panels are indicated, and the evolution of α during the first half stroke
is repeated in the bottom panel.
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Figure 9. Velocity and vorticity fields at selected phases within the flapping cycle for the final generation
of the efficiency optimization of the pitch kinematics.
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Figure 10. Velocity and vorticity fields at selected phases within the flapping cycle for the final
generation of the maximum lift optimization of the pitch kinematics.

In general, the lift coefficient primarily followed the sinusoidal stroke motion. This general
evolution of the lift coefficient for simulated flapping wing hovering flight has been reported in the
past by various experimental and numerical studies [19,27,29,31].

The initial increase in the lift coefficient was associated with a chord-wise growth of a bound
coherent leading edge vortex (Figures 9b–f and 10a–d). The maximum lift coefficient for the efficiency
optimized scenario was reached at t/T ≈ 0.35 and for the lift optimized scenario at t/T ≈ 0.25 when
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the maximum stroke velocity was reached. The maximum lift coefficient for the optimal lift scenario
was CL ≈ 2.2 versus CL ≈ 1.5 for the most efficient scenario. In both scenarios, the maximum lift
coefficient was reached when the leading edge vortex started to move in the chord-normal direction
away from the wing (Figures 9g,h and 10e–h). The leading edge vortex was most efficient in increasing
lift when it remained bound to the airfoil’s surface, and it increased the lift enhancement the stronger
it became.

The most efficient pitching motion was characterized by a nearly constant and relatively low
effective angle of attack at the start of the half stroke, which allowed for the formation of a leading edge
vortex close to the airfoil surface, which remained bound for up to 60% of the half stroke. The highest
lift-generating pitching motion had a larger effective angle of attack, which led to the generation of
a stronger leading edge vortex and higher lift coefficient than in the efficiency optimized scenario.
Early in the stroke cycle, the stronger leading edge vortex started to move in a chord-normal direction
allowing a thin layer of reverse flow to form between the leading edge vortex and the wing surface.
This reverse flow layer decreased the efficiency of the vortex to increase the lift. To provide a rough
estimate of the strength of the leading edge vortex, a phase-averaged circulation value Γ- was calculated
by integrating all the negative vorticity in the fields of view. The evolution of the leading edge vortex
signed circulation Γ- within the first half stroke is presented at the bottom of Figures 9 and 10 for the
two optimization scenarios. The maximum circulation associated with the high lift kinematics was
more than double the circulation that was generated during the most efficient kinematics.

In the efficiency optimized scenario, the leading edge vortex spanned almost the entire chord
at quarter stroke leaving little room for a strong trailing edge vortex to form (Figure 9f). In the lift
optimized scenario, the leading edge vortex grew closer to the leading edge, allowing a trailing edge
vortex to roll up around the trailing edge (Figure 10f). This trailing edge vortex did not only grow
closer to the wing, but due to a higher effective angle of attack, it was also stronger than for the more
efficient motion.

The strong coherent leading and trailing edge vortices for the high lift kinematics induced a jet
motion towards the wing (Figure 10f–i), which increased the drag coefficient (Figure 6f vs. Figure 6e).
Overall, the drag coefficient was substantially lower for the most efficient motion compared to the
high lift motion. The peak values were |CD| ≈ 1.3 for the most efficient motion and |CD| ≈ 2.4 for
the highest lift motion. In the efficiency optimized scenario, the local maximum absolute drag was
reached during the wing rotation and was attributed to the added mass effect [33,43]. The same peak
shortly before t/T = 0.5 was observed in the lift optimized scenario, but here, there was also a strong
circulatory drag component due to the induced jet motion by the leading and trailing edge vortex pair.

The hovering efficiency η was defined as the ratio between the stroke average lift coefficient CL
and the stroke average power coefficient CP (Equation (4)). The form of the evolution of the power
coefficient (Figure 6g–h) was similar to the evolution of the lift coefficient, and maximum values
were reached around t/T = 0.25. The maximum lift coefficient in the lift optimized scenario was
approximately 40% higher than in the efficiency optimized scenario, but its maximum power coefficient
was about 65% lower (Table 4). The stroke average efficiency for the efficiency optimized motion was
η = 1.5 versus η = 0.9 for the lift optimized motion (Table 4).
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Table 4. Phase-averaged lift and efficiency measured for the pitching motions of the best individuals of
the first, third and final population for the genetic algorithm efficiency and lift optimization.

CL η

efficiency optimization

initial population 0.87 1.35
third population 0.86 1.41
final population 0.71 1.57

lift optimization

initial population 1.11 0.89
third population 1.14 0.81
final population 1.16 0.90

4. Conclusions

An experimental procedure to optimize the pitching kinematics of a flapping wing is presented.
The optimization is based on a genetic algorithm. The pitching motion is parameterized using four
control points, which are connected through monotonic cubic interpolation. The first control point is
located at the start of the stroke, and the time and angle coordinates of the other three points can be
varied within defined parameter ranges. This leads to a complex seven degrees of freedom motion
that can be non-linear and non-harmonic.

Two optimization scenarios are studied, one where the stroke average efficiency is maximized
and one where the stroke average lift is maximized. The solutions for both optimization scenarios
converge within less than 30 generations based on the evaluation of their fitness. This corresponds
to a total measurement time of 24 h and demonstrates the feasibility of a genetic optimization based
on experimental data. The pitching kinematics of the best individual of the initial and the final
population closely resemble each other for both optimization scenarios. The optimal kinematics in
both scenarios differ substantially. The most efficient pitching motion is smoother and closer to a
sinusoidal pitching motion, whereas the highest lift-generating pitching motion has sharper edges
and is closer to a trapezoidal motion. In both solutions, the rotation or pitching motion is advanced
with respect to the sinusoidal stroke motion. In general, the lift and power coefficient primarily
follow the sinusoidal stroke motion, but their maximum values are strongly influenced by the pitching
motion. The lift optimized pitching motion yields a maximum lift coefficient around the quarter stroke,
which is approximately 40% higher than the efficiency optimized solution. The efficiency optimized
solution has a 65% higher maximum power coefficient. The stroke average efficiency for the efficiency
optimized motion is η = 1.5 versus η = 0.9 for the lift optimized motion.

Velocity field measurements at selected phases during the flapping motions highlight why the
obtained solutions are optimal for the two different optimization objectives. The lift coefficient is most
efficiently increased by a bound coherent leading edge vortex that spans most of the chord, whereas a
higher lift increase is obtained by a creating a stronger, but not necessarily bound, leading edge vortex.
The pitch angle variation in the efficiency optimized scenario supports the formation of a leading edge
vortex that remains bound to the airfoil surface for most of the half stroke. The pitch angle variation in
the lift optimized scenario rather promotes the formation of a stronger leading edge vortex, which will
lead to a higher lift coefficient than in the efficiency optimized scenario.
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Abbreviations

The following abbreviations are used in this manuscript:
PIV particle image velocimetry
LED light-emitting diode

The following symbols are used in this manuscript:
c chord length
L lift force
D drag force
Ts stroke torque
Tp pitch torque
Ps stroke power
Pp pitch power
P aerodynamic power
CL lift coefficient
CD drag coefficient
CP power coefficient
f wing stroke frequency
k reduced frequency
R0 distance between the stroke axis and the wing’s root
R wingspan
R2 radius of the wing’s second moment of area
Rd radius of the drag’s point of application
Re Reynolds number
U average wing tip velocity
α geometric angle between the wing’s chord and the vertical axis
α̇ pitching rate
η efficiency
ν kinematic viscosity
ρ density
2φ stroke amplitude
φ̇ stroke angular velocity
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