# On Objectivity, Irreversibility and Non-Newtonian Fluids

## Abstract

**:**

## 1. Introduction

## 2. What is Objectivity?

#### 2.1. Background

#### 2.2. Definition of Objectivity

#### 2.3. Objectivity in Mixtures and Multiphase Materials

## 3. What Does Irreversibility Mean?

## 4. Parsing Constitutive Equations

#### 4.1. Introduction

#### 4.2. Linear Two-Fluid Mixture at Different Temperatures

#### 4.3. Nonlinear Granular Fluid

## 5. Turbulence

## 6. Envoi

## Acknowledgments

## Conflicts of Interest

## References

- Walters, K. Developments in non-Newtonian fluid mechanics — A personal view. J. Non-Newtonian Fluid Mech.
**1979**, 5, 113–124. [Google Scholar] [CrossRef] - Astarita, G. Three alternative approaches to the development of constitutive equations. J. Non-Newtonian Fluid Mech.
**1979**, 5, 125–140. [Google Scholar] [CrossRef] - Truesdell, C.; Toupin, R. The classical field theories. In Handbuch der Physik; Flügge, S., Ed.; Springer Verlag: Berlin, Germany, 1960; Volume 3, pp. 226–793. [Google Scholar]
- Hutter, K.; Rajagopal, K.R. On flows of granular materials. Continuum Mech. Thermodyn.
**1994**, 6, 81–139. [Google Scholar] [CrossRef] - Hutter, K.; Schneider, L. Important aspects in the formulation of solid-fluid debris-flow models. Part I. Thermodynamic implications. Continuum Mech. Thermodyn.
**2010**, 22, 363–390. [Google Scholar] [CrossRef] - Hutter, K.; Schneider, L. Important aspects in the formulation of solid-fluid debris-flow models. Part II. Constitutive modelling. Continuum Mech. Thermodyn.
**2010**, 22, 391–411. [Google Scholar] [CrossRef] - Oldroyd, J.G. On the formulation of rheological equations of state. Proc. Roy. Soc.
**1950**, A200, 523–541. [Google Scholar] [CrossRef] - Noll, W. On the continuity of solid and fluid states. J. Math. Mech.
**1955**, 4, 3–81. [Google Scholar] [CrossRef] - Noll, W. A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal.
**1958**, 2, 197–226. [Google Scholar] [CrossRef] - Noll, W. The foundations of classical mechanics in the light of recent advances in continuum mechanics. In The Axiomatic Method: With Special Reference to Geometry and Physics; Henkin, L., Suppes, P., Tarski, A., Eds.; North-Holland: Pennsylvania, PA, USA, 1959; pp. 266–281. [Google Scholar]
- Malvern, L.E. Introduction to the Mechanics of a Continuous Medium; Prentice Hall: Englewood Cliffs, NJ, USA, 1969. [Google Scholar]
- Gurtin, M.E. An Introduction to Continuum Mechanics, 1st ed.; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Speziale, C.G.; Younis, B.A.; Rubinstein, R.; Zhou, Y. On consistency conditions for rotating turbulent flows. Phys. Fluids
**1998**, 10, 2108–2110. [Google Scholar] [CrossRef] - Murdoch, A.I. On criticism of the nature of objectivity in classical continuum physics. Continuum Mech. Thermodyn.
**2005**, 17, 135–148. [Google Scholar] [CrossRef] - Frewer, M. More clarity on the concept of material frame-indifference in classical continuum mechanics. Acta Mech.
**2009**, 202, 213–246. [Google Scholar] [CrossRef] - Pucci, E.; Saccomandi, G.; Vitolo, R. Bogus transformations in mechanics of continua. Int. J. Eng. Sci.
**2016**, 99, 13–21. [Google Scholar] [CrossRef] - Grad, H. The many faces of entropy. Commun. Pure Appl. Math.
**1961**, 14, 323–354. [Google Scholar] [CrossRef] - Müller, I.A. On the frame dependence of stress and heat flux. Arch. Ration. Mech. Anal.
**1972**, 45, 241–250. [Google Scholar] [CrossRef] - Woods, L.C. The bogus axioms of continuum mechanics. Bull. IMA
**1981**, 17, 98–102. [Google Scholar] - Murdoch, A.I. On material frame-indifference, intrinsic spin, and certain constitutive relations motivated by the kinetic theory of gases. Arch. Ration. Mech. Anal.
**1983**, 83, 185–194. [Google Scholar] [CrossRef] - Edelen, D.G.B.; McLennan, J.A. Material indifference: a principle or a convenience. Int. J. Eng. Sci.
**1973**, 11, 813–817. [Google Scholar] [CrossRef] - Bird, R.B.; de Gennes, P.G. Discussion about the principle of objectivity. Physica A
**1983**, 118, 43–47. [Google Scholar] - Evans, M.W.; Heyes, D.M. On the material frame indifference controversy: Some results from group theory and computer simulation. J. Mol. Liquid
**1989**, 40, 297–304. [Google Scholar] [CrossRef] - Liu, I.S.; Sampaio, R. Remarks on material frame-indifference controversy. Acta Mech.
**2014**, 225, 331–348. [Google Scholar] [CrossRef] - Fredrickson, A.G. Principles and Applications of Rheology; Prentice Hall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- VanArsdale, W.E. Objective spin and the Rivlin-Ericksen model. Acta Mech.
**2003**, 162, 111–124. [Google Scholar] [CrossRef] - Yao, D. A non-Newtonian fluid model with an objective vorticity. J. Non-Newtonian Fluid Mech.
**2015**, 218, 99–105. [Google Scholar] [CrossRef] - Wedgewood, L.E. An objective rotation tensor applied to non-Newtonian fluid mechanics. Rheol. Acta
**1999**, 38, 91–99. [Google Scholar] [CrossRef] - Haller, G. An objective definition of a vortex. J. Fluid Mech.
**2005**, 525, 1–26. [Google Scholar] [CrossRef] - Haller, G. Dynamic rotation and stretch tensors from a dynamic polar decomposition. J. Mech. Phys. Solids
**2016**, 86, 70–93. [Google Scholar] [CrossRef] - Xiao, H.; Bruhns, O.T.; Meyers, A.T.M. Strain rates and material spins. J. Elast.
**1998**, 52, 1–41. [Google Scholar] [CrossRef] - Xiao, H.; Bruhns, O.T.; Meyers, A.T.M. On objective corotational rates and their defining spin tensors. Int. J. Eng. Sci.
**1998**, 35, 4001–4014. [Google Scholar] [CrossRef] - MacMillan, E.H. On the spin of tensors. J. Elast.
**1992**, 27, 69–84. [Google Scholar] [CrossRef] - Guansuo, D. Some new representations of spin tensors. Mech. Res. Commun.
**1999**, 26, 1–6. [Google Scholar] [CrossRef] - Massoudi, M. On the importance of material frame-indifference and lift forces in multiphase flows. Chem. Eng. Sci.
**2002**, 57, 3687–3701. [Google Scholar] [CrossRef] - Müller, I.A. A thermodynamic theory of mixtures of fluids. Arch. Ration. Mech. Anal.
**1968**, 28, 1–39. [Google Scholar] [CrossRef] - Rajagopal, K.R.; Tao, L. Mechanics of Mixtures; World Scientific: Singapore, 1995. [Google Scholar]
- Denbigh, K.G. The many faces of irreversibility. Brit. J. Phil. Sci
**1989**, 40, 501–518. [Google Scholar] [CrossRef] - Pavelka, M.; Klika, V.; Grmela, M. Time reversal in nonequilibrium thermodynamics. Phys. Rev. E
**2014**, 90, 062131:1–062131:19. [Google Scholar] [CrossRef] [PubMed] - Kirwan, A.D., Jr.; Neuman, N. Simple flow of a fluid containing deformable structures. Int. J. Eng. Sci.
**1969**, 7, 1067–1078. [Google Scholar] [CrossRef] - Klika, V. A guide through available mixture theories for applications. Crit. Rev. Solid State Mater. Sci.
**2014**, 39, 154–174. [Google Scholar] [CrossRef] - Kirwan, A.D., Jr.; Neuman, N.; Chang, M.S. On microdeformable fluids: A special case of microfluids. Int. J. Eng. Sci.
**1976**, 14, 673–684. [Google Scholar] [CrossRef] - Kuiken, G.D.C. Thermodynamics of Irreversible Processes; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Kirwan, A.D., Jr. Second law constraints on the dynamics of a mixture of two fluids at different temperatures. Entropy
**2012**, 14, 880–891. [Google Scholar] [CrossRef] - Yang, H.; Aubry, N.; Massoudi, M. Heat transfer in granular materials: Effects of nonlinear heat conduction and viscous dissipation. Math. Methods Appl. Sci.
**2013**, 36, 1947–1964. [Google Scholar] [CrossRef] - Massoudi, M.; Kirwan, A.D., Jr. On Thermomechanics of a Nonlinear Heat Conducting Suspension. Fluids
**2016**. submitted for publication. [Google Scholar] - Luca, I.; Fang, C.; Hutter, K. A thermodynamic model of turbulent motions in a granular material. Continuum Mech. Thermodyn.
**2004**, 16, 363–390. [Google Scholar] [CrossRef] - Speziale, C.G. Invariance of turbulent closure models. Phys. Fluids
**1979**, 22, 1033–1037. [Google Scholar] [CrossRef] - Gatski, T. Constitutive equations for turbulent flows. Theor. Comput. Fluid Dyn.
**2004**, 18, 345–369. [Google Scholar] [CrossRef] - Speziale, C.G. On turbulence Reynolds stress closure and modern continuum mechanics. Int. J. Non-Linear Mech.
**1981**, 16, 387–393. [Google Scholar] [CrossRef] - Speziale, C.G. Analytic methods for the development of Reynolds-stress closures in turbulence. Annu. Rev. Fluid Mech.
**1991**, 23, 107–157. [Google Scholar] [CrossRef] - Speziale, C.G. On a generalized nonlinear K − ϵ model and the use of extended thermodynamics in turbulence. Theor. Comput. Fluid Dyn.
**1991**, 13, 161–166. [Google Scholar] [CrossRef] - Speziale, C.G.; Sarkar, S.; Gatski, T.B. Modelling the pressure strain correlation of turbulence: An invariant dynamical systems approach. J. Fluid Mech.
**1991**, 227, 245–272. [Google Scholar] [CrossRef] - Speziale, C.G. On the consistency of Reynolds stress turbulence closures with hydrodynamic stability theory. Phys. Fluids
**1996**, 8, 781–788. [Google Scholar] [CrossRef] - Speziale, C.G. A consistency condition for non-linear algebraic Reynolds stress models in turbulence. Int. J. Non-Linear Mech.
**1998**, 33, 579–584. [Google Scholar] [CrossRef] - Spalart, P.R.; Speziale, C.G. A note on constraints in turbulence modelling. J. Fluid Mech.
**1999**, 391, 373–376. [Google Scholar] [CrossRef] - Dafalias, Y.F. Objectivity in turbulence under change of reference frame and superposed rigid body motion. J. Eng. Mech.
**2011**, 137, 699–707. [Google Scholar] [CrossRef] - Coleman, B.D. Thermodynamics of materials with memory. Arch. Ration. Mech. Anal.
**1964**, 17, 1–46. [Google Scholar] [CrossRef] - Eringen, A.C. On non-local fluid mechanics. Int. J. Eng. Sci.
**1972**, 10, 561–575. [Google Scholar] [CrossRef] - Wiggins, S. The dynamical systems approach to Lagrangian transport in oceanic flows. Annu. Rev. Fluid Mech.
**2005**, 37, 295–328. [Google Scholar] [CrossRef] - Haller, G. Lagrangian coherent structures. Annu. Rev. Fluid Mech.
**2015**, 47, 137–162. [Google Scholar] [CrossRef] - Peacock, T.; Froyland, G.; Haller, G. Introduction to Focus Issue: Objective detection of coherent structures. Chaos
**2015**, 25, 1–3. [Google Scholar] [CrossRef] [PubMed] - Molemaker, J.; McWilliams, J.; Capet, X. Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech.
**2010**, 654, 35–63. [Google Scholar] [CrossRef] - McWilliams, J. A Perspective on Submesoscale Geophysical Turbulence. In IUTAM Symposium on Turbulence in the Atmosphere and Oceans: Proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8–12, 2008; Dritschel, D., Ed.; IUTAM Bookseries, Springer: Dordrecht, The Netherlands, 2010; pp. 131–141. [Google Scholar]
- McWilliams, J. A note on a uniformly valid model spanning the regimes of geostrophic and isotropic, stratified turbulence: Balanced turbulence. J. Atmos. Sci.
**1985**, 42, 1773–1774. [Google Scholar] [CrossRef] - Charney, J. Geostrophic turbulence. J. Atmos. Sci.
**1971**, 28, 1087–1095. [Google Scholar] [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kirwan, A.D.
On Objectivity, Irreversibility and Non-Newtonian Fluids. *Fluids* **2016**, *1*, 3.
https://doi.org/10.3390/fluids1010003

**AMA Style**

Kirwan AD.
On Objectivity, Irreversibility and Non-Newtonian Fluids. *Fluids*. 2016; 1(1):3.
https://doi.org/10.3390/fluids1010003

**Chicago/Turabian Style**

Kirwan, A. D.
2016. "On Objectivity, Irreversibility and Non-Newtonian Fluids" *Fluids* 1, no. 1: 3.
https://doi.org/10.3390/fluids1010003