Advances in Flow–Structure Interaction and Multiphysics Applications: An Immersed Boundary Perspective
Abstract
1. Introduction
Literature Search Strategy and Selection Criteria
- Peer-reviewed journal studies or high-impact conference papers.
- Clear alignment with the advancements in IBM post-2020.
- Incorporation of original numerical or methodological contributions.
- Application of IBM in at least one complex fluid–structure or multi-physics context.
- Editorials, short communications, or non-technical reviews.
- Articles focused purely on meshless or ALE methods without relevance to IBM.
- Studies using IBM terminology vaguely.
2. Overview of Numerical Framework
Comparison Between Diffuse-Interface and Sharp-Interface IB
3. Flow–Structure Interaction Application
3.1. Biophysics and Biological Flows
Effect of Fluid Solvers on Boundary Treatment for Biological Applications
3.2. Vortex-Induced Vibration and Flexible Body Interaction
Effect of Boundary Treatment on Flexible Body Interaction
4. Multiphysics Application
4.1. Heat Transfer
4.2. Particle Sedimentation, Multiphase Flows, and Sound Acoustics
4.3. Selection of Fluid Solver and Boundary Condition for Multiphysics Applications
5. Evolution of IBM
6. Future Scope and Concluding Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iaccarino, G.; Verzicco, R. Immersed boundary technique for turbulent flow simulations. Appl. Mech. Rev. 2003, 56, 331–347. [Google Scholar] [CrossRef]
- Mittal, R.; Iaccarino, G. Immersed Boundary Methods. Annu. Rev. Fluid Mech. 2005, 37, 239–261. [Google Scholar] [CrossRef]
- Sotiropoulos, F.; Yang, X. Immersed boundary methods for simulating fluid–structure interaction. Prog. Aerosp. Sci. 2013, 65, 1–21. [Google Scholar] [CrossRef]
- Kim, W.; Choi, H. Immersed boundary methods for fluid-structure interaction: A review. Int. J. Heat Fluid Flow 2019, 75, 301–309. [Google Scholar] [CrossRef]
- Griffith, B.E.; Patankar, N.A. Immersed Methods for Fluid–Structure Interaction. Annu. Rev. Fluid Mech. 2019, 52, 421–448. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; De, A.; Balaras, E. Immersed Boundary Method; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Mittal, R.; Bhardwaj, R. Immersed Boundary Methods For Thermofluids Problems. Annu. Rev. Heat Transf. 2022, 24, 33–70. [Google Scholar] [CrossRef]
- Verzicco, R. Immersed Boundary Methods: Historical perspective and Future Outlook. Annu. Rev. Fluid Mech. 2022, 55, 129–155. [Google Scholar] [CrossRef]
- Kanchan, M.; Maniyeri, R. Numerical analysis of the buckling and recuperation dynamics of flexible filament using an immersed boundary framework. Int. J. Heat Fluid Flow 2019, 77, 256–277. [Google Scholar] [CrossRef]
- Forgacs, O.L.; Mason, S.G. Particle motions in sheared suspensions: X. Orbits of flexible threadlike particles. J. Colloid Sci. 1959, 14, 473–491. [Google Scholar] [CrossRef]
- Stockie, J.M.; Green, S.I. Simulating the motion of flexible pulp fibres using the immersed boundary method. J. Comput. Phys. 1998, 147, 147–165. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Mittal, R. Benchmarking a coupled Immersed-Boundary-Finite-Element Solver for Large-Scale Flow-Induced deformation. AIAA J. 2012, 50, 1638–1642. [Google Scholar] [CrossRef]
- Griffith, B.E.; Hornung, R.D.; McQueen, D.M.; Peskin, C.S. An adaptive, formally second-order accurate version of the immersed boundary method. J. Comput. Phys. 2007, 223, 10–49. [Google Scholar] [CrossRef]
- Heys, J.J.; Gedeon, T.; Knott, B.C.; Kim, Y. Modelling arthropod filiform hair motion using the penalty immersed boundary method. J. Biomech. 2008, 41, 977–984. [Google Scholar] [CrossRef]
- Kim, Y.; Lai, M. Simulating the dynamics of inextensible vesicles by the penalty immersed boundary method. J. Comput. Phys. 2010, 229, 4840–4853. [Google Scholar] [CrossRef]
- Maniyeri, R.; Suh, Y.K.; Kang, S.; Kim, M.J. Numerical study on the propulsion of a bacterial flagellum in a viscous fluid using an immersed boundary method. Comput. Fluids 2012, 62, 13–24. [Google Scholar] [CrossRef]
- Maniyeri, R.; Kang, S. Numerical study on bacterial flagellar bundling and tumbling in a viscous fluid using an immersed boundary method. Appl. Math. Model. 2014, 38, 3567–3590. [Google Scholar] [CrossRef]
- De Rosis, A. On the dynamics of a tandem of asynchronous flapping wings: Lattice Boltzmann-immersed boundary simulations. Phys. A Stat. Mech. Appl. 2014, 410, 276–286. [Google Scholar] [CrossRef]
- Battista, N.A.; Strickland, W.C.; Barrett, A.; Miller, L.A. IB2d Reloaded: A more powerful Python and MATLAB implementation of the immersed boundary method. Math. Methods Appl. Sci. 2018, 41, 8455–8480. [Google Scholar] [CrossRef]
- Fai, T.G.; Rycroft, C.H. Lubricated immersed boundary method in two dimensions. J. Comput. Phys. 2018, 356, 319–339. [Google Scholar] [CrossRef]
- Kanchan, M.; Maniyeri, R. Numerical simulation of buckling and asymmetric behaviour of flexible filament using temporal second-order immersed boundary method. Int. J. Numer. Methods Heat Fluid Flow 2020, 30, 1047–1095. [Google Scholar] [CrossRef]
- Kanchan, M.; Maniyeri, R. Fluid-structure interaction study and flowrate prediction past a flexible membrane using immersed boundary method and artificial neural network techniques. J. Fluids Eng. 2020, 142, 051501. [Google Scholar] [CrossRef]
- Kanchan, M.; Maniyeri, R. Numerical simulation and prediction model development of multiple flexible filaments in viscous shear flow using immersed boundary method and artificial neural network techniques. Fluid Dyn. Res. 2020, 52, 045507. [Google Scholar] [CrossRef]
- Wang, L.; Tian, F.; Lai, J. An immersed boundary method for fluid–structure–acoustics interactions involving large deformations and complex geometries. J. Fluids Struct. 2020, 95, 102993. [Google Scholar] [CrossRef]
- Meng, S.; Zhang, A.; Guo, Z.; Wang, Q. Phase-field-lattice Boltzmann simulation of dendrite motion using an immersed boundary method. Comput. Mater. Sci. 2020, 184, 109784. [Google Scholar] [CrossRef]
- Delong, S.; Usabiaga, F.B.; Delgado-Buscalioni, R.; Griffith, B.E.; Donev, A. Brownian dynamics without Green’s functions. J. Chem. Phys. 2014, 140, 134110. [Google Scholar] [CrossRef]
- Coclite, A.; Ranaldo, S.; Pascazio, G.; De Tullio, M.D. A Lattice Boltzmann dynamic-Immersed Boundary scheme for the transport of deformable inertial capsules in low-Re flows. Comput. Math. Appl. 2020, 80, 2860–2876. [Google Scholar] [CrossRef]
- Ong, K.C.; Lai, M.; Seol, Y. An immersed boundary projection method for incompressible interface simulations in 3D flows. J. Comput. Phys. 2021, 430, 110090. [Google Scholar] [CrossRef]
- Ghosh, S. Immersed boundary simulations of fluid shear-induced deformation of a cantilever beam. Math. Comput. Simul. 2021, 185, 384–402. [Google Scholar] [CrossRef]
- Casquero, H.; Bona-Casas, C.; Toshniwal, D.; Hughes, T.J.; Gómez, H.; Zhang, Y. The divergence-conforming immersed boundary method: Application to vesicle and capsule dynamics. J. Comput. Phys. 2021, 425, 109872. [Google Scholar] [CrossRef]
- Lampropoulos, D.S.; Bourantas, G.C.; Zwick, B.F.; Kagadis, G.C.; Wittek, A.; Miller, K.; Loukopoulos, V.C. Simulation of intracranial hemodynamics by an efficient and accurate immersed boundary scheme. Int. J. Numer. Methods Biomed. Eng. 2021, 37, e3524. [Google Scholar] [CrossRef]
- Mirfendereski, S.; Park, J.S. Direct numerical simulation of a pulsatile flow in a stenotic channel using immersed boundary method. Eng. Rep. 2021, 4, e12444. [Google Scholar] [CrossRef]
- Eldoe, J.B.; Kanchan, M.; Maniyeri, R. Modelling rigid filament interaction under oscillatory flow using immersed boundary method. Mater. Today Proc. 2022, 56, 785–790. [Google Scholar] [CrossRef]
- Kassen, A.; Barrett, A.; Shankar, V.; Fogelson, A.L. Immersed boundary simulations of cell-cell interactions in whole blood. J. Comput. Phys. 2022, 469, 111499. [Google Scholar] [CrossRef]
- Ntetsika, M.; Papadopoulos, P. Numerical simulation and predictive modelling of an inextensible filament in two-dimensional viscous shear flow using the Immersed Boundary/Coarse-Graining Method and Artificial Neural Networks. Comput. Methods Appl. Mech. Eng. 2022, 401, 115589. [Google Scholar] [CrossRef]
- Maniyeri, R. Numerical modelling of straight and helical elastic rods under fluid flow using immersed boundary method. Mater. Today Proc. 2022, 56, 686–689. [Google Scholar] [CrossRef]
- Zhu, Y.; Wei, Y.; Wang, Z.; Wang, R.; Wu, C.; Chen, J.; Tong, J. Numerical simulation for deformation characteristic of tea shoot under negative pressure guidance by the immersed boundary–lattice Boltzmann method. J. Comput. Sci. 2022, 65, 101882. [Google Scholar] [CrossRef]
- Lai, M.; Seol, Y. A stable and accurate immersed boundary method for simulating vesicle dynamics via spherical harmonics. J. Comput. Phys. 2022, 449, 110785. [Google Scholar] [CrossRef]
- Bourantas, G.C.; Zwick, B.F.; Lampropoulos, D.S.; Loukopoulos, V.C.; Κατσάνος, Κ.; Dimas, A.A.; Burganos, V.N.; Wittek, A.; Miller, K. A voxelized immersed boundary (VIB) finite element method for accurate and efficient blood flow simulation. arXiv 2023, arXiv:2007.02082. [Google Scholar] [CrossRef]
- Kaiser, A.D.; Schiavone, N.; Elkins, C.J.; McElhinney, D.B.; Eaton, J.K.; Marsden, A.L. Comparison of immersed boundary simulations of heart valve hemodynamics against in vitro 4D flow MRI data. Ann. Biomed. Eng. 2023, 51, 2267–2288. [Google Scholar] [CrossRef]
- Ladiges, D.R.; Wang, J.G.; Srivastava, I.; Nonaka, A.; Bell, J.B.; Carney, S.P.; Garcia, A.L.; Donev, A. Modeling electrokinetic flows with the discrete ion stochastic continuum overdamped solvent algorithm. Phys. Rev. E 2022, 106, 035104. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.L.; Mittal, R.; Zheng, X.; Bielamowicz, S.; Walsh, R.J.; Hahn, J.K. An immersed-boundary method for flow–structure interaction in biological systems with application to phonation. J. Comput. Phys. 2008, 227, 9303–9332. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Ziegler, K.; Seo, J.H.; Ramesh, K.; Nguyen, T.D. A computational model of blast loading on the human eye. Biomech. Model. Mechanobiol. 2013, 13, 123–140. [Google Scholar] [CrossRef]
- Bailoor, S.; Annangi, A.; Seo, J.H.; Bhardwaj, R. Fluid-structure interaction solver for compressible flows with applications to blast loading on thin elastic structures. Appl. Math. Model. 2017, 52, 470–492. [Google Scholar] [CrossRef]
- Bourantas, G.C.; Lampropoulos, D.S.; Zwick, B.F.; Loukopoulos, V.C.; Wittek, A.; Miller, K. Immersed boundary finite element method for blood flow simulation. Comput. Fluids 2021, 230, 105162. [Google Scholar] [CrossRef]
- Brown, J.; Lee, J.H.; Smith, M.; Wells, D.; Barrett, A.; Puelz, C.; Vavalle, J.P.; Griffith, B.E. Patient–Specific immersed Finite Element–Difference model of transcatheter aorticvalve replacement. Ann. Biomed. Eng. 2022, 51, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, C.; Ai, J. A hybrid immersed-boundary/body-fitted-grid method and its application to simulating heart valve flows. Int. J. Numer. Methods Fluids 2022, 94, 1996–2019. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, N. A coupled finite-volume immersed boundary method for the simulation of bioheat transfer in the 3D complex tumour. Eng. Comput. 2023, 39, 3743–3758. [Google Scholar] [CrossRef]
- Griffith, B.E. Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int. J. Numer. Methods Biomed. Eng. 2011, 28, 317–345. [Google Scholar] [CrossRef]
- Wang, H.M.; Gao, H.; Luo, X.Y.; Berry, C.; Griffith, B.E.; Ogden, R.W.; Wang, T.J. Structure-based finite strain modelling of the human left ventricle in diastole. Int. J. Numer. Methods Biomed. Eng. 2012, 29, 83–103. [Google Scholar] [CrossRef]
- Kheradvar, A.; Groves, E.M.; Dasi, L.P.; Alavi, S.H.; Tranquillo, R.; Grande-Allen, K.J.; Simmons, C.A.; Griffith, B.; Falahatpisheh, A.; Goergen, C.J.; et al. Emerging Trends in heart valve Engineering: Part I. Solutions for future. Ann. Biomed. Eng. 2014, 43, 833–843. [Google Scholar] [CrossRef]
- Lee, J.H.; Rygg, A.D.; Kolahdouz, E.M.; Rossi, S.; Retta, S.M.; Duraiswamy, N.; Scotten, L.N.; Craven, B.A.; Griffith, B.E. Fluid–Structure interaction models of bioprosthetic heart valve dynamics in an experimental pulse duplicator. Ann. Biomed. Eng. 2020, 48, 1475–1490. [Google Scholar] [CrossRef]
- Gao, H.; Feng, L.; Qi, N.; Berry, C.; Griffith, B.E.; Luo, X. A coupled mitral valve—Left ventricle model with fluid–structure interaction. Med. Eng. Phys. 2017, 47, 128–136. [Google Scholar] [CrossRef]
- Wang, S.; Ryu, J.; He, G.; Qin, F.; Sung, H.J. A self-propelled flexible plate with a Navier slip surface. Phys. Fluids 2020, 32, 021906. [Google Scholar] [CrossRef]
- Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E.M. The Lattice Boltzmann Method; Graduate Texts in Physics; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Cueto-Felgueroso, L.; Colominas, I.; Nogueira, X.; Navarrina, F.; Casteleiro, M. Finite volume solvers and Moving Least-Squares approximations for the compressible Navier–Stokes equations on unstructured grids. Comput. Methods Appl. Mech. Eng. 2007, 196, 4712–4736. [Google Scholar] [CrossRef]
- Kumar, S.; De, A.; Das, D. Investigation of the flow field of clap and fling motion using immersed boundary coupled lattice Boltzmann method. J. Fluids Struct. 2015, 57, 247–263. [Google Scholar] [CrossRef]
- De Rosis, A. Ground-induced lift enhancement in a tandem of symmetric flapping wings: Lattice Boltzmann-immersed boundary simulations. Comput. Struct. 2015, 153, 230–238. [Google Scholar] [CrossRef]
- Wang, W.; Yan, Y.; Tian, F. Numerical study on hydrodynamics for a non-sinusoidal forced oscillating hydrofoil based on an immersed boundary method. Ocean Eng. 2018, 147, 606–620. [Google Scholar] [CrossRef]
- Li, W.; Wang, W.; Yan, Y.; Tian, F. Effects of pitching motion profile on energy harvesting performance of a semi-active flapping foil using immersed boundary method. Ocean Eng. 2018, 163, 94–106. [Google Scholar] [CrossRef]
- Xie, F.; Zheng, H.; Deng, J.; Zheng, Y. Vortex induced vibration of a circular cylinder with a filament by using penalty immersed boundary method. Ocean Eng. 2019, 186, 106078. [Google Scholar] [CrossRef]
- Ma, Y.; Tucker, P.G. Filtered geometry modelling for fan-intake interaction based on the immersed boundary method. In Proceedings of the 13th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics, Lausanne, Switzerland, 8–12 April 2019. [Google Scholar] [CrossRef]
- Wu, X.; Chen, F.; Zhou, S. Stationary and flow-induced vibration of two elliptic cylinders in tandem by immersed boundary-MRT lattice Boltzmann flux solver. J. Fluids Struct. 2019, 91, 102762. [Google Scholar] [CrossRef]
- Wang, M.; Avital, E.; Bai, X.; Ji, C.; Xu, D.; Williams, J.; Munjiza, A. Fluid-structure interaction of flexible submerged vegetation stems and kinetic turbine blades. Comput. Part. Mech. 2019, 7, 839–848. [Google Scholar] [CrossRef]
- Chen, Y.; Ryu, J.; Liu, Y.; Sung, H.J. Flapping dynamics of vertically clamped three-dimensional flexible flags in a Poiseuille flow. Phys. Fluids 2020, 32, 071905. [Google Scholar] [CrossRef]
- Zhao, E.; Sun, J.; Tang, Y.; Mu, L.; Jiang, H. Numerical investigation of tsunami wave impacts on different coastal bridge decks using immersed boundary method. Ocean Eng. 2020, 201, 107132. [Google Scholar] [CrossRef]
- Zhang, J.; Sung, H.J.; Huang, W. Specialization of tuna: A numerical study on the function of caudal keels. Phys. Fluids 2020, 32, 111902. [Google Scholar] [CrossRef]
- Luo, Y.; Li, X.; Hao, W. Projection-based model reduction for the immersed boundary method. Int. J. Numer. Methods Biomed. Eng. 2021, 38, e3558. [Google Scholar] [CrossRef]
- Kasbaoui, M.H.; Kulkarni, T.; Bisetti, F. Direct numerical simulations of the swirling von Kármán flow using a semi-implicit moving immersed boundary method. Comput. Fluids 2021, 230, 105132. [Google Scholar] [CrossRef]
- Dong, Z.; Huang, Q.; Pan, G.; Yang, L.; Huang, W. Vortex dynamics and hydrodynamic performance enhancement mechanism in batoid fish oscillatory swimming. J. Fluid Mech. 2021, 930, A28. [Google Scholar] [CrossRef]
- Ai, C.; Ma, Y.; Yuan, C.; Dong, G. Non-hydrostatic model for internal wave generations and propagations using immersed boundary method. Ocean. Eng. 2021, 225, 108801. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, G.; Wang, S.; Hui, D.; Zhou, B. Simulation of vortex shedding around cylinders by immersed boundary-lattice Boltzmann flux solver. Appl. Ocean Res. 2021, 114, 102763. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, A.; Liu, Y.; Wang, S. Transient fluid-solid interaction with the improved penalty immersed boundary method. Ocean Eng. 2021, 236, 109537. [Google Scholar] [CrossRef]
- Zhao, D.; Cui, J.; Dong, L.; Wang, P.; Xiao, Z.; Liu, S.; Chen, L. Drag reduction characteristics of the skin made of micro floating raft arrays based on immersed boundary method. Mech. Based Des. Struct. Mach. 2021, 51, 4833–4846. [Google Scholar] [CrossRef]
- Yaswanth, D.; Maniyeri, R. Numerical study of oscillating lid driven cavity with the presence of an obstacle using immersed boundary method. Mater. Today Proc. 2022, 66, 2580–2586. [Google Scholar] [CrossRef]
- Mazharmanesh, S.; Young, J.; Tian, F.; Ravi, S.; Lai, J. Energy harvesting of inverted piezoelectric flags in an oscillating flow. J. Fluids Struct. 2022, 115, 103762. [Google Scholar] [CrossRef]
- Karimnejad, S.; Delouei, A.A.; He, F. Coupling immersed boundary and lattice Boltzmann method for modelling multi-body interactions subjected to pulsatile flow. Math. Methods Appl. Sci. 2022, 46, 6767–6786. [Google Scholar] [CrossRef]
- Mao, Q.; Zhao, J.; Liu, Y.; Sung, H.J. Drag reduction by a flexible hairy coating. J. Fluid Mech. 2022, 946, A5. [Google Scholar] [CrossRef]
- Zhang, J.; Sung, H.J.; Huang, W. Hydrodynamic interaction of dorsal fin and caudal fin in swimming tuna. Bioinspir. Biomim. 2022, 17, 066004. [Google Scholar] [CrossRef]
- Yu, X.; Yu, M. A volume penalization immersed boundary method for flow interactions with aquatic vegetation. Adv. Water Resour. 2022, 161, 104120. [Google Scholar] [CrossRef]
- Jin, Q.; Hudson, D.A.; Temarel, P. A combined volume of fluid and immersed boundary method for free surface simulations induced by solitary waves. Ocean Eng. 2022, 245, 110560. [Google Scholar] [CrossRef]
- Fang, D.; Huang, Z.; Zhang, J.; Hu, Z.; Tan, J. Flow pattern investigation of bionic fish by immersed boundary–lattice Boltzmann method and dynamic mode decomposition. Ocean Eng. 2022, 248, 110823. [Google Scholar] [CrossRef]
- Huang, Z.; Cheng, Y.; Wu, J.; Diao, W.; Huai, W. FSI simulation of dynamics of fish passing through a tubular turbine based on the immersed boundary-lattice Boltzmann coupling scheme. J. Hydrodyn. 2022, 34, 135–147. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, G.; Hui, D.; Yan, H.; Feng, S.; Wang, S. Numerical simulation for water entry and exit of rigid bodies based on the immersed boundary-lattice Boltzmann method. J. Fluids Struct. 2022, 109, 103486. [Google Scholar] [CrossRef]
- Mi, S.; Wang, M.; Avital, E.; Williams, J.; Chatjigeorgiou, I.K. An implicit Eulerian–Lagrangian model for flow-net interaction using immersed boundary method in OpenFOAM. Ocean Eng. 2022, 264, 112843. [Google Scholar] [CrossRef]
- Stival, L.J.L.; Brinkerhoff, J.; Vedovotto, J.M.; De Andrade, F.O. Wake modelling and simulation of an experimental wind turbine using large eddy simulation coupled with immersed boundary method alongside a dynamic adaptive mesh refinement. Energy Convers. Manag. 2022, 268, 115938. [Google Scholar] [CrossRef]
- Mazharmanesh, S.; Young, J.; Tian, F.; Ravi, S.; Lai, J. Coupling performance of two tandem and side-by-side inverted piezoelectric flags in an oscillating flow. J. Fluids Struct. 2023, 119, 103874. [Google Scholar] [CrossRef]
- Luo, P.; Zhang, J. Numerical simulating wave propagation over solid obstructions using a non-hydrostatic free surface flow model combined immersed boundary method. Ocean Eng. 2023, 269, 113526. [Google Scholar] [CrossRef]
- Dong, Z.; Huang, W. Hydrodynamics of a swimming batoid fish at Reynolds numbers up to 148,000. J. Fluid Mech. 2023, 963, A16. [Google Scholar] [CrossRef]
- Guo, W.; Hou, G. Combined immersed boundary and discrete unified gas kinetic scheme for the motion of an autonomous underwater vehicle model with slip over a solid-liquid interface. Ocean Eng. 2023, 285, 115322. [Google Scholar] [CrossRef]
- Wu, Z.; Guo, L. A new approach to aircraft ditching analysis by coupling free surface lattice Boltzmann and immersed boundary method incorporating surface tension effects. Ocean Eng. 2023, 286, 115559. [Google Scholar] [CrossRef]
- Park, S.; Bak, S.; Kim, P.; Seol, Y. A semi-implicit semi-Lagrangian method for simulating immersed boundary motion under high inertia and elasticity. Appl. Math. Comput. 2023, 459, 128269. [Google Scholar] [CrossRef]
- Monteiro, L.M.; Mariano, F.P. Flow Modeling over Airfoils and Vertical Axis Wind Turbines Using Fourier Pseudo-Spectral Method and Coupled Immersed Boundary Method. Axioms 2023, 12, 212. [Google Scholar] [CrossRef]
- Liu, Z.; Feng, X.; Wang, L.; Tian, F. An Immersed Boundary-Lattice Boltzmann Method Based on the Adaptive Mesh Refinement for Free Surface Flows in Ocean Engineering Applications. Comput. Methods Appl. Mech. Eng. 2023, 392, 114662. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Y.; Tian, X.; Liu, H. Numerical simulations of the flow past a perforated plate enclosed by a filament using the Immersed Boundary Method. Ocean Eng. 2024, 304, 117860. [Google Scholar] [CrossRef]
- Mao, Q.; Liu, Y.; Sung, H.J. Snap-through dynamics of a buckled flexible filament in a uniform flow. J. Fluid Mech. 2023, 969, A33. [Google Scholar] [CrossRef]
- Borazjani, I.; Sotiropoulos, F. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity–wake interference region. J. Fluid Mech. 2009, 621, 321–364. [Google Scholar] [CrossRef]
- Seo, J.; Mittal, R. A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. J. Comput. Phys. 2011, 230, 7347–7363. [Google Scholar] [CrossRef] [PubMed]
- Griffith, M.D.; Lo Jacono, D.; Sheridan, J.; Leontini, J. Passive heaving of elliptical cylinders with active pitching—From cylinders towards flapping foils. J. Fluids Struct. 2016, 67, 124–141. [Google Scholar] [CrossRef]
- Griffith, M.D.; Leontini, J. Sharp interface immersed boundary methods and their application to vortex-induced vibration of a cylinder. J. Fluids Struct. 2017, 72, 38–58. [Google Scholar] [CrossRef]
- Khalili, M.; Larsson, M.; Müller, B. Immersed boundary method for viscous compressible flows around moving bodies. Comput. Fluids 2018, 170, 77–92. [Google Scholar] [CrossRef]
- Mishra, R.; Kulkarni, S.S.; Bhardwaj, R.; Thompson, M.C. Response of a linear viscoelastic splitter plate attached to a cylinder in laminar flow. J. Fluids Struct. 2019, 87, 284–301. [Google Scholar] [CrossRef]
- Majumdar, D.; Bose, C.; Sarkar, S. Capturing the dynamical transitions in the flow-field of a flapping foil using Immersed Boundary Method. J. Fluids Struct. 2020, 95, 102999. [Google Scholar] [CrossRef]
- Narváez, G.; Schettini, E.B.C.; Silvestrini, J.H. Numerical simulation of flow-induced vibration of two cylinders elastically mounted in tandem by immersed moving boundary method. Appl. Math. Model. 2020, 77, 1331–1347. [Google Scholar] [CrossRef]
- Xu, Y.; Bingham, H.B.; Shao, Y. Finite difference solutions for nonlinear water waves using an immersed boundary method. Int. J. Numer. Methods Fluids 2020, 93, 1143–1162. [Google Scholar] [CrossRef]
- Xin, J.; Chen, Z.; Fan, S.; Shi, F.; Jin, Q. Numerical simulation of nonlinear sloshing in a prismatic tank by a Cartesian grid based three-dimensional multiphase flow model. Ocean Eng. 2020, 213, 107629. [Google Scholar] [CrossRef]
- Kundu, A.; Soti, A.K.; Garg, H.; Bhardwaj, R.; Thompson, M.C. Computational modelling and analysis of flow-induced vibration of an elastic splitter plate using a sharp-interface immersed boundary method. SN Appl. Sci. 2020, 2, 1110. [Google Scholar] [CrossRef]
- Kwon, H.; Lee, H.; Chang, S. High-order WENO Schemes with an Immersed Boundary Method for Shallow Water Equations on the Tsunami Mitigation with Configurations of Cylinder Array. KSCE J. Civ. Eng. 2020, 25, 1–11. [Google Scholar] [CrossRef]
- Tsai, Y.; Lo, D.C. A Ghost-Cell immersed boundary method for Wave–Structure interaction using a Two-Phase flow model. Water 2020, 12, 3346. [Google Scholar] [CrossRef]
- Seshadri, P.K.; De, A. A robust sharp interface based immersed boundary framework for moving body problems with applications to laminar incompressible flows. Comput. Math. Appl. 2021, 83, 24–56. [Google Scholar] [CrossRef]
- Robaux, F.; Benoît, M. Development and validation of a numerical wave tank based on the Harmonic Polynomial Cell and Immersed Boundary methods to model nonlinear wave-structure interaction. J. Comput. Phys. 2021, 446, 110560. [Google Scholar] [CrossRef]
- Badhurshah, R.; Bhardwaj, R.; Bhattacharya, A. Numerical simulation of Vortex-Induced Vibration with bistable springs: Consistency with the Equilibrium Constraint. J. Fluids Struct. 2021, 103, 103280. [Google Scholar] [CrossRef]
- Tong, C.W.; Shao, Y.; Bingham, H.B.; Hanssen, F.C.W. An adaptive harmonic polynomial cell method with immersed boundaries: Accuracy, stability, and applications. Int. J. Numer. Methods Eng. 2021, 122, 2945–2980. [Google Scholar] [CrossRef]
- Hanssen, F.W.; Greco, M. A potential flow method combining immersed boundaries and overlapping grids: Formulation, validation and verification. Ocean Eng. 2021, 227, 108841. [Google Scholar] [CrossRef]
- Sharma, G.; Garg, H.; Bhardwaj, R. Flow-induced vibrations of elastically-mounted C- and D-section cylinders. J. Fluids Struct. 2022, 109, 103501. [Google Scholar] [CrossRef]
- Giannenas, A.E.; Laizet, S.; Rigas, G. Harmonic forcing of a laminar bluff body wake with rear pitching flaps. J. Fluid Mech. 2022, 945, A5. [Google Scholar] [CrossRef]
- Khedkar, K.; Bhalla, A.P.S. A model predictive control (MPC)-integrated multiphase immersed boundary (IB) framework for simulating wave energy converters (WECs). Ocean. Eng. 2022, 260, 111908. [Google Scholar] [CrossRef]
- Song, Y.; Xu, Y.; Ismail, H.; Liu, X. Scour modelling based on immersed boundary method: A pathway to the practical use of three-dimensional scour models. Coast. Eng. 2022, 171, 104037. [Google Scholar] [CrossRef]
- Gómez, H.; Narváez, G.; Schettini, E.B.C. Vortex induced vibration of four cylinders configurations at critical spacing in 0° and 45° flow incidence angle. Ocean Eng. 2022, 252, 111134. [Google Scholar] [CrossRef]
- Badhurshah, R.; Bhardwaj, R.; Bhattacharya, A. Energy extraction via Vortex-Induced Vibrations: The effect of spring bistability. J. Fluids Struct. 2022, 114, 103708. [Google Scholar] [CrossRef]
- Ji, R.; Sun, K.; Zhang, J.; Zhu, R.; Wang, S. A novel actuator line-immersed boundary (AL-IB) hybrid approach for wake characteristics prediction of a horizontal-axis wind turbine. Energy Convers. Manag. 2022, 253, 115193. [Google Scholar] [CrossRef]
- Xu, Y.; Bingham, H.B.; Shao, Y. A high-order finite difference method with immersed-boundary treatment for fully-nonlinear wave–structure interaction. Appl. Ocean Res. 2023, 134, 103535. [Google Scholar] [CrossRef]
- Pandey, A.K.; Sharma, G.; Bhardwaj, R. Flow-induced reconfiguration and cross-flow vibrations of an elastic plate and implications to energy harvesting. J. Fluids Struct. 2023, 122, 103977. [Google Scholar] [CrossRef]
- Kanchan, M.; Lewis, D.; Varma, A. Fluid-induced deformation of elastic plate mounted vertically in viscous flow and oscillation frequency prediction using artificial neural networks. Ocean Eng. 2024, 296, 116920. [Google Scholar] [CrossRef]
- Chern, M.; Wang, C.; Wei, Z.; Lu, P. Numerical Investigation of a Pitching NACA 0012 Wing with Plasma-Based Flow Control Using Prediction–Correction Direct-Forcing Immersed Boundary Method. J. Aerosp. Eng. 2023, 36, 1032. [Google Scholar] [CrossRef]
- Yang, B.; Cheng, Q.; Song, M. The study of vertical-axis wind turbine based on immersed boundary method. Energy Explor. Exploit. 2023, 42, 692–711. [Google Scholar] [CrossRef]
- Yu, X.; Shao, Y.; Fuhrman, D.R.; Zhang, Y. A viscous numerical wave tank based on immersed-boundary generalized harmonic polynomial cell (IB-GHPC) method: Accuracy, validation and application. Coast. Eng. 2023, 180, 104273. [Google Scholar] [CrossRef]
- Sundar, R.; Majumdar, D.; Lucor, D.; Sarkar, S. Physics-informed neural networks modelling for systems with moving immersed boundaries: Application to an unsteady flow past a plunging foil. arXiv 2023, arXiv:2306.13395. [Google Scholar] [CrossRef]
- Kolahdouz, E.M.; Wells, D.; Rossi, S.; Aycock, K.I.; Craven, B.A.; Griffith, B.E. A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction. J. Comput. Phys. 2023, 488, 112174. [Google Scholar] [CrossRef] [PubMed]
- Zargaran, A.; Dolshanskiy, W.; Stepanyuk, A.; Pauer, W.; Janoske, U. A hybrid approach based on Lagrangian particles and immersed-boundary method to characterize rotor–stator mixing systems for high viscous mixtures. Chem. Eng. J. 2023, 473, 145062. [Google Scholar] [CrossRef]
- Li, H.; Feng, J.; Zheng, Y.; Xu, H.; Chen, H.; Binama, M.; Kan, K. A computational method for complex-shaped hydraulic turbomachinery flow based on the immersed boundary method. AIP Adv. 2023, 13, 085121. [Google Scholar] [CrossRef]
- Joachim, J.; Daunais, C.; Bibeau, V.; Heltai, L.; Blais, B. A parallel and adaptative Nitsche immersed boundary method to simulate viscous mixing. J. Comput. Phys. 2023, 488, 112189. [Google Scholar] [CrossRef]
- Kou, J.; Ferrer, E. A combined volume penalisation/selective frequency damping approach for immersed boundary methods: Application to moving geometries. J. Comput. Phys. 2023, 472, 111678. [Google Scholar] [CrossRef]
- Agrawal, V.; Kulachenko, A.; Scapin, N.; Tammisola, O.; Brandt, L. An efficient isogeometric/finite-difference immersed boundary method for the fluid–structure interactions of slender flexible structures. Comput. Methods Appl. Mech. Eng. 2024, 418, 116495. [Google Scholar] [CrossRef]
- Wang, L.; Tian, F. Numerical study of sound generation by three-dimensional flexible flapping wings during hovering flight. J. Fluids Struct. 2020, 99, 103165. [Google Scholar] [CrossRef]
- Wang, L.; Tian, F. Numerical study of flexible flapping wings with an immersed boundary method: Fluid–structure–acoustics interaction. J. Fluids Struct. 2019, 90, 396–409. [Google Scholar] [CrossRef]
- Pinelli, A.; Omidyeganeh, M.; Brücker, C.; Revell, A.; Sarkar, A.; Alinovi, E. The pelskin project: Part IV—Control of bluff body wakes using hairy filaments. Meccanica 2017, 52, 1503–1514. [Google Scholar] [CrossRef]
- Ren, W.; Chang, S.; Yang, W. An efficient immersed boundary method for thermal flow problems with heat flux boundary conditions. Int. J. Heat Mass Transf. 2013, 64, 694–705. [Google Scholar] [CrossRef]
- Mazharmanesh, S.; Young, J.; Tian, F.; Lai, J. Energy harvesting of two inverted piezoelectric flags in tandem, side-by-side and staggered arrangements. Int. J. Heat Fluid Flow 2020, 83, 108589. [Google Scholar] [CrossRef]
- Tong, Z.; Sun, Q.; Dong, L.; Gu, Z. Two-dimensional numerical model for predicting fouling shape growth based on immersed boundary method and lattice Boltzmann method. Appl. Therm. Eng. 2020, 179, 115755. [Google Scholar] [CrossRef]
- Abaszadeh, M.; Ali, S.; Delouei, A.A.; Amiri, H. Analysis of radiative heat transfer in two-dimensional irregular geometries by developed immersed boundary–lattice Boltzmann method. J. Quant. Spectrosc. Radiat. Transf. 2022, 280, 108086. [Google Scholar] [CrossRef]
- Jiang, M.; Li, J.; Liu, Z. A simple and efficient parallel immersed boundary-lattice Boltzmann method for fully resolved simulations of incompressible settling suspensions. Comput. Fluids 2022, 237, 105322. [Google Scholar] [CrossRef]
- Tao, S.; Wang, L.; He, Q.; Chen, J.; Luo, J. Lattice Boltzmann simulation of complex thermal flows via a simplified immersed boundary method. J. Comput. Sci. 2022, 65, 101878. [Google Scholar] [CrossRef]
- Haeri, S.; Shrimpton, J.S. A new implicit fictitious domain method for the simulation of flow in complex geometries with heat transfer. J. Comput. Phys. 2013, 237, 21–45. [Google Scholar] [CrossRef]
- Chen, Z.; Shu, C.; Yang, L.M.; Zhao, X.; Liu, N.Y. Immersed boundary–simplified thermal lattice BoltzFsundarnn method for incompressible thermal flows. Phys. Fluids 2020, 32, 013605. [Google Scholar] [CrossRef]
- Xu, T.; Choi, J.I. Efficient monolithic immersed boundary projection method for incompressible flows with heat transfer. J. Comput. Phys. 2023, 477, 111929. [Google Scholar] [CrossRef]
- Hosseini, S.; Aghebatandish, S.; Dadvand, A.; Khoo, B.C. An immersed boundary-lattice Boltzmann method with multi relaxation time for solving flow-induced vibrations of an elastic vortex generator and its effect on heat transfer and mixing. Chem. Eng. J. 2021, 405, 126652. [Google Scholar] [CrossRef]
- Wu, B.; Lu, J.; Lee, H.C.; Shu, C.; Wan, M. An explicit boundary condition-enforced immersed boundary-reconstructed thermal lattice Boltzmann flux solver for thermal–fluid–structure interaction problems with heat flux boundary conditions. J. Comput. Phys. 2023, 485, 112106. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Liu, Y.; Sung, H.J. Heat transfer enhancement in a poiseuille channel flow by using multiple wall-mounted flexible flags. Int. J. Heat Mass Transf. 2020, 163, 120447. [Google Scholar] [CrossRef]
- Wang, L.; Tian, F.; Young, J.B. An immersed boundary method for the fluid--structure--thermal interaction in rarefied gas flow. arXiv 2023, arXiv:2305.11454. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, H.; Trias, F.X.; Yu, A.; Tan, Y.; Oliva, A. Particulate Immersed Boundary Method for complex fluid–particle interaction problems with heat transfer. Comput. Math. Appl. 2016, 71, 391–407. [Google Scholar] [CrossRef]
- Wu, B.; Chen, S.; Wan, M. An implicit immersed boundary method for Robin boundary condition. Int. J. Mech. Sci. 2024, 261, 108694. [Google Scholar] [CrossRef]
- Pacheco, J.R.; Pacheco-Vega, A.; Rodić, T.; Peck, R. Numerical simulations of heat transfer and fluid flow problems using an Immersed-Boundary Finite-Volume method on NonStaggered grids. Numer. Heat Transf. Part B: Fundam. 2005, 48, 1–24. [Google Scholar] [CrossRef]
- Soti, A.K.; Bhardwaj, R.; Sheridan, J. Flow-induced deformation of a flexible thin structure as manifestation of heat transfer enhancement. Int. J. Heat Mass Transf. 2015, 84, 1070–1081. [Google Scholar] [CrossRef]
- Garg, H.; Soti, A.K.; Bhardwaj, R. A sharp interface immersed boundary method for vortex-induced vibration in the presence of thermal buoyancy. Phys. Fluids 2018, 30, 023603. [Google Scholar] [CrossRef]
- Garg, H.; Soti, A.K.; Bhardwaj, R. Thermal buoyancy induced suppression of wake-induced vibration. Int. Commun. Heat Mass Transf. 2020, 118, 104790. [Google Scholar] [CrossRef]
- Lou, J.; Johnston, J.; Tilton, N. Application of projection and immersed boundary methods to simulating heat and mass transport in membrane distillation. Comput. Fluids 2020, 212, 104711. [Google Scholar] [CrossRef]
- Mohammadi, M.; Nassab, S.A.G. Application of the immersed boundary method in solution of radiative heat transfer problems. J. Quant. Spectrosc. Radiat. Transf. 2021, 260, 107467. [Google Scholar] [CrossRef]
- Mohammadi, M.; Nassab, S.A.G. Solution of radiative-convective heat transfer in irregular geometries using hybrid lattice Boltzmann-finite volume and immersed boundary method. Int. Commun. Heat Mass Transf. 2021, 128, 105595. [Google Scholar] [CrossRef]
- Riahi, H.; Goncalvès, E.; Meldi, M. A Discrete Immersed Boundary Method for the numerical simulation of heat transfer in compressible flows. arXiv 2023, arXiv:2301.09349. [Google Scholar] [CrossRef]
- Ahn, J.; Song, J.; Lee, J.S. An immersed boundary method for conjugate heat transfer involving Melting/Solidification. Int. J. Aeronaut. Space Sci. 2023, 24, 1032–1041. [Google Scholar] [CrossRef]
- Cruz, R.V.; Lamballais, É. A versatile immersed boundary method for high-fidelity simulation of Conjugate Heat Transfer. J. Comput. Phys. 2023, 488, 112182. [Google Scholar] [CrossRef]
- Wang, D.; Jin, T.; Luo, K.; Fan, J. An improved direct-forcing immersed boundary method for simulations of flow and heat transfer in particle-laden flows. Int. J. Multiph. Flow 2022, 153, 104139. [Google Scholar] [CrossRef]
- Narváez, G.; Lamballais, É.; Schettini, E.B.C. Simulation of turbulent flow subjected to conjugate heat transfer via a dual immersed boundary method. Comput. Fluids 2021, 229, 105101. [Google Scholar] [CrossRef]
- Wu, B.; Lu, J.; Lee, H.C.; Shu, C.; Wan, M. An explicit immersed boundary-reconstructed thermal lattice Boltzmann flux solver for thermal–fluid-structure interaction problems. Int. J. Mech. Sci. 2022, 235, 107704. [Google Scholar] [CrossRef]
- Zhao, Z.; Yan, J. Enriched immersed boundary method (EIBM) for interface-coupled multi-physics and applications to convective conjugate heat transfer. Comput. Methods Appl. Mech. Eng. 2022, 401, 115667. [Google Scholar] [CrossRef]
- Ou, Z.; Chi, C.; Guo, L.; Thévenin, D. A directional ghost-cell immersed boundary method for low Mach number reacting flows with interphase heat and mass transfer. J. Comput. Phys. 2022, 468, 111447. [Google Scholar] [CrossRef]
- Xia, J.Y.; Luo, K.; Fan, J. A ghost-cell based high-order immersed boundary method for inter-phase heat transfer simulation. Int. J. Heat Mass Transf. 2014, 75, 302–312. [Google Scholar] [CrossRef]
- Tao, S.; Wang, L.; He, Q.; Chen, J.; Luo, J. A sharp interface immersed boundary-discrete unified gas kinetic scheme for fluid-solid flows with heat transfer. Int. Commun. Heat Mass Transf. 2022, 139, 106424. [Google Scholar] [CrossRef]
- Fernandez, D.; Husain, S.Z.; Floryan, J.M. Immersed boundary conditions method for heat conduction problems in slots with time-dependent geometry. Int. J. Numer. Methods Fluids 2011, 67, 478–500. [Google Scholar] [CrossRef]
- Shrivastava, M.; Agrawal, A.; Sharma, A. A novel level Set-Based Immersed-Boundary method for CFD simulation of Moving-Boundary problems. Numer. Heat Transf. Part B Fundam. 2013, 63, 304–326. [Google Scholar] [CrossRef]
- Ménez, L.; Parnaudeau, P.; Béringhier, M.; Da Silva, E.G. Assessment of volume penalization and immersed boundary methods for compressible flows with various thermal boundary conditions. J. Comput. Phys. 2023, 493, 112465. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, G.; Zhang, Y.; Haeri, S. A multi-physics peridynamics-DEM-IB-CLBM framework for the prediction of erosive impact of solid particles in viscous fluids. Comput. Methods Appl. Mech. Eng. 2019, 352, 675–690. [Google Scholar] [CrossRef]
- Yang, S.; Xu, C.; Huang, W.; Wang, L. Transient growth in turbulent particle-laden channel flow. Acta Mech. Sin. 2019, 36, 1–11. [Google Scholar] [CrossRef]
- Wang, M.; Feng, Y.T.; Qu, T.; Zhao, T. A coupled polygonal DEM-LBM technique based on an immersed boundary method and energy-conserving contact algorithm. Powder Technol. 2021, 381, 101–109. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, H.; Zhao, Y.; Yang, C. An immersed boundary-lattice Boltzmann model for simulation of deposited particle patterns in an evaporating sessile droplet with dispersed particles. Int. J. Heat Mass Transf. 2021, 181, 121905. [Google Scholar] [CrossRef]
- Romanus, R.S.; Lugarini, A.; Franco, A. An immersed boundary-lattice Boltzmann framework for fully resolved simulations of non-spherical particle settling in unbounded domain. Comput. Math. Appl. 2021, 102, 206–219. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Cui, G.; Pei, J.; Yan, Y. A numerical study on elliptical particle deposition with an immersed boundary-lattice Boltzmann method. Comput. Fluids 2022, 246, 105644. [Google Scholar] [CrossRef]
- Fukui, T.; Kawaguchi, M. Numerical study of microscopic particle arrangement of suspension flow in a narrow channel for the estimation of macroscopic rheological properties. Adv. Powder Technol. 2022, 33, 103855. [Google Scholar] [CrossRef]
- Cheng, Z.; Wachs, A. An immersed boundary/multi-relaxation time lattice Boltzmann method on adaptive octree grids for the particle-resolved simulation of particle-laden flows. J. Comput. Phys. 2022, 471, 111669. [Google Scholar] [CrossRef]
- Yadav, P.; Ghosh, S. Numerical Studies of settling of an impermeable and permeable planktonic particle using Immersed boundary method (IBM). Eur. Phys. J. Plus 2022, 137, 740. [Google Scholar] [CrossRef]
- Kawaguchi, M.; Fukui, T.; Morinishi, K. Comparative study of the virtual flux method and immersed boundary method coupled with regularized lattice Boltzmann method for suspension flow simulations. Comput. Fluids 2022, 246, 105615. [Google Scholar] [CrossRef]
- Ghosh, S.; Panghal, R. Study of gravitational settling of a flexible circular structure using immersed boundary method. Comput. Appl. Math. 2022, 41, 339. [Google Scholar] [CrossRef]
- Chang, H.; Chen, A.; Ge, B. A hybrid method of peridynamic differential operator-based Eulerian particle method–immersed boundary method for fluid–structure interaction. Comput. Part. Mech. 2023, 10, 1309–1322. [Google Scholar] [CrossRef]
- Panghal, R.; Ghosh, S. Study of gravitational sedimentation of flexible, permeable circular, and planktonic particles applying the immersed boundary method. Int. J. Sediment Res. 2023, 38, 643–652. [Google Scholar] [CrossRef]
- Zhang, C.; Yin, S.; Zhang, H.; Yang, C. Simulation of a sessile nanofluid droplet freezing with an immersed boundary-lattice Boltzmann model. Int. J. Multiph. Flow 2023, 167, 104553. [Google Scholar] [CrossRef]
- Yadav, P.; Ghosh, S.; Panghal, R. Numerical studies of settling of a permeable particle of semi-torus shape applying immersed boundary method (IBM). AIP Conf. Proc. 2023, 2872, 120075. [Google Scholar] [CrossRef]
- Ghosh, A.; Gabbana, A.; Null, H.W.; Toschi, F. Effective force stabilising technique for the immersed boundary method. Commun. Comput. Phys. 2023, 33, 349–366. [Google Scholar] [CrossRef]
- Patel, J.K.; Natarajan, G. Diffuse interface immersed boundary method for multi-fluid flows with arbitrarily moving rigid bodies. J. Comput. Phys. 2018, 360, 202–228. [Google Scholar] [CrossRef]
- Souza, P.R.C.; Neto, H.R.; Villar, M.M.; Vedovotto, J.M.; Cavalini, A.A.; Neto, A.S. Multi-phase fluid–structure interaction using adaptive mesh refinement and immersed boundary method. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 152. [Google Scholar] [CrossRef]
- Niu, X.; Zhou, J.; Xiao, H.; Wang, Y.; Khan, A.; Chen, M.; Li, D.; Yamaguchi, H. A simple diffuse interface immersed-boundary scheme for multiphase flows with curved boundaries. Int. J. Multiph. Flow 2022, 157, 104266. [Google Scholar] [CrossRef]
- Wang, Q.; Pan, M.; Tseng, Y.; He, D. An Energy Stable Immersed Boundary Method for Deformable Membrane Problem with Non-uniform Density and Viscosity. J. Sci. Comput. 2023, 94, 30. [Google Scholar] [CrossRef]
- Ye, H.; Chen, Y.; Maki, K.J. A Discrete-Forcing immersed boundary method for moving bodies in Air–Water Two-Phase flows. J. Mar. Sci. Eng. 2020, 8, 809. [Google Scholar] [CrossRef]
- Bilbao, S. Modeling impedance boundary conditions and acoustic barriers using the immersed boundary method: The one-dimensional case. J. Acoust. Soc. Am. 2023, 153, 2023–2036. [Google Scholar] [CrossRef] [PubMed]
- Bilbao, S. Modeling impedance boundary conditions and acoustic barriers using the immersed boundary method: The three-dimensional case. J. Acoust. Soc. Am. 2023, 154, 874–885. [Google Scholar] [CrossRef]
- Hou, J.; Zheng, Z.C.; Allen, J.S. Time-domain immersed-boundary simulation of acoustic propagation between two spherical gas bubbles. JASA Express Lett. 2023, 3, 094002. [Google Scholar] [CrossRef]
- Nangia, N.; Patankar, N.A.; Bhalla, A.P.S. A DLM immersed boundary method based wave-structure interaction solver for high density ratio multiphase flows. J. Comput. Phys. 2019, 398, 108804. [Google Scholar] [CrossRef]
- Cheng, L.; Du, L.; Wang, X.; Sun, X.; Tucker, P.G. A semi-implicit immersed boundary method for simulating viscous flow-induced sound with moving boundaries. Comput. Methods Appl. Mech. Eng. 2021, 373, 113438. [Google Scholar] [CrossRef]
- Zeng, Y.; Bhalla, A.P.S.; Shen, L. A subcycling/non-subcycling time advancement scheme-based DLM immersed boundary method framework for solving single and multiphase fluid–structure interaction problems on dynamically adaptive grids. Comput. Fluids 2022, 238, 105358. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, G.; Xiao, Y.; Hui, D.; Wang, S. A surface flux correction-based immersed boundary-multiphase lattice Boltzmann flux solver applied to multiphase fluids–structure interaction. Comput. Methods Appl. Mech. Eng. 2022, 400, 115481. [Google Scholar] [CrossRef]
- Hori, N.; Rosti, M.E.; Takagi, S. An Eulerian-based immersed boundary method for particle suspensions with implicit lubrication model. Comput. Fluids 2022, 236, 105278. [Google Scholar] [CrossRef]
- Liu, X.; Ji, C.; Xu, X.; Xu, D.; Williams, J. Distribution characteristics of inertial sediment particles in the turbulent boundary layer of an open channel flow determined using Voronoï analysis. Int. J. Sediment Res. 2017, 32, 401–409. [Google Scholar] [CrossRef]
- Wang, L.; Currao, G.M.D.; Feng, H.; Neely, A.J.; Young, J.; Tian, F. An immersed boundary method for fluid–structure interaction with compressible multiphase flows. J. Comput. Phys. 2017, 346, 131–151. [Google Scholar] [CrossRef]
- Cheng, L.; Du, L.; Jing, X.; Sun, X.; Hu, G. A Compressible Immersed Boundary Method For The Flow-Induced Noise Simulation. In Proceedings of the 24th International Congress on Sound and Vibration (ICSV24), London, UK, 23–27 July 2017; p. 423. [Google Scholar]
- Zhang, C.; Zhang, W.; Lin, N.; Tang, Y.; Zhao, C.; Gu, J.; Wang, L.; Chen, X.; Qiu, A. A two-phase flow model coupling with volume of fluid and immersed boundary methods for free surface and moving structure problems. Ocean Eng. 2013, 74, 107–124. [Google Scholar] [CrossRef]
- Bürchner, T.; Kopp, P.; Kollmannsberger, S.; Rank, E. Immersed boundary parametrizations for full waveform inversion. Comput. Methods Appl. Mech. Eng. 2023, 406, 115893. [Google Scholar] [CrossRef]
- Fazli, M.; Rudman, M.; Kuang, S.; Chryss, A. Application of immersed boundary methods to non-Newtonian yield-pseudoplastic flows. Appl. Math. Model. 2023, 124, 532–552. [Google Scholar] [CrossRef]
- Chéron, V.; Evrard, F.; Van Wachem, B. A hybrid immersed boundary method for dense particle-laden flows. Comput. Fluids 2023, 259, 105892. [Google Scholar] [CrossRef]
- Ido, Y.; Sumiyoshi, H.; Tsutsumi, H. Simulations of behavior of magnetic particles in magnetic functional fluids using a hybrid method of lattice Boltzmann method, immersed boundary method and discrete particle method. Comput. Fluids 2017, 142, 86–95. [Google Scholar] [CrossRef]
- Fukui, T.; Kawaguchi, M.; Morinishi, K. A two-way coupling scheme to model the effects of particle rotation on the rheological properties of a semidilute suspension. Comput. Fluids 2018, 173, 6–16. [Google Scholar] [CrossRef]
- Barbeau, L.; Étienne, S.; Béguin, C.; Blais, B. Development of a high-order continuous Galerkin sharp-interface immersed boundary method and its application to incompressible flow problems. Comput. Fluids 2022, 239, 105415. [Google Scholar] [CrossRef]
- Wu, G.; Chen, S. Simulating spray coating processes by a three-dimensional lattice Boltzmann method-immersed boundary method approach. Chem. Eng. Sci. 2022, 263, 118091. [Google Scholar] [CrossRef]
- Duprez, M.; Lleras, V.; Lozinski, A. ϕ-FEM: An optimally convergent and easily implementable immersed boundary method for particulate flows and Stokes equations. ESAIM Math. Model. Numer. Anal. 2023, 57, 1111–1142. [Google Scholar] [CrossRef]
- Farooq, H.; Akhtar, I.; Hemmati, A.; Khalid, M.S.U. An accurate immersed boundary method using radial-basis functions for incompressible flows. J. Comput. Phys. 2025, 531, 113928. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, Y.; Zhang, T.; Dong, H.; Hou, G. A sharp interface immersed boundary method for flow-induced noise prediction using acoustic perturbation equations. Comput. Fluids 2021, 227, 105032. [Google Scholar] [CrossRef]
- Gorges, C.; Brömmer, M.; Velten, C.; Wirtz, S.; Illana, E.; Scherer, V.; Zähringer, K.; Van Wachem, B. Comparing two IBM implementations for the simulation of uniform packed beds. Particuology 2024, 86, 1–12. [Google Scholar] [CrossRef]
- Zhou, K.; Balachandar, S. An analysis of the spatio-temporal resolution of the immersed boundary method with direct forcing. J. Comput. Phys. 2021, 424, 109862. [Google Scholar] [CrossRef]
- Xie, F.; Qu, Y.; Islam, A.; Meng, G. A sharp-interface Cartesian grid method for time-domain acoustic scattering from complex geometries. Comput. Fluids 2020, 202, 104498. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, T.; Hou, G. Finite-difference time-domain modelling for underwater acoustic scattering applications based on immersed boundary method. Appl. Acoust. 2022, 193, 108764. [Google Scholar] [CrossRef]
- Isoz, M.; Šourek, M.K.; Studeník, O.; Kočí, P. Hybrid fictitious domain-immersed boundary solver coupled with discrete element method for simulations of flows laden with arbitrarily-shaped particles. Comput. Fluids 2022, 244, 105538. [Google Scholar] [CrossRef]
- Qin, J.; Null, X.Y.; Li, Z. Hybrid diffuse and sharp interface immersed boundary methods for particulate flows in the presence of complex boundaries. Commun. Comput. Phys. 2022, 31, 1242–1271. [Google Scholar] [CrossRef]
- Giahi, M.; Bergstrom, D.E. A critical assessment of the immersed boundary method for modeling flow around fixed and moving bodies. Comput. Fluids 2023, 256, 105841. [Google Scholar] [CrossRef]
- Zeng, J.; Li, H.; Zhang, D. Direct numerical simulation of proppant transport in hydraulic fractures with the immersed boundary method and multi-sphere modeling. Appl. Math. Model. 2021, 91, 590–613. [Google Scholar] [CrossRef]
- Caunt, E.; Nelson, R.; Luporini, F.; Gorman, G.J. A Novel Immersed Boundary Approach for Irregular Topography with Acoustic Wave Equations. arXiv 2023, arXiv:2309.03600. [Google Scholar] [CrossRef]
- Uhlmann, M. An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 2005, 209, 448–476. [Google Scholar] [CrossRef]
- Mentzoni, F.; Kristiansen, T. Two-dimensional experimental and numerical investigations of perforated plates in oscillating flow, orbital flow and incident waves. Appl. Ocean Res. 2020, 97, 102078. [Google Scholar] [CrossRef]
- Haeri, S.; Shrimpton, J.S. On the application of immersed boundary, fictitious domain and body-conformal mesh methods to many particle multiphase flows. Int. J. Multiph. Flow 2012, 40, 38–55. [Google Scholar] [CrossRef]
- Farea, A.; Khan, S.; Daryani, R.; Ersan, E.C.; Celebi, M.S. Learning Fluid-Structure Interaction Dynamics with Physics-Informed Neural Networks and Immersed Boundary Methods. arXiv 2025, arXiv:2505.18565. [Google Scholar] [CrossRef]
- Zuber, D.; Larsson, J.; Brehm, C.; McQuaid, J.; Van Noordt, W.; Min, B.; Wake, B.E. Wall-Modeled Large Eddy simulation using the immersed boundary method of the HVAB rotor. In Proceedings of the AIAA SCITECH 2022 Forum, Orlando, FL, USA, 6–10 January 2025. [Google Scholar] [CrossRef]
- Gopakumar, V.; Gray, A.; Zanisi, L.; Nunn, T.; Pamela, S.; Giles, D.; Kusner, M.J.; Deisenroth, M.P. Calibrated Physics-Informed uncertainty quantification. arXiv 2025, arXiv:2502.04406. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, F.; Yang, X. A features-embedded-learning immersed boundary model for large-eddy simulation of turbulent flows with complex boundaries. arXiv 2025, arXiv:2506.21985. [Google Scholar] [CrossRef]
- Powar, O.; Arun Pa, H.; Kumar, A.M.; Kanchan, M.; Karthik, B.M.; Mangalore, P.; Santhya, M. Recent developments in the immersed boundary Method for Complex Fluid–Structure Interactions: A review. Fluids 2025, 10, 134. [Google Scholar] [CrossRef]
Feature/Aspect | Diffuse-Interface Method | Sharp-Interface Method |
---|---|---|
Interface Representation | Interface is smeared over a finite thickness (regularized) | Interface is exact, represented as a discontinuity (zero-thickness) |
Governing Equation Modification | Equations are modified over a band using indicator (phase) functions | Governing equations remain valid, but interface conditions are sharply enforced |
Interface Tracking | Uses phase field, level set, or volume-of-fluid (VOF) methods | Uses body-fitted mesh, ghost-cell, or cut-cell methods |
Force Application | Distributed body force (e.g., penalty or smoothing force) over the interface region | Discrete delta function or sharp condition imposition at interface |
Continuity Treatment | Allows for continuous transition in material properties like density or viscosity | Material properties jump discontinuously at the interface |
Numerical Complexity | Easier to implement on fixed grids (Eulerian); smooth solutions | Requires special treatment for jumps, boundary reconstruction, and interpolation |
Mass Conservation | Can suffer from slight mass loss/gain (especially in level-set based methods) | Better mass conservation due to explicit boundary enforcement |
Utility | Flows with complex moving interfaces, topological changes (e.g., breakup, coalescence) | Problems requiring high accuracy at interface (e.g., fluid–structure interaction) |
Reference | Flow– Structural Solver | Boundary Treatment | Summary | Application Area | Year |
---|---|---|---|---|---|
Griffith et al., 2007 [13] | FDM | Diffuse | Adaptive, second-order accurate IBM for heart valve simulations | Cardiovascular (heart valves) | 2007 |
Heys et al., 2008 [14] | FDM | Diffuse | Models filiform hair motion with viscous coupling | Arthropod sensory systems | 2008 |
Kim and Lai, 2010 [15] | FDM | Diffuse | Simulates inextensible vesicles in fluid flow | Vesicle dynamics | 2010 |
Maniyeri et al., 2012 [16] | FVM | Diffuse | Bacterial flagellum propulsion in viscous fluid | Microorganism locomotion | 2012 |
Maniyeri and Kang, 2014 [17] | FVM | Diffuse | Bacterial flagellar bundling and tumbling | Microorganism locomotion | 2014 |
De Rosis, 2014 [18] | LBM | Diffuse | Tandem flapping wings with phase difference effects | Insect flight dynamics | 2014 |
Battista et al., 2018 [19] | FDM | Diffuse | Implementation of IBM as 2D software | Biological flows | 2018 |
Fai and Rycroft, 2018 [20] | FEM | Diffuse | Improved accuracy for thin fluid layers in FSI | Vesicle migration in narrow channels | 2018 |
Kanchan and Maniyeri, 2019 [9] | FVM | Diffuse | Buckling and recuperation of flexible filaments in shear flow | Diatom chain dynamics | 2019 |
Kanchan and Maniyeri, 2020 [21] | FVM | Diffuse | Asymmetric filament deformation in oscillatory flow | Flexible filament dynamics | 2020 |
Kanchan and Maniyeri, 2020 [22] | FVM | Diffuse | Self-excited oscillation of filaments in channel flow | Fluid–structure interaction | 2020 |
Kanchan and Maniyeri, 2020 [23] | FVM | Diffuse | Multiple-filament interaction in shear flow | Filament dynamics | 2020 |
Wang et al., 2020 [24] | FDM | Diffuse | Self-propelled flexible plate with Navier slip | Bio-inspired propulsion | 2020 |
Meng et al., 2020 [25] | LBM | Diffuse | Dendritic growth and motion in convection | Solidification dynamics | 2020 |
Delong et al., 2014 [26] | FVM | Diffuse | Fluctuating immersed boundary for Brownian dynamics | Static and Dynamic particle interaction | 2014 |
Coclite et al., 2020 [27] | LBM | Diffuse | Dynamic IBM for rigid/deformable objects in 3D flow | General FSI | 2020 |
Ong et al., 2021 [28] | FDM | Diffuse | Inextensible vesicles in 2D Stokes flow | Vesicle dynamics | 2021 |
Ghosh, 2021 [29] | FDM | Diffuse | Fluid-induced deformation of cantilever beams | Biofilm-fluid interaction | 2021 |
Casquero et al., 2021 [30] | FEM | Diffuse | Capsule/vesicle dynamics with B-splines/T-splines | Biological membranes | 2021 |
Lampropoulos et al., 2021 [31] | FEM | Diffuse | Efficient hemodynamic simulation in aneurysms | Intracranial aneurysm flow | 2021 |
Mirfendereski and Park, 2021 [32] | FDM | Diffuse | Pulsatile flow in stenotic channels | Blood flow in arteries | 2021 |
Eldoe et al., 2022 [33] | FVM | Diffuse | Rigid filament interaction in oscillatory flow | Low-Re filament dynamics | 2022 |
Kassen et al., 2022 [34] | FDM | Diffuse | Cell–cell interactions in whole blood | Blood cell dynamics | 2022 |
Ntetsika and Papadopoulos, 2022 [35] | FDM | Diffuse | Filament dynamics in shear flow with ANN prediction | Flexible filament behavior | 2022 |
Maniyeri, 2022 [36] | FVM | Diffuse | Elastic rod dynamics in fluid flow | Flagellar motion | 2022 |
Zhu et al., 2022 [37] | LBM | Diffuse | Tea shoot deformation under negative pressure | Agricultural robotics | 2022 |
Lai and Seol, 2022 [38] | FDM | Diffuse | Stable vesicle dynamics in 3D Navier–Stokes | Vesicle dynamics | 2022 |
Bourantas et al., 2023 [39] | FEM | Diffuse | Efficient blood flow simulation in complex vasculature | Vascular hemodynamics | 2023 |
Kaiser et al., 2023 [40] | FDM | Diffuse | Heart valve hemodynamics compared with 4D flow MRI | Cardiovascular flow | 2023 |
Ladiges et al., 2022 [41] | MAC | Diffuse | Simulation of electrolytes in presence of physical boundaries | Induced charge electro-osmosis | 2022 |
Luo et al., 2008 [42] | FDM | Sharp | Novel IBM for phonation and FSI in biological systems | Vocal fold dynamics | 2008 |
Bhardwaj and Mittal, 2012 [12] | FDM–FEM | Sharp | Coupled IBM–FEM solver for large-scale flow-induced deformation | Flexible structures in flow | 2012 |
Bhardwaj et al., 2013 [43] | FDM–FEM | Sharp | Blast-induced eye deformation using FSI | Biomechanics (eye trauma) | 2013 |
Bailoor et al., 2017 [44] | FDM–FEM | Sharp | Compressible FSI with large deformations (ghost-cell method) | Blast–structure interaction | 2017 |
Bourantas et al., 2021 [45] | FEM | Sharp | Internal flows in complex geometries (blood flow) | Cardiovascular hemodynamics | 2021 |
Brown et al., 2022 [46] | FDM | Sharp | TAVR device simulation with patient-specific anatomy | Transcatheter aortic valve replacement | 2022 |
Wang et al., 2022 [47] | FEM | Sharp (moving) | Heart valve flow simulation with hybrid method | Cardiovascular flow | 2022 |
Singh and Kumar, 2023 [48] | FVM | Sharp | Tumor morphology modeling without body-conformal grids | Bioheat transfer in tumors | 2023 |
Reference | Fluid Solver | Boundary Treatment | Summary | Application Area | Year |
---|---|---|---|---|---|
Kumar et al., 2015 [57] | LBM | Diffuse | Clap-and-fling mechanism at low Re | Insect flight | 2015 |
De Rosis, 2015 [58] | LBM | Diffuse | Tandem flapping wings near ground effect | Aerial vehicle design | 2015 |
Wang et al., 2018 [59] | FDM | Diffuse | Oscillating hydrofoils for energy harvesting | Hydrodynamics | 2018 |
Li et al., 2018 [60] | FDM | Diffuse | Pitching motion profiles for energy extraction | Semi-active foils | 2018 |
Xie et al., 2019 [61] | FVM | Diffuse | VIV of a cylinder with attached filament | Vortex-induced vibrations | 2019 |
Ma et al., 2019 [62] | RANS | Diffuse | Flow physics within blade passages | Turbomachinery | 2019 |
Wu et al., 2019 [63] | LBM | Diffuse | Flow-induced vibration of tandem elliptical cylinders | Tandem cylinder flows | 2019 |
Wang et al., 2019 [64] | FVM | Diffuse | Elastic bodies in viscous fluids (vegetation/turbines) | FSI in laminar/turbulent flows | 2019 |
Wang et al., 2020 [24] | FDM–FEM | Diffuse | Hydrodynamic interaction of flexible flags | Poiseuille flow | 2020 |
Chen et al., 2020 [65] | FDM | Diffuse | 3D flag flapping dynamics in Poiseuille flow | Flexible structures | 2020 |
Zhao et al., 2020 [66] | FVM | Diffuse | Tsunami-like wave impact on coastal bridges | Coastal engineering | 2020 |
Zhang et al., 2020 [67] | FDM | Diffuse | Hydrodynamics of tuna caudal keels | Bio-inspired propulsion | 2020 |
Luo et al., 2021 [68] | FDM | Diffuse | Reduced-order FSI for biofluid systems | Biofluid dynamics | 2021 |
Kasbaoui et al. 2021 [69] | DNS | Diffuse | Swirling von Kármán flow with moving IBM | Turbulence transitions | 2021 |
Dong et al., 2021 [70] | SGKS | Diffuse | Chordwise deformation effects on batoid fish | Bio-inspired propulsion | 2021 |
Ai et al., 2021 [71] | FDM | Diffuse | Internal wave prediction with IBM | Stratified flows | 2021 |
Yan et al., 2021 [72] | LBM | Diffuse | Vortex shedding around circular cylinders | Isolated/tandem cylinders | 2021 |
Tian et al., 2021 [73] | FEM | Diffuse | Transient FSI with energy conservation | General FSI | 2021 |
Zhao et al., 2021 [74] | FDM | Diffuse | Drag reduction using micro floating rafts | Underwater vehicles | 2021 |
Yaswanth and Maniyeri, 2022 [75] | FVM | Diffuse | Fluid mixing in oscillating lid-driven cavity | Mixing enhancement | 2022 |
Mazharmanesh et al., 2022 [76] | LBM | Diffuse | Energy harvesting in inverted piezoelectric flags | Piezoelectric energy | 2022 |
Karimnejad et al., 2022 [77] | LBM | Diffuse | Pulsating flow effects on particle settling | Particle dynamics | 2022 |
Mao et al., 2022 [78] | FDM | Diffuse | Drag reduction with flexible hairy coatings | Drag reduction | 2022 |
Zhang et al., 2022 [79] | DNS | Diffuse | Hydrodynamics of tuna finlets | Bio-inspired propulsion | 2022 |
Yu and Yu, 2022 [80] | FDM | Diffuse | Flow interactions with aquatic vegetation | Environmental flows | 2022 |
Jin et al., 2022 [81] | FVM | Diffuse | VOF-IBM for solitary wave free surface flow | Free-surface flows | 2022 |
Fang et al., 2022 [82] | LBM | Diffuse | Fish swimming hydrodynamics | Bio-inspired robotics | 2022 |
Huang et al., 2022 [83] | LBM | Diffuse | FSI of fish moving through turbines | Fish-turbine interactions | 2022 |
Xiao et al., 2022 [84] | LBM | Diffuse | Water entry/exit of rigid bodies | Free-surface FSI | 2022 |
Mi et al., 2022 [85] | URANS | Diffuse | FSI in submerged nets | Aquaculture nets | 2022 |
Stival et al., 2022 [86] | FVM | Diffuse | LES–IBM for wind turbine flows | Wind energy | 2022 |
Mazharmanesh et al., 2023 [87] | LBM | Diffuse | Tandem/side-by-side piezoelectric flags in oscillating flow; identified chaotic/symmetric regimes | Energy harvesting (inverted flags) | 2023 |
Luo and Zhang, 2023 [88] | HydroFlow | Diffuse | IBM in σ-coordinate model for wave-structure interactions | Ocean engineering | 2023 |
Dong and Huang, 2023 [89] | LES | Diffuse | Wall-modeled LES–IBM for batoid fish swimming; revealed hairpin vortices | Bio-inspired propulsion | 2023 |
Guo and Hou, 2023 [90] | Other (DUGKS) | Diffuse | Slip-condition IBM for AUV drag reduction | Underwater vehicles | 2023 |
Wu and Guo, 2023 [91] | LBM | Diffuse | FS-LBM with IB for aircraft ditching; included surface tension effects | Multiphase FSI (water impact) | 2023 |
Park et al., 2023 [92] | FDM | Diffuse | Semi-Lagrangian Navier–Stokes with reduced IBM for high-inertia/elasticity FSI | General FSI | 2023 |
Monteiro and Mariano, 2023 [93] | Spectral | Diffuse | Fourier pseudo-spectral-IBM for airfoils/VAWTs; validated at Re = 1000 | Wind energy | 2023 |
Liu et al., 2023 [94] | LBM | Diffuse | IB–LBM with AMR/VOF for free-surface flows in ocean engineering | Ocean engineering | 2023 |
Zhang et al., 2024 [95] | FDM | Diffuse | Perforated plate-filament system; observed MFD mode and drag reduction | Drag reduction | 2024 |
Mao et al., 2023 [96] | FDM | Diffuse (Penalty IBM) | Snap-through dynamics of buckled filament; mode transitions with varying bending rigidity/Re | Flexible filaments in flow | 2023 |
Borazjani and Sotiropoulos, 2009 [97] | FEM | Sharp | VIV of two elastically mounted cylinders at Re = 200 | Vortex-induced vibrations | 2009 |
Seo and Mittal, 2011 [98] | FDM–FEM | Sharp | Cut-cell IBM to reduce spurious pressure oscillations | Moving boundary flows | 2011 |
Griffith et al., 2016 [99] | FDM–FEM | Sharp | Flow around rotationally oscillating cylinders | Energy harvesting | 2016 |
Griffith and Leontini, 2017 [100] | FDM–FEM | Sharp | Heuristic model for VIV simulations | Vortex-induced vibrations | 2017 |
Khalili et al., 2018 [101] | FDM | Sharp | High-order ghost-point IBM for compressible flows | Compressible viscous flows | 2018 |
Mishra et al., 2019 [102] | FDM–FEM | Sharp | Viscoelastic plate attached to a cylinder | Flow-induced oscillations | 2019 |
Majumdar et al., 2020 [103] | FVM | Sharp | Dynamic transitions in plunging foil flow | Transition to chaos | 2020 |
Narváez et al., 2020 [104] | Incompact3D | Sharp | Flow-induced vibrations of tandem cylinders | Tandem cylinder FIV | 2020 |
Xu et al., 2020 [105] | FDM | Sharp | High-order solutions for nonlinear water waves | Free-surface flows | 2020 |
Xin et al., 2020 [106] | CIR | Sharp | Ghost cell method for sloshing in tanks | Free-surface flows | 2020 |
Kundu et al., 2020 [107] | FDM–FEM | Sharp | FSI solver coupling IBM–FEM with dynamic under-relaxation | General FSI | 2020 |
Kwon et al., 2020 [108] | FVM | Sharp | Shallow water flow around cylinders | Tsunami mitigation | 2020 |
Tsai and Lo, 2020 [109] | FDM | Sharp | Fluid–structure interaction in submerged nets | Aquaculture nets | 2020 |
Seshadri and De, 2021 [110] | FVM | Sharp | Robust framework for moving bodies | General FSI | 2021 |
Robaux and Benoît, 2021 [111] | FDM | Sharp | Fully nonlinear potential wave tank | Free-surface flows | 2021 |
Badhurshah et al., 2021 [112] | FDM–FEM | Sharp | VIV of a cylinder with bistable springs | Energy harvesting | 2021 |
Tong et al., 2021 [113] | FDM | Sharp | Nonlinear wave-structure interactions | Offshore engineering | 2021 |
Hanssen and Greco, 2021 [114] | FDM | Sharp | Overlapping grid method for water waves | Wave-body interactions | 2021 |
Sharma et al., 2022 [115] | FDM–FEM | Sharp | FIV of cylinders with varying cross-sections | Flow-induced vibrations | 2022 |
Giannenas et al., 2022 [116] | Incompact3D | Sharp | Wake response to harmonic forcing | Bluff body flows | 2022 |
Khedkar and Bhalla, 2022 [117] | FDM | Sharp | MPC-IBM for wave energy converters | Renewable energy | 2022 |
Song et al., 2022 [118] | RANS | Sharp | 3D scour model for complex structures | Coastal/scour dynamics | 2022 |
Gómez et al., 2022 [119] | Incompact3D | Sharp | VIV in four circular cylinders | Multi-cylinder FSI | 2022 |
Badhurshah et al., 2022 [120] | FDM–FEM | Sharp | VIV with bistable springs (energy harvesting) | Vortex-induced vibrations | 2022 |
Ji et al., 2022 [121] | LES | Sharp | Hybrid actuator line-IB for wind turbine wakes | Wind energy | 2022 |
Xu et al., 2023 [122] | FDM | Sharp | High-order finite difference solver with IBM for wave loads on marine structures | Offshore structures | 2023 |
Pandey et al., 2023 [123] | FDM–FEM | Sharp | FIV of cantilevered plate; identified lock-in regimes for energy harvesting | Energy harvesting | 2023 |
Kanchan et al., 2024 [124] | FDM–FEM | Sharp | ANN-predicted oscillations of elastic plate in flow; 6 response regions | Low-Re FSI | 2024 |
Chern et al., 2023 [125] | LES | Sharp | Plasma-actuated dynamic stall control on flapping NACA 0012 wing | Aerodynamics (flow control) | 2023 |
Yang et al., 2023 [126] | LES | Sharp (ghost cell) | Modified IBM for VAWT simulations; validated with Eppler387 airfoil | Wind energy | 2023 |
Yu et al., 2023 [127] | FDM | Sharp (IB-GHPC) | 2D wave tank with pressure-velocity separation; validated for free-surface flows | Coastal engineering | 2023 |
Sundar et al., 2023 [128] | ALE | Sharp | Moving-boundary-enabled standard Navier–Stokes based Physics Informed Neural Network | Flow past plunging foils | 2023 |
Kolahdouz et al., 2023 [129] | FDM–FEM | Sharp (ILE) | Dirichlet–Neumann coupling for nonlinear FSI; improved volume conservation | Large-deformation FSI | 2023 |
Zargaran et al., 2023 [130] | FVM-FEM | Sharp | Lagrangian-IBM for rotor-stator mixers; reduced numerical diffusion | Industrial mixing | 2023 |
Li et al., 2023 [131] | FDM | Sharp (level-set) | 3D sharp-interface IBM for turbomachinery flows | Hydraulic turbomachinery | 2023 |
Joachim et al., 2023 [132] | Lethe | Sharp (Nitsche’s) | Parallel NIB method for fluid mixing in stirred tanks | Industrial mixing | 2023 |
Kou and Ferrer, 2023 [133] | FDM | Sharp (volume penalization) | Combined volume penalization–SFD for moving geometries; damped spurious waves | Moving-boundary flows | 2023 |
Agarwal et al., 2024 [134] | FDM | Sharp (direct forcing) | IGA–FDM coupling for slender rods in flow; decoupled fluid-grid resolution | Flexible structures | 2024 |
Reference | Fluid Solver | Boundary Treatment | Summary | Application Area | Year |
---|---|---|---|---|---|
Ren et al., 2013 [138] | FDM | Diffuse | Dirichlet (velocity) + Neumann (heat flux) corrections for momentum/energy equations | Conjugate heat transfer | 2013 |
Mazharmanesh et al., 2020 [139] | LBM | Diffuse | Multiple piezoelectric flags in tandem/side-by-side configurations | Energy harvesting | 2020 |
Tong et al., 2020 [140] | LBM | Diffuse | Multiblock LBM–IBM for fouling/ash deposition in heat exchangers | Fouling dynamics | 2020 |
Abaszadeh et al., 2022 [141] | LBM | Diffuse | IB–LBM for radiative heat transfer in 2D irregular geometries | Radiative transfer | 2022 |
Jiang et al., 2022 [142] | LBM | Diffuse | Parallel IB–LBM for fully resolved particle-laden flows | Suspension dynamics | 2022 |
Tao et al., 2022 [143] | LBM | Diffuse | Simplified IB–LBM for thermal flows with no-slip/temperature BCs | Thermal flows | 2022 |
Haeri and Shrimpton, 2013 [144] | FEM | Diffuse (fictitious) | Implicit fictitious domain method for flow–heat transfer past immersed objects | Fluid-immersed object interaction | 2013 |
Chen et al., 2020 [145] | LBM | Diffuse (IB–STLBM) | Simplified LBM with IBM for incompressible thermal flows | Thermal flows with immersed objects | 2020 |
Xu and Choi, 2023 [146] | FDM | Diffuse (MIBPM) | Monolithic IB projection method for incompressible flows with heat transfer | Incompressible thermal flows | 2023 |
Hosseini et al., 2021 [147] | LBM | Diffuse (MRT) | IB–LBM for elastic vortex generator (EVG) in microchannels | Microscale mixing | 2021 |
Wu et al., 2023 [148] | LBM | Diffuse | Explicit IBM for TFSI with Neumann BCs (heat flux) | Thermal-fluid–structure interaction | 2023 |
Chen et al., 2020 [149] | FDM | Diffuse (penalty IBM) | Fluid–structure–thermal interaction of flexible flags in heated channels | Heat transfer enhancement | 2020 |
Wang et al., 2023 [150] | FDM–FEM | Diffuse (penalty) | IBM for rarefied gas flow with slip-modeled velocity/temperature jumps | Rarefied gas flows | 2023 |
Zhang et al., 2016 [151] | LBM | Diffuse (PIBM) | Particulate IBM for thermal particle–fluid interactions with DEM | Particle-laden flows | 2016 |
Wu et al., 2024 [152] | LBM | Diffuse | Implicit IBM for TFSI with Robin BCs (combined convection–radiation) | Thermal-fluid–structure interaction | 2024 |
Pacheco et al., 2005 [153] | FVM | Sharp | Finite-volume non-staggered grid with Dirichlet/Neumann BCs for complex geometries | General heat transfer | 2005 |
Soti et al., 2015 [154] | FDM–FEM | Sharp | Strongly coupled FSI solver for flexible structures with convective heat transfer | Energy harvesting | 2015 |
Garg et al., 2018 [155] | FDM–FEM | Sharp | VIV of cylinder with thermal buoyancy (Boussinesq approximation) | Vortex-induced vibrations | 2018 |
Garg et al., 2020 [156] | FDM–FEM | Sharp | Thermal buoyancy effects on wake-induced vibration (WIV) of square prisms | Bluff body heat transfer | 2020 |
Lou et al., 2020 [157] | FVM | Sharp | Finite-volume IBM for membrane distillation with Robin BCs | Desalination | 2020 |
Mohammadi and Nassab, 2021 [158] | FVM | Sharp | FVM–IBM for radiative heat transfer in irregular geometries | Radiative transfer | 2021 |
Mohammadi and Nassab, 2021 [159] | Hybrid (LBM–FVM) | Sharp | LBM–FVM–IBM for radiative–convective heat transfer | Combined heat transfer | 2021 |
Riahi et al., 2023 [160] | FVM | Sharp | Discrete IBM for compressible flows with heat transfer | Compressible heat transfer | 2023 |
Ahn et al., 2023 [161] | FVM | Sharp | IBM for conjugate heat transfer with melting/solidification | Phase-change heat transfer | 2023 |
Cruz and Lamballais, 2023 [162] | FDM | Sharp | IBM for high-fidelity CHT in pipe flows with irregular geometries | Conjugate heat transfer | 2023 |
Wang et al., 2022 [163] | FDM | Sharp (direct forcing) | Improved direct-forcing IBM for particle-laden flows with heat transfer | Multiphase heat transfer | 2022 |
Narváez et al., 2021 [164] | InCompact3D | Sharp (dual IBM) | Dual IBM for turbulent flow with conjugate heat transfer | Turbulent heat transfer | 2021 |
Wu et al., 2022 [165] | LBM | Sharp (EIB) | Explicit IB–RTLBFS for TFSI problems with Dirichlet BCs | Thermal-fluid–structure interaction | 2022 |
Zhao and Yan, 2022 [166] | FEM | Sharp (EIBM) | Enriched IBM for interface-coupled multiphysics (eg, convective heat transfer) | Conjugate heat transfer | 2022 |
Ou et al., 2022 [167] | DINO | Sharp (GCIB) | Directional ghost-cell IBM for low-Mach reacting flows | Reacting flows | 2022 |
Xia et al., 2014 [168] | FDM | Sharp (ghost cell) | High-order ghost-cell IBM for heat transfer; reduced grid points by ~2/3 | Thermal flows | 2014 |
Tao et al., 2022 [169] | Other (DUGKS) | Sharp (ghost cell) | DUGKS–IBM for particulate flows with heat transfer | Fluid–solid heat transfer | 2022 |
Fernandez et al., 2011 [170] | Spectral Method | Sharp (IBC) | Grid-independent 3D heat conduction in slots with time-dependent boundaries | Heat conduction | 2011 |
Shrivastava et al., 2013 [171] | FVM | Sharp (LSIBM) | Level set-based IBM for transient CFD with moving boundaries | Dynamic boundary flows | 2013 |
Ménez et al., 2023 [172] | FVM | Sharp/diffuse | Comparison of volume penalization and IBM for compressible flows with thermal BCs | Compressible thermal flows | 2023 |
Reference | Fluid Solver | Boundary Treatment | Summary | Application Area | Year |
---|---|---|---|---|---|
Zhang et al., 2019 [173] | LBM (CLBM) | Diffuse | Coupled DEM–IB–CLBM framework for erosive particle impacts | Erosive particle flows | 2019 |
Yang et al., 2019 [174] | FDM (DNS) | Diffuse | Eulerian method for optimal perturbations in particle-laden flows | Turbulent channel flows | 2019 |
Wang et al., 2021 [175] | LBM | Diffuse | Polygonal DEM–LBM coupling with energy-conserving contact algorithm | Arbitrarily shaped particles | 2021 |
Zhang et al., 2021 [176] | LBM | Diffuse | IB–LBM for coffee-ring formation in evaporating droplets | Droplet evaporation | 2021 |
Romanus et al., 2021 [177] | LBM | Diffuse | Domain-transferring LBM–IBM for high-Re particle settling | Non-spherical particle dynamics | 2021 |
Wang et al., 2022 [178] | LBM | Diffuse | IB–LBM for elliptical particle deposition in viscous flows | Particle deposition | 2022 |
Fukui and Kawaguchi, 2022 [179] | LBM | Diffuse | Microscopic particle arrangement effects on suspension rheology | Narrow channel suspensions | 2022 |
Cheng and Wachs, 2022 [180] | LBM (MRT) | Diffuse | Adaptive octree-grid IB–LBM for particle-resolved flows | Particle-laden flows | 2022 |
Yadav and Ghosh, 2022 [181] | FDM | Diffuse | IBM for settling of permeable/impermeable planktonic particles | Biological suspensions | 2022 |
Kawaguchi et al., 2022 [182] | LBM (RLBM) | Diffuse | Comparison of VFM and IBM for suspension flows | Suspension rheology | 2022 |
Ghosh and Panghal, 2022 [183] | FDM | Diffuse | IBM for flexible circular particle settling | Flexible particle dynamics | 2022 |
Chang et al., 2023 [184] | Other (PDDO) | Diffuse | Hybrid peridynamic–Eulerian–IBM for FSI | Fluid–structure interaction | 2023 |
Panghal and Ghosh, 2023 [185] | FDM | Diffuse | IBM for flexible/permeable planktonic particle settling | Biological sedimentology | 2023 |
Zhang et al., 2023 [186] | LBM | Diffuse | IB–LBM for nanofluid droplet freezing with particle expulsion | Nanofluid dynamics | 2023 |
Yadav et al., 2023 [187] | FDM | Diffuse | IBM for semi-torus-shaped permeable particle settling | Permeable particle dynamics | 2023 |
Ghosh et al., 2023 [188] | LBM | Diffuse | Stabilized IBM for light particles (density ratio ≥004) | Light particle suspensions | 2023 |
Patel and Natarajan, 2018 [189] | FVM | Diffuse | Interpolation-free IBM for multiphase flows with moving bodies | Multiphase FSI | 2018 |
Souza et al., 2022 [190] | FEM (LES) | Diffuse | AMR–VOF–IBM for turbulent multiphase FSI | Industrial multiphase flows | 2022 |
Niu et al., 2022 [191] | LBM | Diffuse | Simple diffuse IB scheme for curved boundaries in multiphase flows | Binary/multiphase flows | 2022 |
Wang et al., 2023 [192] | FDM | Diffuse | Energy-stable IBM for deformable membranes with non-uniform properties | Biological membranes | 2023 |
Wang and Tian, 2019 [136] | FDM | Diffuse | IBM for flapping wing FSI and acoustics at Mach 01 | Bio-inspired aerodynamics | 2019 |
Wang and Tian, 2020 [135] | FEM | Diffuse | Sound generation by 3D flexible flapping wings during hovering | Bioacoustics | 2020 |
Ye et al., 2020 [193] | FVM | Diffuse | Discrete-forcing IBM for ship hydrodynamics with VOF | Marine engineering | 2020 |
Bilbao, 2023 [194] | FDTD | Diffuse | 1D IBM for impedance/acoustic barriers | Linear acoustics | 2023 |
Bilbao, 2023 [195] | FDTD | Diffuse | 3D IBM for irregular boundaries in wave-based acoustics | 3D acoustic simulations | 2023 |
Hou et al., 2023 [196] | FDTD | Diffuse | Time-domain IBM for acoustic propagation between gas bubbles | Bubble acoustics | 2023 |
Jiang et al., 2022 [142] | LBM | Diffuse (BTDF–IBM) | Parallel FR–DNS for settling suspensions with lubrication model | Large-scale suspensions | 2022 |
Nangia et al., 2019 [197] | FDM | Diffuse (DLM–IBM) | DLM–IBM for high-density ratio WSI with AMR | Wave-structure interaction | 2019 |
Cheng et al., 2021 [198] | FDM | Diffuse | Semi-implicit IBM for viscous flow-induced sound | Computational aeroacoustics | 2021 |
Zeng et al., 2022 [199] | Godunov scheme | Diffuse (DLM–IBM) | Adaptive DLM–IBM with subcycling for single/multiphase FSI | Adaptive FSI | 2022 |
Yan et al., 2022 [200] | LBM (MLBFS) | Diffuse | IB–MLBFS with flux correction for multiphase FSI | Multiphase FSI | 2022 |
Hori et al., 2022 [201] | SAC | Diffuse (implicit) | Eulerian-based IBM with implicit lubrication for particle suspensions | Dense suspensions | 2022 |
Liu et al., 2017 [202] | DNS (FDM) | Diffuse (point-particle) | Combined DNS, IBM, and DPM for sediment particle distribution in turbulent boundary layers | Sediment transport | 2017 |
Wang et al., 2017 [203] | FDM (WENO) | Diffuse | Compressible multiphase FSI with ANCF structural solver | Explosive/impact dynamics | 2017 |
Cheng et al., 2017 [204] | FDM | Diffuse (smoothed IB) | Compressible IBM for flow-induced noise using influence matrices | Aeroacoustics | 2017 |
Zhang et al., 2013 [205] | FDM | Diffuse (VOF-IBM) | Two-phase IB–VOF model for ocean engineering problems | Free-surface flows | 2013 |
Bürchner et al., 2023 [206] | FEM (FCM) | Diffuse (γ-scaling) | FWI with γ-scaling IBM for crack detection in NDT | Non-destructive testing | 2023 |
Fazli et al., 2023 [207] | FDM | Diffuse | IBM for yield-pseudoplastic particulate flows | Non-Newtonian suspensions | 2023 |
Chéron et al., 2023 [208] | FVM | Hybrid (sharp–diffuse) | Hybrid IBM for dense particle-laden flows with non-symmetrical operators | Dense suspensions | 2023 |
Ido et al., 2017 [209] | LBM | Sharp | Hybrid LBM–IBM–DEM for magnetic particle microstructures in MR fluids | Magnetorheological fluids | 2017 |
Fukui et al., 2018 [210] | LBM | Sharp | Two-way coupling for particle rotation effects on suspension rheology | Suspension rheology | 2018 |
Barbeau et al., 2022 [211] | FEM | Sharp | High-order FEM–IBM for flow around sphere packings | Fixed-bed reactors | 2022 |
Wu and Chen, 2022 [212] | LBM | Sharp | 3D IB–LBM for droplet-particle coating processes | Spray coating | 2022 |
Duprez et al., 2023 [213] | FEM (ϕ-FEM) | Sharp | ϕ-FEM for Stokes flow around particles with optimal convergence | Creeping particle flows | 2023 |
Farooq et al., 2025 [214] | QUICK | Sharp | Radial-basis function for incompressible flow | Bio-inspired moving bodies | 2025 |
Zhao et al., 2021 [215] | FDM (DNS) | Sharp | Sharp-interface IBM–APE for flow-induced noise prediction | Cylinder array acoustics | 2021 |
Gorges et al., 2024 [216] | FVM | Sharp (blocked off) | Comparison of smooth/blocked-off IBM for fixed-bed reactors | Packed bed reactors | 2024 |
Zhou and Balachandar, 2021 [217] | FDM | Sharp (direct forcing) | Analysis of spatiotemporal resolution in IBM with direct forcing | Rigid particulate flows | 2021 |
Xie et al., 2020 [218] | FDM (DRP) | Sharp (ghost cell) | Cartesian grid method for acoustic scattering using ghost-cell IBM | Acoustic scattering | 2020 |
Zhao et al., 2022 [219] | FDTD | Sharp (ghost node) | FDTD–IBM for underwater acoustic scattering | Underwater acoustics | 2022 |
Isoz et al., 2022 [220] | FVM | Sharp (hybrid) | Hybrid fictitious domain–IBM for irregular particle flows | Industrial particle flows | 2022 |
Qin et al., 2022 [221] | FDM | Sharp | Hybrid IBM for particle–complex boundary interactions | Particulate flows | 2022 |
Yu et al., 2023 [127] | FDM/WENO | Sharp (IB–GHPC) | Two-phase wave tank with GHPC pressure solver | Coastal engineering | 2023 |
Giahi and Bergstrom, 2023 [222] | FVM | Sharp (IBS) | Validation of IBS–IBM for fixed/moving bodies | General FSI | 2023 |
Zeng et al., 2021 [223] | FVM | Sharp (multi-sphere) | Lagrangian IBM for proppant transport in hydraulic fractures | Oil/gas industry | 2021 |
Caunt et al., 2023 [224] | FDM | Sharp (Taylor series) | IBM for seismic/acoustic wave propagation over irregular terrain | Geophysics | 2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanchan, M.; Kumar, A.M.; Arun, P.A.H.; Powar, O.; Mehar, K.; Mangalore, P. Advances in Flow–Structure Interaction and Multiphysics Applications: An Immersed Boundary Perspective. Fluids 2025, 10, 217. https://doi.org/10.3390/fluids10080217
Kanchan M, Kumar AM, Arun PAH, Powar O, Mehar K, Mangalore P. Advances in Flow–Structure Interaction and Multiphysics Applications: An Immersed Boundary Perspective. Fluids. 2025; 10(8):217. https://doi.org/10.3390/fluids10080217
Chicago/Turabian StyleKanchan, Mithun, Anwak Manoj Kumar, Pedapudi Anantha Hari Arun, Omkar Powar, Kulmani Mehar, and Poornesh Mangalore. 2025. "Advances in Flow–Structure Interaction and Multiphysics Applications: An Immersed Boundary Perspective" Fluids 10, no. 8: 217. https://doi.org/10.3390/fluids10080217
APA StyleKanchan, M., Kumar, A. M., Arun, P. A. H., Powar, O., Mehar, K., & Mangalore, P. (2025). Advances in Flow–Structure Interaction and Multiphysics Applications: An Immersed Boundary Perspective. Fluids, 10(8), 217. https://doi.org/10.3390/fluids10080217