Experimental Study on the Influence of Groove-Flap and Concave Cavity on the Output Characteristics of Vertical Axis Wind Turbine
Abstract
1. Introduction
2. Wind Turbine Model
2.1. Geometric Model
2.2. Computational Domain and Grid Division
2.3. Reliability Demonstration
2.4. The Determination of the Cavity Structure
2.5. Determination of Groove-Flap Airfoil
3. Experimentation
3.1. Laboratory Equipment
3.2. Experimental Scheme
3.3. Experimental Results and Analysis
4. Numerical Simulation Analysis
4.1. Analysis of Numerical Simulation Results and Experimental Results
4.2. Analysis of Wind Turbine Vorticity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Clean Blade | Case-1 | Case-2 | Case-3 | Case-4 | Case-5 | Case-6 | Case-7 | Case-8 | Case-9 | |
---|---|---|---|---|---|---|---|---|---|---|
1.2 | 0.075 | 0.079 | 0.081 | 0.075 | 0.078 | 0.077 | 0.075 | 0.088 | 0.085 | 0.076 |
1.4 | 0.102 | 0.107 | 0.109 | 0.096 | 0.105 | 0.099 | 0.093 | 0.112 | 0.105 | 0.094 |
1.6 | 0.120 | 0.129 | 0.126 | 0.116 | 0.127 | 0.115 | 0.111 | 0.140 | 0.128 | 0.118 |
1.8 | 0.128 | 0.138 | 0.137 | 0.123 | 0.139 | 0.123 | 0.124 | 0.134 | 0.122 | 0.120 |
2.0 | 0.118 | 0.129 | 0.128 | 0.121 | 0.127 | 0.120 | 0.118 | 0.125 | 0.119 | 0.118 |
References
- Rezaeiha, A.; Montazeri, H.; Blocken, B. Characterization of aerodynamic performance of vertical axis wind turbines: Impact of operational parameters. Energy Convers. Manag. 2018, 169, 45–77. [Google Scholar] [CrossRef]
- Belabes, B.; Paraschivoiu, M. Numerical study of the effect of turbulence intensity on VAWT performance. Energy 2021, 233, 121139. [Google Scholar] [CrossRef]
- Elkhoury, M.; Kiwata, T.; Aoun, E. Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch. J. Wind Eng. Ind. Aerodyn. 2015, 139, 111–123. [Google Scholar] [CrossRef]
- Molina, A.C.; De Troyer, T.; Massai, T.; Vergaerde, A.; Runacres, M.C.; Bartoli, G. Effect of turbulence on the performance of VAWTs: An experimental study in two different wind tunnels. J. Wind Eng. Ind. Aerodyn. 2019, 193, 103969. [Google Scholar] [CrossRef]
- Xu, W.; Li, C.C.; Huang, S.X.; Wang, Y. Aerodynamic performance improvement analysis of Savonius Vertical Axis Wind Turbine utilizing plasma excitation flow control. Energy 2022, 239, 122133. [Google Scholar] [CrossRef]
- Chavoshi, M.Z.; Ebrahimi, A. Plasma actuator effects on the flow physics of dynamic stall for a vertical axis wind turbine. Phys. Fluids 2022, 34, 075131. [Google Scholar] [CrossRef]
- Ma, L.; Wang, X.; Zhu, J.; Kang, S. Dynamic stall of a vertical-axis wind turbine and its control using plasma actuation. Energies 2019, 12, 3738. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, J.; Chang, J. Effect of Different Voltage Frequencies of Plasma Actuators on Wind Turbine Blade Lift and Rudder Efficiency. Processes 2025, 13, 1032. [Google Scholar] [CrossRef]
- Hao, W.; Bashir, M.; Li, C.; Sun, C. Flow control for high-solidity vertical axis wind turbine based on adaptive flap. Energy Convers. Manag. 2021, 249, 114845. [Google Scholar] [CrossRef]
- Liu, Q.; Miao, W.; Ye, Q.; Li, C. Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine. Renew. Energy 2022, 185, 1124–1138. [Google Scholar] [CrossRef]
- Saddam ul Hassan, S.; Javaid, M.T.; Rauf, U.; Nasir, S.; Shahzad, A.; Salamat, S. Systematic investigation of power enhancement of Vertical Axis Wind Turbines using bio-inspired leading edge tubercles—ScienceDirect. Energy 2023, 270, 1226978. [Google Scholar]
- Zamani, M.; Sangtarash Maghrebi, M.J. Numerical Study of Porous Media Effect on the Blade Surface of Vertical Axis Wind Turbine for Enhancement of Aerodynamic Performance. Energy Convers. Manag. 2021, 245, 114598. [Google Scholar] [CrossRef]
- Javaid, M.T.; Sajjad, U.; ul Hassan, S.S.; Nasir, S.; Shahid, M.U.; Ali, A.; Salamat, S. Power enhancement of vertical axis wind turbine using optimum trapped vortex cavity. Energy 2023, 278, 127808. [Google Scholar] [CrossRef]
- Vuddagiri, A.C.A. Flow analysis of airfoil having different cavities on its suction surface. SIAM J. Appl. Dyn. Syst. 2016, 16, 67–77. [Google Scholar] [CrossRef]
- Sobhani, E.; Ghaffari, M.; Maghrebi, M.J. Numerical investigation of dimple effects on darrieus vertical axis wind turbine. Energy 2017, 133, 231–241. [Google Scholar] [CrossRef]
- Olsman, W.F.J.; Colonius, T. Numerical Simulation of Flow over an Airfoil with a Cavity. AIAA J. 2011, 49, 143–149. [Google Scholar] [CrossRef]
- Fatehi, M.; Nili-Ahmadabadi, M.; Nematollahi, O.; Minaiean, A.; Kim, K.C. Aerodynamic performance improvement of wind turbine blade by cavity shape optimization. Renew. Energy 2019, 132, 773–785. [Google Scholar] [CrossRef]
- Liu, Y.; Li, P.; He, W.; Jiang, K. Numerical study of the effect of surface grooves on the aerodynamic performance of a NACA 4415 airfoil for small wind turbines. J. Wind Eng. Ind. Aerodyn. 2020, 206, 104263. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Elbaz, A.M.; Melani, P.F.; Mohamed, O.S.; Bianchini, A. Power augmentation of Darrieus wind turbine blades using trapped vortex cavity. J. Wind Eng. Ind. Aerodyn. 2022, 223, 104949. [Google Scholar] [CrossRef]
- Bianchini, A.; Balduzzi, F.; Di Rosa, D.; Ferrara, G. On the use of Gurney Flaps for the aerodynamic performance augmentation of Darrieus wind turbines. Energy Convers. Manag. 2019, 184, 402–415. [Google Scholar] [CrossRef]
- Syawitri, T.P.; Yao, Y.; Yao, J.; Chandra, B. Geometry optimisation of vertical axis wind turbine with Gurney flap for performance enhancement at low, medium and high ranges of tip speed ratios. Sustain. Energy Technol. Assess. 2022, 49, 101779. [Google Scholar] [CrossRef]
- Zhu, H.; Hao, W.; Li, C.; Ding, Q. Numerical study of effect of solidity on vertical axis wind turbine with Gurney flap. J. Wind Eng. Ind. Aerodyn. 2019, 186, 17–31. [Google Scholar] [CrossRef]
- Ismail, M.F.; Vijayaraghavan, K. The effects of aero foil profile modification on a vertical axis wind turbine performance. Energy 2015, 80, 20–31. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Yang, Y.; Duan, Z. New omega vortex identification method. Sci. China 2016, 59, 684711. [Google Scholar] [CrossRef]
Parameter | Numerical Value |
---|---|
Number of blades | 3 |
Solidity | 0.73 |
Revolution speed/rpm | 180–300 |
Airfoil chord length c/mm | 210 |
Wind wheel diameter D/mm | 860 |
Wind wheel stretch H/mm | 1000 |
Numbering | Factor | ||
---|---|---|---|
A | B | C | |
Case-1 | 1.00%c | 5.00%c | 1.00%c |
Case-2 | 1.00%c | 10.00%c | 1.50%c |
Case-3 | 1.00%c | 15.00%c | 1.25%c |
Case-4 | 1.25%c | 5.00%c | 1.50%c |
Case-5 | 1.25%c | 10.00%c | 1.25%c |
Case-6 | 1.25%c | 15.00%c | 1.00%c |
Case-7 | 1.50%c | 5.00%c | 1.25%c |
Case-8 | 1.50%c | 10.00%c | 1.00%c |
Case-9 | 1.50%c | 15.00%c | 1.50%c |
Numbering | 1.2 | 1.4 | 1.6 | 1.8 | 2.0 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | A | B | C | A | B | C | A | B | C | A | B | C | |
K1 | 0.235 | 0.246 | 0.239 | 0.313 | 0.324 | 0.304 | 0.371 | 0.396 | 0.368 | 0.398 | 0.411 | 0.384 | 0.378 | 0.381 | 0.366 |
K2 | 0.230 | 0.242 | 0.235 | 0.297 | 0.313 | 0.309 | 0.353 | 0.396 | 0.371 | 0.386 | 0.382 | 0.395 | 0.364 | 0.367 | 0.373 |
K3 | 0.248 | 0.226 | 0.242 | 0.311 | 0.283 | 0.308 | 0.386 | 0.345 | 0.371 | 0.376 | 0.367 | 0.380 | 0.363 | 0.357 | 0.366 |
0.078 | 0.082 | 0.080 | 0.104 | 0.108 | 0.101 | 0.124 | 0.132 | 0.124 | 0.133 | 0.137 | 0.128 | 0.126 | 0.127 | 0.122 | |
0.077 | 0.081 | 0.078 | 0.099 | 0.104 | 0.103 | 0.118 | 0.123 | 0.124 | 0.129 | 0.127 | 0.132 | 0.121 | 0.122 | 0.124 | |
0.083 | 0.075 | 0.080 | 0.104 | 0.094 | 0.103 | 0.129 | 0.115 | 0.124 | 0.125 | 0.122 | 0.127 | 0.121 | 0.119 | 0.122 | |
R | 0.006 | 0.007 | 0.002 | 0.005 | 0.014 | 0.001 | 0.011 | 0.017 | 0.001 | 0.007 | 0.015 | 0.005 | 0.005 | 0.008 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, J.; Chen, Y.; Song, L.; Xing, Y.; Wang, B.; Sun, Y. Experimental Study on the Influence of Groove-Flap and Concave Cavity on the Output Characteristics of Vertical Axis Wind Turbine. Fluids 2025, 10, 208. https://doi.org/10.3390/fluids10080208
Xue J, Chen Y, Song L, Xing Y, Wang B, Sun Y. Experimental Study on the Influence of Groove-Flap and Concave Cavity on the Output Characteristics of Vertical Axis Wind Turbine. Fluids. 2025; 10(8):208. https://doi.org/10.3390/fluids10080208
Chicago/Turabian StyleXue, Jiale, Yongyan Chen, Li Song, Yifan Xing, Baiqiang Wang, and Yansong Sun. 2025. "Experimental Study on the Influence of Groove-Flap and Concave Cavity on the Output Characteristics of Vertical Axis Wind Turbine" Fluids 10, no. 8: 208. https://doi.org/10.3390/fluids10080208
APA StyleXue, J., Chen, Y., Song, L., Xing, Y., Wang, B., & Sun, Y. (2025). Experimental Study on the Influence of Groove-Flap and Concave Cavity on the Output Characteristics of Vertical Axis Wind Turbine. Fluids, 10(8), 208. https://doi.org/10.3390/fluids10080208