On Modeling Laminar Flow Through Variable Permeability Transition Layer
Abstract
1. Introduction
2. Problem Formulation
3. Results and Discussion
3.1. Permeability Distributions
3.2. Velocity Profiles
3.3. Velocity at the Interfaces
3.4. Shear Stress at the Interfaces
- 1-
- For a given Da, the value of the shear stress at the upper interface decreases with increasing n for the thick layer. However, it increases with increasing n for the thin layer.
- 2-
- For a given Da, the value of the shear stress at the upper interface increases with increasing n for the thin layer and decreases with increasing n for the thick layer.
- 3-
- The thin layer experiences a higher sheer than the thick layer at the upper interface with increasing n.
- 4-
- The thick layer experiences a higher sheer than the thin layer at the lower interface when n deviates from 1.
3.5. Mean Velocity Across the Layers
4. Conclusions
- 1-
- The introduction of a generalized permeability function that provides modeling flexibility and validity for a small Darcy number, and possible control over permeability amplification in the transition layer.
- 2-
- Obtaining the general and particular solutions to the resulting inhomogeneous, generalized Airy equation through the introduction of a generalized Nield–Kuznetsov function.
- 3-
- Providing an evaluation procedure for the arising generalized Airy’s functions and the generalized Nield–Kuznetsov function.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- Software Version
Step 1: Initialize the Maple Environment and Load the Necessary Plotting Package. Restart; with(plots): Initialization and Parameter Definition n := 2: # Nonlinearity parameter Da := 0.01: # Darcy number eta := 0.51: # Right interface point xi := 0.49: # Left interface point p := 1/(n + 2): # Exponent used in similarity transformation M2 := 1: # Constant related to Region II M3 := 1: # Constant related to Region III K := 300: # Number of grid points for numerical output Step 2: Compute Scaling Parameters and Constants tau := evalf(1/(M2*Da*(eta – xi)^n)^(1/(n + 2))): lambda3 := evalf(1/sqrt(Da)): Define Constants Needed for Transformations and Interface Matching: An0 := evalf(p^(1 - p)/GAMMA(1 - p)): Bn0 := evalf(p^(1/2 - p)/GAMMA(1 - p)): dAn0 := evalf(-p^p/GAMMA(p)): dBn0 := evalf(-p^(p - 1/2)/GAMMA(p)): Step 3: Define Special Functions and Their Derivatives An := x -> evalf(2*p*sin(p*Pi)*x^(1/2)*BesselK(p, 2*p*x^(1/2/p))/Pi): Bn := x -> evalf((p*x)^(1/2)*(BesselI(p, 2*p*x^(1/2/p)) + BesselI(-p, 2*p*x^(1/2/p)))): dAn := x -> evalf(-2*p*sin(p*Pi)*x^(1/2*n + 1/2)*BesselK(p - 1, 2*p*x^(1/2/p))/Pi): dBn := x -> evalf(p^(1/2)*x^(1/2*n + 1/2)*(BesselI(p - 1, 2*p*x^(1/2/p)) + BesselI(1 - p, 2*p*x^(1/2/p)))): Step 4: Compute OF THE Integral Function Using Maple Bulid functions: Nn := x -> evalf(An(x)*int(Bn(t), t = 0 .. x) - Bn(x)*int(An(t), t = 0 .. x)): dNn := x -> evalf(dAn(x)*int(Bn(t), t = 0 .. x) - dBn(x)*int(An(t), t = 0 .. x)): Step 5: Assemble and Solve Linear System Interface Conditions Give Rise to a 6 × 6 system: X := Matrix(6, 6, [[1, 1, 0, 0, 0, 0], [eta, 1, -An0, -Bn0, 0, 0], [1, 0, tau*dAn0, tau*dBn0, 0, 0], [0, 0, An(tau*(eta - xi)), Bn(tau*(eta - xi)), -exp(lambda3*xi), -exp(-lambda3*xi)], [0, 0, tau*dAn(tau*(eta - xi)), tau*dBn(tau*(eta - xi)), lambda3*exp(lambda3*xi), -lambda3*exp(-lambda3*xi)],[0, 0, 0, 0, 1, 1]]): C := Vector([1/2, eta^2/2, eta, 1/(M3*lambda3^2) - Pi/(2*sqrt(p)*sin(p*Pi)*M2*tau^2)*Nn(tau*(eta - xi)), -Pi/(2*sqrt(p)*sin(p*Pi)*M2*tau)*dNn(tau*(eta - xi)), -1/(M3*lambda3^2)]): ) . C: c1 := S[1]: d1 := S[2]: c2 := evalf(S[3]): d2 := evalf(S[4]): c3 := evalf(S[5]): d3 := evalf(S[6]): Step 6: Define Piecewise Solutions u1 := x -> -1/2*x^2 + c1*x + d1: # Region I u2 := x -> c2*An((eta - x)*tau) + d2*Bn((eta - x)*tau) + # Region II 1/2*Pi*Nn((eta - x)*tau)/(sqrt(p)*sin(p*Pi)*M2*tau^2): u3 := x -> c3*exp(lambda3*x) + d3*exp(-lambda3*x) + 1/lambda3^2: # Region III Step 7: Numerical Evaluation and Visualization: xvals := [seq(xi + (eta - xi)*i/K, i = 0 .. K - 1)]: points := [seq([x, u2(x)], x in xvals)]: P1 := plot(u1(x), x = eta .. 1, color = black): P2 := pointplot(points, symbol = point, symbolsize = 1, color = black): P3 := plot(u3(x), x = 0 .. xi, color = black): P := display(P1, P2, P3): tf := plottools:-transform((x, y) -> [y, x]): plots:-display(tf(P), labels = [“u(y)”, “y”]): |
References
- Nield, D.A.; Kuznetsov, A.V. The effect of a transition layer between a fluid and a porous medium: Shear flow in a channel. Transp. Porous Med. 2009, 78, 477–487. [Google Scholar] [CrossRef]
- Brinkman, H.C. A Calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. 1947, A1, 27–34. [Google Scholar] [CrossRef]
- Tao, J.; Yao, J.; Huang, Z. Analysis of the laminar ow in a transition layer with variable permeability between a free-fluid and a porous medium. Acta Mech. 2013, 224, 1943–1955. [Google Scholar] [CrossRef]
- Nield, D.A.; Bejan, A. Convection in Porous Media, 5th ed.; Springer: New York, NY, USA, 2017. [Google Scholar]
- Bottaro, A. Flow over natural or engineered surfaces: An adjoint homogenization perspective. J. Fluid Mech. Perspect. 2019, 877, P1. [Google Scholar] [CrossRef]
- Angot, P.; Goyeau, B.; Ochoa-Tapia, J.A. A nonlinear asymptotic model for the inertial flow at a fluid-porous interface. Adv. Water Res. 2021, 149, 103798. [Google Scholar] [CrossRef]
- Hernandez-Rodriguez, R.; Angot, P.; Goyeau, B.; Ochoa-Tapia, J.A. Momentum transport in the free fluid-porous medium transition layer: The one-domain approach. Chem. Eng. Sci. 2022, 248, 117111. [Google Scholar] [CrossRef]
- Alazmi, B.; Vafai, K. Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transf. 2001, 44, 1735–1749. [Google Scholar] [CrossRef]
- Vafai, K.; Thiyagaraja, R. Analysis of flow and heat transfer at the interface region of a porous medium. Int. J. Heat Mass Transf. 1987, 30, 1391–1405. [Google Scholar] [CrossRef]
- Kaviany, M. Laminar flow through a porous channel bounded by isothermal parallel plates. Int. J. Heat Mass Transf. 1985, 28, 851–858. [Google Scholar] [CrossRef]
- Whitaker, S. The Method of Volume Averaging, Theory and Applications of Transport in Porous Media; Kluwer Academic Publications: Dordrecht, The Netherlands, 1999; Volume 13. [Google Scholar]
- Bousquet-Melou, P.; Goyeau, B.; Quintard, M.; Fichot, F.; Gobin, D. Average momentum equation for interdentritic flow in a solidifying columnar mushy zone. Int. J. Heat Mass Transf. 2002, 45, 3651–3665. [Google Scholar] [CrossRef]
- Angot, P.; Goyeau, B.; Ochoa-Tapia, J.A. Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: Jump conditions. Phys. Rev. E 2017, 95, 063302. [Google Scholar] [CrossRef]
- Kashkuli, S.; Mahjoob, S.; Vafai, K. Numerical analysis of liquid jet impingement through confined uniform cooling channels employing porous metal foams. Transp. Porous Med. 2025, 152, 13. [Google Scholar] [CrossRef]
- Goyeau, B.; Lhuillier, D.; Velarde, M.G. Momentum transport at a fluid-porous interface. Int. J. Heat Mass Transf. 2003, 46, 4071–4081. [Google Scholar] [CrossRef]
- Beavers, G.S.; Joseph, D.D. Boundary conditions at a naturally permeable wall. J. Fluid Mech. 1967, 30, 197–207. [Google Scholar] [CrossRef]
- Nield, D.A. The Beavers–Joseph boundary condition and related matters: A historical and critical note. Transp. Porous Med. 2009, 78, 537–540. [Google Scholar] [CrossRef]
- Ehrhardt, M. An Introduction to Fluid-Porous Interface Coupling; Weierstrass Institute for Applied Analysis and Stochastics: Berlin, Germany, 2010. [Google Scholar]
- Rudraiah, N. Coupled parallel flows in a channel and a bounding porous medium of finite thickness. J. Fluids Eng. ASME 1985, 107, 322–329. [Google Scholar] [CrossRef]
- Rudraiah, N. Flow past porous layers and their stability. In Encyclopedia of Fluid Mechanics, Slurry Flow Technology; Gulf Publishing: Houston, TX, USA, 1986; pp. 567–647. [Google Scholar]
- Hill, A.A.; Straughan, B. Poiseuille flow in a fluid overlying a porous medium. J. Fluid Mech. 2008, 603, 137–149. [Google Scholar] [CrossRef]
- Sahraoui, M.; Kaviany, M. Slip and no-slip velocity boundary conditions at interface of porous, plain media. Int. J. Heat Mass Transf. 1992, 35, 927–943. [Google Scholar] [CrossRef]
- Jamet, D.; Chandesris, M. Boundary conditions at a planar fluid-porous interface for a Poiseuille flow. Int. J. Heat Mass Transf. 2006, 49, 2137–2150. [Google Scholar]
- Jamet, D.; Chandesris, M. Boundary conditions at a fluid-porous interface: An a priori estimation of the stress jump coefficients. Int. J. Heat Mass Transf. 2007, 50, 3422–3436. [Google Scholar]
- Parvazinia, M.; Nassehi, V.; Wakeman, R.J.; Ghoreishy, M.H.R. Finite element modelling of flow through a porous medium between two parallel plates using the Brinkman equation. Transp. Porous Med. 2006, 63, 71–90. [Google Scholar] [CrossRef]
- Neale, G.; Nader, W. Practical significance of Brinkman’s extension of Darcy’s law: Coupled parallel flows within a channel and a bounding porous medium. Can. J. Chem. Eng. 1974, 52, 475–478. [Google Scholar] [CrossRef]
- Ochoa-Tapia, J.A.; Whitaker, S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid: I) Theoretical Development. Int. J. Heat Mass Transf. 1995, 3, 2635–2646. [Google Scholar] [CrossRef]
- Ochoa-Tapia, J.A.; Whitaker, S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid: II) Comparison with experiment. Int. J. Heat Mass Transf. 1995, 3, 2647–2655. [Google Scholar] [CrossRef]
- Roach, D.C.; Hamdan, M.H. Interfacial velocities, slip Parameters and other theoretical expressions arising in the Beavers and Joseph condition. WSEAS Trans. Fluid Mech. 2022, 17, 68–78. [Google Scholar] [CrossRef]
- Vafai, K. Analysis of the channeling effect in variable porosity media. ASME J. Energy Resour. Technol. 1986, 108, 131–139. [Google Scholar] [CrossRef]
- Nield, D.A. The boundary correction for the Rayleigh-Darcy problem: Limitations of the Brinkman equation. J. Fluid Mech. 1983, 128, 37–46. [Google Scholar] [CrossRef]
- Nield, D.A. The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface. Int. J. Heat Fluid Flow 1991, 12, 269–272. [Google Scholar] [CrossRef]
- Morad, M.R.; Khalili, A. Transition layer thickness in a fluid-porous medium of multi-sized spherical beads. Exp. Fluids 2009, 46, 323–330. [Google Scholar] [CrossRef]
- Goharzadeh, A.; Khalili, A.; Jorgensen, B.B. Transition layer thickness at a fluid-porous interface. Phys. Fluids 2005, 17, 057102. [Google Scholar] [CrossRef]
- Duma, T.; Shavit, U. A solution of the laminar ow for a gradual transition between porous and fluid domains. Water Resour. Res. 2010, 46, 09517. [Google Scholar]
- Rees, D.A.S.; Pop, I. Vertical free convection in a porous medium with variable permeability effects. In. J. Heat Mass Transf. 2000, 43, 2565–2571. [Google Scholar] [CrossRef]
- Siginer, D.A.; Bakhtiyarov, S.I. Flow in porous media of variable permeability and novel effects. J. Appl. Mech. 2001, 68, 312–319. [Google Scholar] [CrossRef]
- Roach, D.C.; Hamdan, M.H. On the Sigmoid function as a variable permeability model for Brinkman equation. WSEAS Trans. Appl. Theor. Anal. (WSEAS) 2022, 17, 29–38. [Google Scholar] [CrossRef]
- Hamdan, M.H.; Kamel, M.T. On the Ni(x) integral function and its application to the Airy’s non homogeneous equation. Appl. Math. Comput. 2011, 21, 7349–7360. [Google Scholar] [CrossRef]
- Abu Zaytoon, M.S.; Hamdan, M.H. Weber equation model of flow through a variable permeability porous core bounded by fluid layers. J. Fluids Eng. Trans. ASME 2022, 144, 041302. [Google Scholar] [CrossRef]
- Swanson, C.A.; Headley, V.B. An extension of Airy’s equation. SIAM J. Appl. Math. 1967, 15, 1400–1412. [Google Scholar] [CrossRef]
n | Da = 0.01 | Da = 0.001 | Da = 0.0001 | Da = 0.00001 | |
---|---|---|---|---|---|
1 | 0.02114994 | 0.01233274 | 0.00649720 | 0.00321735 | |
2 | 0.02486639 | 0.01738999 | 0.01133148 | 0.00699674 | |
3 | 0.02673316 | 0.02050963 | 0.01498183 | 0.01049763 |
n | Da = 0.01 | Da = 0.001 | Da = 0.0001 | Da = 0.00001 | |
---|---|---|---|---|---|
1 | 0.01570451 | 0.00521685 | 0.00086581 | 0.00002779 | |
2 | 0.01359440 | 0.005336297 | 0.0011867 | 0.00006497 | |
3 | 0.01217774 | 0.00526991 | 0.00139504 | 0.00011395 |
(a) | |||
n = 1 | 0.07939500 0.0794 * | 0.05692682 | 0.02071123 0.0207 * |
n = 2 | 0.08744141 | 0.06403606 | 0.02670879 |
(b) | |||
n = 1 | 0.07940428 0.0794 * | 0.05735128 | 0.02355505 0.0236 * |
n = 2 | 0.07945951 | 0.05759342 | 0.0238459 |
(a) | ||
Da = 0.01 Thin Layer | Da = 0.01 Thick Layer | |
n = 1 | 0.21053324 | 0.10321682 |
n = 2 | 0.21585593 | 0.09206747 |
n = 3 | 0.21940578 | 0.08646717 |
(b) | ||
Da = 0.01 Thin Layer | Da = 0.01 Thick Layer | |
n = 1 | 0.05854085 | 0.02721478 |
n = 2 | 0.03743739 | 0.04813607 |
n = 3 | 0.02326929 | 0.06526954 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu Zaytoon, M.S.; Hamdan, M.H. On Modeling Laminar Flow Through Variable Permeability Transition Layer. Fluids 2025, 10, 151. https://doi.org/10.3390/fluids10060151
Abu Zaytoon MS, Hamdan MH. On Modeling Laminar Flow Through Variable Permeability Transition Layer. Fluids. 2025; 10(6):151. https://doi.org/10.3390/fluids10060151
Chicago/Turabian StyleAbu Zaytoon, M. S., and M. H. Hamdan. 2025. "On Modeling Laminar Flow Through Variable Permeability Transition Layer" Fluids 10, no. 6: 151. https://doi.org/10.3390/fluids10060151
APA StyleAbu Zaytoon, M. S., & Hamdan, M. H. (2025). On Modeling Laminar Flow Through Variable Permeability Transition Layer. Fluids, 10(6), 151. https://doi.org/10.3390/fluids10060151