Modelling Bidispersive Local Thermal Non-Equilibrium Flow
Abstract
:1. Introduction
2. Basic Model
3. Universal Stability
4. Thermal Convection
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nield, D.A.; Bejan, A. Convection in Porous Media, 5th ed.; Springer: New York, NY, USA, 2017. [Google Scholar]
- Straughan, B. Stability and Wave Motion in Porous Media; Serious Applied Mathematical Sciences; Springer: New York, NY, USA, 2008; Volume 165. [Google Scholar]
- Banu, N.; Rees, D.A.S. Onset of Darcy-Benard convection using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 2002, 145, 2221–2228. [Google Scholar] [CrossRef]
- Barletta, A.; Rees, D.A.S. Local thermal non-equilibrium effects in the Darcy-Benard instability with isoflux boundary conditions. Int. J. Heat Mass Transf. 2012, 55, 384–394. [Google Scholar] [CrossRef] [Green Version]
- Barletta, A.; Rees, D.A.S. Local thermal non-equilibrium analysis of the thermoconvective instability in an inclined porous layer. Int. J. Heat Mass Transf. 2015, 83, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Eltayeb, I.A. Stability of a porous Benard-Brinkman layer in local thermal non-equilibrium with Cattaneo effects in solid. Int. J. Therm. Sci. 2015, 98, 208–218. [Google Scholar] [CrossRef]
- Nield, D.A. Effects of local thermal non-equilibrium in steady convection processes in saturated porous media: Forced convection in a channel. J. Porous Media 1998, 1, 181–186. [Google Scholar]
- Nield, D.A. A note on modelling of local thermal non-equilibrium in a structured porous medium. Int. J. Heat Mass Transf. 2002, 45, 4367–4368. [Google Scholar] [CrossRef]
- Nield, D.A.; Kuznetsov, A.V. A two-velocity two temperature model for a bi-dispersed porous medium: Forced convection in a channel. Transp. Porous Media 2005, 59, 325–339. [Google Scholar] [CrossRef]
- Nield, D.A.; Kuznetsov, A.V. The onset of convection in a bidisperse porous medium. Int. J. Heat Mass Transf. 2006, 49, 3068–3074. [Google Scholar] [CrossRef]
- Nouri-Borujerdi, A.; Noghrehabadi, A.R.; Rees, D.A.S. The linear stability of a developing thermal front in a porous medium: The effect of local thermal non-equilibrium. Int. J. Heat Mass Transf. 2007, 50, 3090–3099. [Google Scholar] [CrossRef]
- Postelnicu, A.; Rees, D.A.S. The onset of Darcy-Bénard convection in a porous layer using a thermal non-equilibrium model-Part I: Stress-free boundaries. Int. J. Energy Res. 2003, 27, 961–973. [Google Scholar] [CrossRef]
- Rees, D.A.S. Microscopic modelling of the two-temperature model for conduction in heterogeneous media: Three dimensional media. In Proceedings of the 4th International Conference on Application of Porous Media, Istanbul, Turkey, 10–12 August 2009. [Google Scholar]
- Rees, D.A.S. Microscopic modelling of the two-temperature model for conduction in heterogeneous media. J. Porous Media 2010, 13, 125–143. [Google Scholar] [CrossRef]
- Rees, D.A.S.; Bassom, A.P. Radial injection of a hot fluid into a cold porous medium: The effects of local thermal non-equilibrium. Comput. Therm. Sci. 2010, 2, 221–230. [Google Scholar] [CrossRef]
- Rees, D.A.S.; Bassom, A.P.; Siddheshwar, P.G. Local thermal non-equilibrium effects arising from the injection of a hot fluid into a porous medium. J. Fluid Mech. 2008, 594, 379–398. [Google Scholar] [CrossRef]
- Straughan, B. Global nonlinear stability in porous convection with a thermal non-equilibrium model. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2006, 462, 409–418. [Google Scholar] [CrossRef]
- Straughan, B. Porous convection with local thermal non-equilibrium temperatures and with Cattaneo effects in the solid. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2013, 469. [Google Scholar] [CrossRef]
- Straughan, B. Convection with Local Thermal Non-Equilibrium and Microfluidic Effects; Serious Advances in Mechanics and Mathematics; Springer: Berlin, Germany, 2015; Volume 32. [Google Scholar]
- Falsaperla, P.; Mulone, G.; Straughan, B. Bidispersive-inclined convection. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2016, 472. [Google Scholar] [CrossRef] [PubMed]
- Nield, D.A. A Note on the Modelling of Bidisperse Porous Media. Transp. Porous Media 2016, 111, 51–520. [Google Scholar] [CrossRef]
- Staughan, B. On the Nield-Kuznetsov theory for convection in bidispersive porous media. Transp. Porous Media 2009, 77, 159–168. [Google Scholar] [CrossRef]
- David, C.; Menéndez, B.; Darot, M. Influence of stress-induced and thermal cracking on physical properties and microstructure of La Peyratte granite. Int. J. Rock Mech. Min. Sci. 1999, 36, 433–448. [Google Scholar] [CrossRef]
- Homand-Etienne, F.; Houpert, R. Thermally Induced Microcracking in Granites: Characterisation and Analysis. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1989, 26, 125–134. [Google Scholar] [CrossRef]
- Siratovich, P.A.; Villeneuve, M.C.; Cole, J.W.; Kennedy, B.M.; Bégué, F. Saturated heating and quenching of three crustal rocks and implications for thermal stimulation of permeability in geothermal reservoirs. Int. J. Rock Mech. Min. Sci. 2015, 80, 265–280. [Google Scholar] [CrossRef]
- Hammond, N.P.; Barr, A.C. Global resurfacing of Uranus’s moon Miranda by convection. Geology 2014, 42, 931–934. [Google Scholar] [CrossRef]
- Montrasio, L.; Valentino, R.; Losi, G.L. Rainfall infiltration in a shallow soil: A numerical simulation of the double-porosity effect. Electron. J. Geotechnol. Eng. 2011, 16, 1387–1403. [Google Scholar]
- Ghasemizadeh, R.; Hellweger, F.; Butscher, C.; Padilla, I.; Vesper, D.; Field, M.; Alshawabkeh, A. Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico. Hydrogeol. J. 2012, 20, 1441–1461. [Google Scholar] [CrossRef] [PubMed]
- Zuber, A.; Motyka, J. Hydraulic parameters and solute velocities in triple-porosity karstic-fissured-porous carbonate aquifers: Case studies in southern Poland. Environ. Geol. 1998, 34, 243–250. [Google Scholar] [CrossRef]
- Huang, T.; Guo, X.; Chen, F. Modeling transient flow behavior of a multiscale triple porosity model for shale gas reservoirs. J. Nat. Gas Sci. Eng. 2015, 23, 33–46. [Google Scholar] [CrossRef]
- Kim, J.; Moridis, G.J. Numerical analysis of fracture propagation during hydraulic fracturing operations in shale gas systems. Int. J. Rock Mech. Min. Sci. 2015, 76, 127–137. [Google Scholar] [CrossRef]
- Franchi, F.; Nibbi, R.; Straughan, B. Structural stability for temperature dependent bidispersive flow. Unpublished work. 2017. [Google Scholar]
- Serrin, J. On the stability of viscous fluid motions. Arch. Rational Mech. Anal. 1959, 3, 1–13. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franchi, F.; Nibbi, R.; Straughan, B. Modelling Bidispersive Local Thermal Non-Equilibrium Flow. Fluids 2017, 2, 48. https://doi.org/10.3390/fluids2030048
Franchi F, Nibbi R, Straughan B. Modelling Bidispersive Local Thermal Non-Equilibrium Flow. Fluids. 2017; 2(3):48. https://doi.org/10.3390/fluids2030048
Chicago/Turabian StyleFranchi, Franca, Roberta Nibbi, and Brian Straughan. 2017. "Modelling Bidispersive Local Thermal Non-Equilibrium Flow" Fluids 2, no. 3: 48. https://doi.org/10.3390/fluids2030048
APA StyleFranchi, F., Nibbi, R., & Straughan, B. (2017). Modelling Bidispersive Local Thermal Non-Equilibrium Flow. Fluids, 2(3), 48. https://doi.org/10.3390/fluids2030048