On Objectivity, Irreversibility and Non-Newtonian Fluids
Abstract
:1. Introduction
2. What is Objectivity?
2.1. Background
2.2. Definition of Objectivity
2.3. Objectivity in Mixtures and Multiphase Materials
3. What Does Irreversibility Mean?
4. Parsing Constitutive Equations
4.1. Introduction
4.2. Linear Two-Fluid Mixture at Different Temperatures
4.3. Nonlinear Granular Fluid
5. Turbulence
6. Envoi
Acknowledgments
Conflicts of Interest
References
- Walters, K. Developments in non-Newtonian fluid mechanics — A personal view. J. Non-Newtonian Fluid Mech. 1979, 5, 113–124. [Google Scholar] [CrossRef]
- Astarita, G. Three alternative approaches to the development of constitutive equations. J. Non-Newtonian Fluid Mech. 1979, 5, 125–140. [Google Scholar] [CrossRef]
- Truesdell, C.; Toupin, R. The classical field theories. In Handbuch der Physik; Flügge, S., Ed.; Springer Verlag: Berlin, Germany, 1960; Volume 3, pp. 226–793. [Google Scholar]
- Hutter, K.; Rajagopal, K.R. On flows of granular materials. Continuum Mech. Thermodyn. 1994, 6, 81–139. [Google Scholar] [CrossRef]
- Hutter, K.; Schneider, L. Important aspects in the formulation of solid-fluid debris-flow models. Part I. Thermodynamic implications. Continuum Mech. Thermodyn. 2010, 22, 363–390. [Google Scholar] [CrossRef]
- Hutter, K.; Schneider, L. Important aspects in the formulation of solid-fluid debris-flow models. Part II. Constitutive modelling. Continuum Mech. Thermodyn. 2010, 22, 391–411. [Google Scholar] [CrossRef]
- Oldroyd, J.G. On the formulation of rheological equations of state. Proc. Roy. Soc. 1950, A200, 523–541. [Google Scholar] [CrossRef]
- Noll, W. On the continuity of solid and fluid states. J. Math. Mech. 1955, 4, 3–81. [Google Scholar] [CrossRef]
- Noll, W. A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 1958, 2, 197–226. [Google Scholar] [CrossRef]
- Noll, W. The foundations of classical mechanics in the light of recent advances in continuum mechanics. In The Axiomatic Method: With Special Reference to Geometry and Physics; Henkin, L., Suppes, P., Tarski, A., Eds.; North-Holland: Pennsylvania, PA, USA, 1959; pp. 266–281. [Google Scholar]
- Malvern, L.E. Introduction to the Mechanics of a Continuous Medium; Prentice Hall: Englewood Cliffs, NJ, USA, 1969. [Google Scholar]
- Gurtin, M.E. An Introduction to Continuum Mechanics, 1st ed.; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Speziale, C.G.; Younis, B.A.; Rubinstein, R.; Zhou, Y. On consistency conditions for rotating turbulent flows. Phys. Fluids 1998, 10, 2108–2110. [Google Scholar] [CrossRef]
- Murdoch, A.I. On criticism of the nature of objectivity in classical continuum physics. Continuum Mech. Thermodyn. 2005, 17, 135–148. [Google Scholar] [CrossRef]
- Frewer, M. More clarity on the concept of material frame-indifference in classical continuum mechanics. Acta Mech. 2009, 202, 213–246. [Google Scholar] [CrossRef]
- Pucci, E.; Saccomandi, G.; Vitolo, R. Bogus transformations in mechanics of continua. Int. J. Eng. Sci. 2016, 99, 13–21. [Google Scholar] [CrossRef]
- Grad, H. The many faces of entropy. Commun. Pure Appl. Math. 1961, 14, 323–354. [Google Scholar] [CrossRef]
- Müller, I.A. On the frame dependence of stress and heat flux. Arch. Ration. Mech. Anal. 1972, 45, 241–250. [Google Scholar] [CrossRef]
- Woods, L.C. The bogus axioms of continuum mechanics. Bull. IMA 1981, 17, 98–102. [Google Scholar]
- Murdoch, A.I. On material frame-indifference, intrinsic spin, and certain constitutive relations motivated by the kinetic theory of gases. Arch. Ration. Mech. Anal. 1983, 83, 185–194. [Google Scholar] [CrossRef]
- Edelen, D.G.B.; McLennan, J.A. Material indifference: a principle or a convenience. Int. J. Eng. Sci. 1973, 11, 813–817. [Google Scholar] [CrossRef]
- Bird, R.B.; de Gennes, P.G. Discussion about the principle of objectivity. Physica A 1983, 118, 43–47. [Google Scholar]
- Evans, M.W.; Heyes, D.M. On the material frame indifference controversy: Some results from group theory and computer simulation. J. Mol. Liquid 1989, 40, 297–304. [Google Scholar] [CrossRef]
- Liu, I.S.; Sampaio, R. Remarks on material frame-indifference controversy. Acta Mech. 2014, 225, 331–348. [Google Scholar] [CrossRef]
- Fredrickson, A.G. Principles and Applications of Rheology; Prentice Hall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- VanArsdale, W.E. Objective spin and the Rivlin-Ericksen model. Acta Mech. 2003, 162, 111–124. [Google Scholar] [CrossRef]
- Yao, D. A non-Newtonian fluid model with an objective vorticity. J. Non-Newtonian Fluid Mech. 2015, 218, 99–105. [Google Scholar] [CrossRef]
- Wedgewood, L.E. An objective rotation tensor applied to non-Newtonian fluid mechanics. Rheol. Acta 1999, 38, 91–99. [Google Scholar] [CrossRef]
- Haller, G. An objective definition of a vortex. J. Fluid Mech. 2005, 525, 1–26. [Google Scholar] [CrossRef]
- Haller, G. Dynamic rotation and stretch tensors from a dynamic polar decomposition. J. Mech. Phys. Solids 2016, 86, 70–93. [Google Scholar] [CrossRef]
- Xiao, H.; Bruhns, O.T.; Meyers, A.T.M. Strain rates and material spins. J. Elast. 1998, 52, 1–41. [Google Scholar] [CrossRef]
- Xiao, H.; Bruhns, O.T.; Meyers, A.T.M. On objective corotational rates and their defining spin tensors. Int. J. Eng. Sci. 1998, 35, 4001–4014. [Google Scholar] [CrossRef]
- MacMillan, E.H. On the spin of tensors. J. Elast. 1992, 27, 69–84. [Google Scholar] [CrossRef]
- Guansuo, D. Some new representations of spin tensors. Mech. Res. Commun. 1999, 26, 1–6. [Google Scholar] [CrossRef]
- Massoudi, M. On the importance of material frame-indifference and lift forces in multiphase flows. Chem. Eng. Sci. 2002, 57, 3687–3701. [Google Scholar] [CrossRef]
- Müller, I.A. A thermodynamic theory of mixtures of fluids. Arch. Ration. Mech. Anal. 1968, 28, 1–39. [Google Scholar] [CrossRef]
- Rajagopal, K.R.; Tao, L. Mechanics of Mixtures; World Scientific: Singapore, 1995. [Google Scholar]
- Denbigh, K.G. The many faces of irreversibility. Brit. J. Phil. Sci 1989, 40, 501–518. [Google Scholar] [CrossRef]
- Pavelka, M.; Klika, V.; Grmela, M. Time reversal in nonequilibrium thermodynamics. Phys. Rev. E 2014, 90, 062131:1–062131:19. [Google Scholar] [CrossRef] [PubMed]
- Kirwan, A.D., Jr.; Neuman, N. Simple flow of a fluid containing deformable structures. Int. J. Eng. Sci. 1969, 7, 1067–1078. [Google Scholar] [CrossRef]
- Klika, V. A guide through available mixture theories for applications. Crit. Rev. Solid State Mater. Sci. 2014, 39, 154–174. [Google Scholar] [CrossRef]
- Kirwan, A.D., Jr.; Neuman, N.; Chang, M.S. On microdeformable fluids: A special case of microfluids. Int. J. Eng. Sci. 1976, 14, 673–684. [Google Scholar] [CrossRef]
- Kuiken, G.D.C. Thermodynamics of Irreversible Processes; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Kirwan, A.D., Jr. Second law constraints on the dynamics of a mixture of two fluids at different temperatures. Entropy 2012, 14, 880–891. [Google Scholar] [CrossRef]
- Yang, H.; Aubry, N.; Massoudi, M. Heat transfer in granular materials: Effects of nonlinear heat conduction and viscous dissipation. Math. Methods Appl. Sci. 2013, 36, 1947–1964. [Google Scholar] [CrossRef]
- Massoudi, M.; Kirwan, A.D., Jr. On Thermomechanics of a Nonlinear Heat Conducting Suspension. Fluids 2016. submitted for publication. [Google Scholar]
- Luca, I.; Fang, C.; Hutter, K. A thermodynamic model of turbulent motions in a granular material. Continuum Mech. Thermodyn. 2004, 16, 363–390. [Google Scholar] [CrossRef]
- Speziale, C.G. Invariance of turbulent closure models. Phys. Fluids 1979, 22, 1033–1037. [Google Scholar] [CrossRef]
- Gatski, T. Constitutive equations for turbulent flows. Theor. Comput. Fluid Dyn. 2004, 18, 345–369. [Google Scholar] [CrossRef]
- Speziale, C.G. On turbulence Reynolds stress closure and modern continuum mechanics. Int. J. Non-Linear Mech. 1981, 16, 387–393. [Google Scholar] [CrossRef]
- Speziale, C.G. Analytic methods for the development of Reynolds-stress closures in turbulence. Annu. Rev. Fluid Mech. 1991, 23, 107–157. [Google Scholar] [CrossRef]
- Speziale, C.G. On a generalized nonlinear K − ϵ model and the use of extended thermodynamics in turbulence. Theor. Comput. Fluid Dyn. 1991, 13, 161–166. [Google Scholar] [CrossRef]
- Speziale, C.G.; Sarkar, S.; Gatski, T.B. Modelling the pressure strain correlation of turbulence: An invariant dynamical systems approach. J. Fluid Mech. 1991, 227, 245–272. [Google Scholar] [CrossRef]
- Speziale, C.G. On the consistency of Reynolds stress turbulence closures with hydrodynamic stability theory. Phys. Fluids 1996, 8, 781–788. [Google Scholar] [CrossRef]
- Speziale, C.G. A consistency condition for non-linear algebraic Reynolds stress models in turbulence. Int. J. Non-Linear Mech. 1998, 33, 579–584. [Google Scholar] [CrossRef]
- Spalart, P.R.; Speziale, C.G. A note on constraints in turbulence modelling. J. Fluid Mech. 1999, 391, 373–376. [Google Scholar] [CrossRef]
- Dafalias, Y.F. Objectivity in turbulence under change of reference frame and superposed rigid body motion. J. Eng. Mech. 2011, 137, 699–707. [Google Scholar] [CrossRef]
- Coleman, B.D. Thermodynamics of materials with memory. Arch. Ration. Mech. Anal. 1964, 17, 1–46. [Google Scholar] [CrossRef]
- Eringen, A.C. On non-local fluid mechanics. Int. J. Eng. Sci. 1972, 10, 561–575. [Google Scholar] [CrossRef]
- Wiggins, S. The dynamical systems approach to Lagrangian transport in oceanic flows. Annu. Rev. Fluid Mech. 2005, 37, 295–328. [Google Scholar] [CrossRef]
- Haller, G. Lagrangian coherent structures. Annu. Rev. Fluid Mech. 2015, 47, 137–162. [Google Scholar] [CrossRef]
- Peacock, T.; Froyland, G.; Haller, G. Introduction to Focus Issue: Objective detection of coherent structures. Chaos 2015, 25, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Molemaker, J.; McWilliams, J.; Capet, X. Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech. 2010, 654, 35–63. [Google Scholar] [CrossRef]
- McWilliams, J. A Perspective on Submesoscale Geophysical Turbulence. In IUTAM Symposium on Turbulence in the Atmosphere and Oceans: Proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8–12, 2008; Dritschel, D., Ed.; IUTAM Bookseries, Springer: Dordrecht, The Netherlands, 2010; pp. 131–141. [Google Scholar]
- McWilliams, J. A note on a uniformly valid model spanning the regimes of geostrophic and isotropic, stratified turbulence: Balanced turbulence. J. Atmos. Sci. 1985, 42, 1773–1774. [Google Scholar] [CrossRef]
- Charney, J. Geostrophic turbulence. J. Atmos. Sci. 1971, 28, 1087–1095. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirwan, A.D. On Objectivity, Irreversibility and Non-Newtonian Fluids. Fluids 2016, 1, 3. https://doi.org/10.3390/fluids1010003
Kirwan AD. On Objectivity, Irreversibility and Non-Newtonian Fluids. Fluids. 2016; 1(1):3. https://doi.org/10.3390/fluids1010003
Chicago/Turabian StyleKirwan, A. D. 2016. "On Objectivity, Irreversibility and Non-Newtonian Fluids" Fluids 1, no. 1: 3. https://doi.org/10.3390/fluids1010003
APA StyleKirwan, A. D. (2016). On Objectivity, Irreversibility and Non-Newtonian Fluids. Fluids, 1(1), 3. https://doi.org/10.3390/fluids1010003