Stability Analysis of Unsteady Laminar Boundary Layers Subject to Streamwise Pressure Gradient
Abstract
:1. Background
2. Unsteady Boundary-Layer Governing Equations
- →
- At t = 0, u = 0 and v = 0 for all x and y.
- →
- For t > 0:
- 0, (no-slip condition), u = 0, and v = 0.
- 0, y → ∞, u → .
3. Solution Strategies for Small Time
- Initialize the and terms.
- Solve Equation (53).
- Solve Equation (50).
- Repeat steps 3 and 4 until the prescribed tolerance is reached.
- Initialize the and terms.
- Solve an equation similar to Equation (53) to obtain the term.
- Solve Equation (51).
- Repeat steps 9 and 10 until the prescribed tolerance is reached.
- Solve Equation (32).
4. Steady-State Solution
5. Stability Analysis
6. Solution Strategies for Flow Stability Analysis
7. Relevant Results and Discussion
7.1. Steady-State Falkner–Skan Flow Parameters
7.2. Temporal Flow Stability Analysis in the Steady-Stage Stage
7.3. Grid Independence Test in Unsteady APG Flows
7.4. Transient Analysis of Boundary Layer Parameters
7.5. Temporal Flow Stability Analysis in the Transient Stage
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APG | Adverse Pressure Gradient |
Crit | Critical |
DNS | Direct Numerical Simulation |
FDM | Finite Difference Method |
FPG | Favorable Pressure Gradient |
FS | Falkner-Skan |
NPSE | Nonlinear Parabolized Stability Equations |
NS | Navier–Stokes |
ODE | Ordinary Differential Equations |
OSE | Orr–Sommerfeld Equations |
PDE | Partial Differential Equations |
POD | Proper Orthogonal Decomposition |
TS | Tollmien-Schilchting |
ZPG | Zero Pressure Gradient |
2D | Two-Dimensional |
References
- Clay Mathematics Institute. Navier-Stokes Equation. Available online: https://www.claymath.org/millennium/navier-stokes-equation/ (accessed on 1 February 2025).
- Çengel, Y.A.; Cimbala, J.M. Fluid Mechanics Fundamentals and Applications, 3rd ed.; McGraw-Hill: New York, NY, USA, 2014. [Google Scholar]
- White, F.M. Viscous Fluid Flow; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Wazzan, A.R.; Okamura, T.; Smith, A.M.O. Spatial and Temporal Stability Charts for the Falkner-Skan Boundary Layer Profiles; REPORT DAC-67086; DOUGLAS AIRCRAFT COMPANY: Springfield, VA, USA, 1968. [Google Scholar]
- Schubauer, G.; Skramstad, H.K. Laminar-boundary-layer oscillations and transition on a flat plate. J. Res. Natl. Bur. Stand. 1947, 38, 251. [Google Scholar]
- Ishak, A.; Nazar, R.; Pop, I. Falkner-Skan Equation for Flow Past a Moving Wedge with Suction or Injection. J. Appl. Math. Comput. 2007, 25, 67–83. [Google Scholar]
- Simpson, C. Temporal and Spatial Stability Analysis of the Orr-Sommerfeld Equation. 2015. Available online: https://www.cdsimpson.net/2015/04/temporal-and-spatial-stability-analysis.html (accessed on 5 February 2025).
- Banks, W.H.H.; Drazin, P.G. Perturbation Methods in Boundary-Layer Theory. J. Fluid Mech. 1973, 58, 763–775. [Google Scholar]
- Han, S. Finite difference solution of the Falkner-Skan wedge flow equation. Int. J. Mech. Eng. Educ. 2013, 41, 1–7. [Google Scholar]
- Wazzan, A.R.; Okamura, T.; Smith, A.M.O. The Stability of Water Flow over Heated and Cooled Flat Plates. J. Heat Transfer. 1968, 90, 109–114. [Google Scholar]
- Govindarajan, R.; Narashima, R. Stability of spatially developing boundary layers in pressure gradients. J. Fluid Mech. 1995, 300, 117–147. [Google Scholar]
- Bertolotti, F.P.; Herbert, T.; Spalart, P. Linear and nonlinear stability of the Blasius boundary layer. J. Fluid Mech. 1992, 242, 441–474. [Google Scholar]
- Saric, W.S.; Reed, H.L.; White, E.B. Stability and transition of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 2003, 35, 413–440. [Google Scholar]
- Perez, J.M.; Rodirguez, D.; Theofilis, V. Linear global instability of non-orthogonal incompressible swept attachement-line boundary layer flow. J. Fluid Mech. 2012, 710, 131–153. [Google Scholar]
- Wazzan, A.; Taghavi, H.; Keltner, G. Effect of boundary-layer growth on stability of incompressible flat plate boundary layer with pressure gradient. Phys. Fluids 1974, 17, 1655–1660. [Google Scholar]
- Maslowe, S.A.; Spiteri, R.J. The continuous spectrum for a boundary layer in a streamwise pressure gradient. Phys. Fluids 2001, 13, 1294–1299. [Google Scholar]
- Jordinson, R. Spectrum of Eigenvalues of the Orr Sommerfeld Equation for Blasius Flow. Phys. Fluids 1971, 14, 2535–2537. [Google Scholar]
- Stewartson, K. The Theory of Unsteady Boundary Layers. In Advances in Applied Mechanics; Academic Press: New York, NY, USA, 1960; Volume 6, pp. 1–37. [Google Scholar]
- Stewartson, K. On the Impulsive Motion of a Flat Plate in a Viscous Fluid II; Department of Mathematics, University College: London, UK, 1972; pp. 143–152. [Google Scholar]
- Riley, N. Unsteady laminar boundary layers. Siam Rev. 1975, 17, 274–297. [Google Scholar]
- Hall, M. A numerical method for calculating unsteady two-dimensional laminar boundary layers. Ingenieur-Archiv 1969, 38, 97–106. [Google Scholar]
- Nanbu, K. Unsteady Falkner-Skan Flow; Institute of High Speed Mechanics, Tohoku University: Sendai, Japan, 1971; Volume 22, pp. 1167–1172. [Google Scholar]
- Blasius, H. Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Angew. Math. Phys. 1908, 56, 1–37. [Google Scholar]
- Falkner, V.; Skan, S. LXXXV. Solutions of the boundary-layer equations. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1931, 12, 865–896. [Google Scholar] [CrossRef]
- Pletcher, R.H.; Tannehill, J.C.; Anderson, D.A. Computational Fluid Mechanics and Heat Transfer; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Harris, S.D.; Ingham, D.B.; Pop, I. Unsteady Heat Transfer in Impulsive Falkner-Skan Flows: Constant Wall Heat Flux Case. Acta Mech 2008, 201, 185–196. [Google Scholar]
- Harris, S.D.; Ingham, D.B.; Pop, I. Unsteady Heat Transfer in Impulsive Falkner-Skan Flows: Constant Wall Temperature Case. Eur. J. Mech. B/Fluids 2002, 21, 447–468. [Google Scholar]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Hall, M. The boundary-layer over an impulsively started flat plate. Proc. Royal Soc. A London 1969, 310, 401–414. [Google Scholar]
- Smith, S. The impulsive motion of a wedge in a viscous fluid. J. Appl. Math. Phys. (ZAMP) 1967, 18, 508–522. [Google Scholar]
- Obremski, H.J.; Morkovin, M.V.; Landahl, M. A portfolio of stability characteristics of incompressible boundary layers. AGARD-OGRAPH-134 1969, 400043, 1–128. [Google Scholar]
- Jordinson, R. The flat plate boundary layer. Part 1. Numerical integration of the Orr–-Sommerfeld equation. J. Fluid Mech. 1970, 43, 801–811. [Google Scholar] [CrossRef]
- Ramirez, M.; Araya, G. Falkner-Skan Similarity Flow Solutions Subject to Wall Curvature and Passive Scalar Transport. In Proceedings of the 7th Thermal and Fluids Engineering Conference (TFEC2022), Las Vegas, NV, USA, 15–18 May 2022. [Google Scholar]
−0.19884 | 0.0073 | 0 | 2.3191 | 2.35885 | 0.5853 | 0.58544 | 3.9622 |
−0.18 | 0.1289 | 0.12864 | 1.8672 | 1.87157 | 0.5676 | 0.56771 | 3.2896 |
0 | 0.4697 | 0.4696 | 1.2132 | 1.21678 | 0.4695 | 0.46960 | 2.5840 |
0.3 | 0.7748 | 0.77476 | 0.9075 | 0.91099 | 0.3857 | 0.38574 | 2.3529 |
1.0 | 1.2326 | 1.23259 | 0.6445 | 0.64790 | 0.2923 | 0.29235 | 2.2049 |
2.0 | 1.6872 | 1.6872 | 0.4942 | 0.49743 | 0.2308 | 0.23079 | 2.1412 |
10.0 | 3.6753 | 3.6753 | 0.2375 | 0.24077 | 0.1152 | 0.11523 | 2.0616 |
Analytical | ||||
---|---|---|---|---|
0.01 | 5.635005 | 5.635138 | 5.635174 | 5.635260 |
0.03 | 3.245915 | 3.245947 | 3.245953 | 3.245857 |
0.05 | 2.508499 | 2.508490 | 2.508482 | 2.508295 |
0.07 | 2.115188 | 2.115150 | 2.115134 | 2.114880 |
0.09 | 1.861115 | 1.861056 | 1.861033 | 1.860725 |
0.2 | 1.232591 | 1.232456 | 1.232408 | 1.231891 |
0.4 | 0.851153 | 0.850936 | 0.850859 | 0.850095 |
0.6 | 0.678290 | 0.678014 | 0.677916 | 0.676967 |
0.8 | 0.572977 | 0.572651 | 0.572537 | 0.571433 |
1 | 0.499572 | 0.499203 | 0.499073 | 0.497834 |
A | B | |
---|---|---|
−0.18 | 0.5082 | −0.548 |
−0.10 | 0.5391 | −0.527 |
0 | 0.5642 | −0.5 |
0.10 | 0.6 | −0.472 |
0.18 | 0.6315 | −0.449 |
A | B | C | D | |
---|---|---|---|---|
−0.18 | 6821.3 | 0.458 | 1643.7 | 0.432 |
−0.15 | 6821.4 | 0.387 | 1643.4 | 0.365 |
−0.10 | 6813.8 | 0.261 | 1643.7 | 0.249 |
−0.05 | 6815.5 | 0.134 | 1643.4 | 0.127 |
0 | 6814 | 1643.3 |
A | B | C | D | |
---|---|---|---|---|
0 | 6814 | 1643.3 | ||
0.06 | 6816.8 | 0.1646 | 1643.4 | 0.1574 |
0.12 | 6832.2 | 0.3302 | 1643.1 | 0.3179 |
0.18 | 6859.2 | 0.4928 | 1650.8 | 0.4803 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramirez, M.; Araya, G. Stability Analysis of Unsteady Laminar Boundary Layers Subject to Streamwise Pressure Gradient. Fluids 2025, 10, 100. https://doi.org/10.3390/fluids10040100
Ramirez M, Araya G. Stability Analysis of Unsteady Laminar Boundary Layers Subject to Streamwise Pressure Gradient. Fluids. 2025; 10(4):100. https://doi.org/10.3390/fluids10040100
Chicago/Turabian StyleRamirez, Miguel, and Guillermo Araya. 2025. "Stability Analysis of Unsteady Laminar Boundary Layers Subject to Streamwise Pressure Gradient" Fluids 10, no. 4: 100. https://doi.org/10.3390/fluids10040100
APA StyleRamirez, M., & Araya, G. (2025). Stability Analysis of Unsteady Laminar Boundary Layers Subject to Streamwise Pressure Gradient. Fluids, 10(4), 100. https://doi.org/10.3390/fluids10040100