Optimization of Laponite Nanogel with Curcumin Incorporation: A Quality by Design Approach
Abstract
1. Introduction
2. Results and Discussion
2.1. Initial Identification of QTPP, CQA and CPP Elements
2.2. Pre-Experiment Results and Risk Re-Assessment
2.3. Results of DoE
2.4. The Characterization Results of the Optimal Prescription
2.4.1. TEM
2.4.2. FTIR
2.4.3. DSC
2.4.4. In Vitro Drug Release
2.4.5. Stability
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Process of the QbD Design
4.2.2. Determine Elements of the QTPP
4.2.3. Determine Elements of the CQAs
4.2.4. Risk Assessment of CPPs
4.2.5. Risk Assessment of Formulation
Design of Experiments (DoE)
Characterization of the CUR -TPGS-LAP
- Particle Size and Zeta Potential
- TEM Measurements
- FT-IR Spectroscopy Measurements
- DSC Measurements
- In vitro drug release studies
- The stability of CUR-TPGS-LAP formulation
4.2.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
QbD | Quality by Design |
QTPP | Quality Target Product Profile |
CQAs | Critical Quality Attributes |
CPPs | Critical Process Parameters |
DOE | Design of Experiments |
CUR | Curcumin |
TPGS | Vitamin E Polyethylene Glycol Succinate |
LAP | Laponite |
DL | Drug Loading |
Ps | Particle Size |
EE | Encapsulation Efficiency |
PDI | Polydispersity Index |
TEM | Transmission Electron Microscopy |
FTIR | Fourier Transform Infrared Spectroscopy |
DSC | Differential Scanning Calorimetry |
References
- Miao, L.; Kang, Y.; Zhang, X.F. Nanotechnology for the theranostic opportunity of breast cancer lung metastasis: Recent advancements and future challenges. Front. Bioeng. Biotechnol. 2024, 12, 1410017. [Google Scholar] [CrossRef]
- Unnikrishnan, G.; Joy, A.; Megha, M.; Kolanthai, E.; Senthilkumar, M. Exploration of inorganic nanoparticles for revolutionary drug delivery applications: A critical review. Discov. Nano 2023, 18, 157. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, J.; Lu, W.; Ma, Y.; Wang, X.; An, X.; Fan, Z. The preparation of lactoferrin/magnesium silicate lithium injectable hydrogel and application in promoting wound healing. Int. J. Biol. Macromol. 2022, 220, 1501–1511. [Google Scholar] [CrossRef]
- Kiaee, G.; Dimitrakakis, N.; Sharifzadeh, S.; Kim, H.J.; Avery, R.K.; Moghaddam, K.M.; Haghniaz, R.; Yalcintas, E.P.; Barros, N.R.; Karamikamkar, S.; et al. Laponite-Based Nanomaterials for Drug Delivery. Adv. Healthc. Mater. 2022, 11, e2102054. [Google Scholar] [CrossRef]
- Ghadiri, M.; Hau, H.; Chrzanowski, W.; Agus, H.; Rohanizadeh, R. Laponite clay as a carrier for in situ delivery of tetracycline. RSC Adv. 2013, 3, 20193–20201. [Google Scholar] [CrossRef]
- Li, X.; Liu, A.; Ye, R.; Wang, Y.; Wang, W. Fabrication of gelatin–laponite composite films: Effect of the concentration of laponite on physical properties and the freshness of meat during storage. Food Hydrocoll. 2014, 44, 390–398. [Google Scholar] [CrossRef]
- Rouf, T.B.; Schmidt, G.; Kokini, J.L. Zein–Laponite nanocomposites with improved mechanical, thermal and barrier properties. J. Mater. Sci. 2018, 157, 739–747. [Google Scholar]
- Tomás, H.; Alves, C.S.; Rodrigues, J. Laponite®: A key nanoplatform for biomedical applications? Nanomed. Nanotechnol. Biol. Med. 2017, 14, 2407–2420. [Google Scholar] [CrossRef] [PubMed]
- Qu, B.; Xue, J.; Luo, Y. Self-assembled caseinate-laponite® nanocomposites for curcumin delivery. Food Chem. 2021, 363, 130338. [Google Scholar] [CrossRef]
- Wang, S.; Wu, Y.; Guo, R.; Huang, Y.; Wen, S.; Shen, M.; Wang, J.; Shi, X. Laponite nanodisks as an efficient platform for Doxorubicin delivery to cancer cells. Langmuir ACS J. Surf. Colloids 2013, 29, 5030–5036. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, G.; Shi, X.; Guo, R. Hyaluronic Acid-Decorated Laponite® Nanocomposites for Targeted Anticancer Drug Delivery. Polymers 2019, 29, 137. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, K.; Kong, L.; Tang, Y.; Li, G.; Jiang, W.; Shen, M.; Guo, R.; Zhao, Q.; Shi, X. Functional LAPONITE Nanodisks Enable Targeted Anticancer Chemotherapy in Vivo. Bioconjug. Chem. 2020, 11, 137. [Google Scholar] [CrossRef]
- Mohamed Sheik Tharik Abdul, A.; Raja Shekhar, N.; Madhu Tanya, S.; Anubha, J.; Marjita, C.; Rajaguru, A. Quality by Design in Pharmaceuticals: A Review of its Impact on Regulatory Compliance and Product Quality. Drug Res. 2023, 31, 2404–2412. [Google Scholar]
- Zagalo, D.M.; Sousa, J.; Simões, S. Quality by design (QbD) approach in marketing authorization procedures of Non-Biological Complex Drugs: A critical evaluation. Eur. J. Pharm. Biopharm. 2022, 178, 1–24. [Google Scholar] [CrossRef]
- Kaur, P.; Muskan; Kriplani, P. Quality by design for Niosome-Based nanocarriers to improve transdermal drug delivery from lab to industry. Int. J. Pharm. 2024, 666, 124747. [Google Scholar] [CrossRef]
- Correia, A.C.; Moreira, J.N.; Sousa Lobo, J.M.; Silva, A.C. Design of experiment (DoE) as a quality by design (QbD) tool to optimise formulations of lipid nanoparticles for nose-to-brain drug delivery. Expert. Opin. Drug Deliv. 2023, 20, 1731–1748. [Google Scholar] [CrossRef]
- Jayalakshmi, C.S.; Haider, M.; Rawas-Qalaji, M.; Sanpui, P. Curcumin-loaded zein nanoparticles: A quality by design approach for enhanced drug delivery and cytotoxicity against cancer cells. Colloids Surf. B Biointerfaces 2025, 245, 114319. [Google Scholar]
- Salamah, M.; Sipos, B.; Schelz, Z.; Zupkó, I.; Kiricsi, Á.; Szalenkó-Tőkés, Á.; Rovó, L.; Katona, G.; Balogh, G.T.; Csóka, I. Development, in vitro and ex vivo characterization of lamotrigine-loaded bovine serum albumin nanoparticles using QbD approach. Drug Deliv. 2025, 32, 2460693. [Google Scholar] [CrossRef]
- Bak, Y.W.; Woo, M.R.; Cho, H.J.; Kwon, T.K.; Im, H.T.; Cho, J.H.; Choi, H.G. Advanced QbD-Based Process Optimization of Clopidogrel Tablets with Insights into Industrial Manufacturing Design. Pharmaceutics 2025, 17, 659. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.L.; Shanmugasundaram, S. Optimizing Process Parameters for Controlled Drug Delivery: A Quality by Design (QbD) Approach in Naltrexone Microspheres. AAPS PharmSciTech 2024, 25, 105. [Google Scholar] [CrossRef] [PubMed]
- Abdel Hamid, E.M.; Amer, A.M.; Mahmoud, A.K.; Mokbl, E.M.; Hassan, M.A.; Abdel-Monaim, M.O.; Amin, R.H.; Tharwat, K.M. Box-Behnken design (BBD) for optimization and simulation of biolubricant production from biomass using aspen plus with techno-economic analysis. Sci. Rep. 2024, 14, 21769. [Google Scholar] [CrossRef] [PubMed]
- Rampado, R.; Peer, D. Design of experiments in the optimization of nanoparticle-based drug delivery systems. J. Control Release 2023, 358, 398–419. [Google Scholar] [CrossRef] [PubMed]
- Das, S.S.; Hussain, K.; Singh, S.; Hussain, A.; Faruk, A.; Tebyetekerwa, M. Laponite-based Nanomaterials for Biomedical Applications: A Review. Curr. Pharm. Des. 2019, 25, 424–443. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Zhao, L.; Zheng, L.; Hu, Y.; Ding, L.; Li, X.; Liu, C.; Zhao, J.; Shi, X.; Guo, R. LAPONITE-Polyethylenimine Based Theranostic Nanoplatform for Tumor-Targeting CT Imaging and Chemotherapy. ACS Biomater. Sci. Eng. 2016, 3, 431–442. [Google Scholar] [CrossRef]
- Tang, S.Z.; Chen, J.; Cannon, J.; Chekuri, M.; Farazuddin, M.; Baker, J.R., Jr.; Wang, S.H. Delicate Hybrid Laponite-Cyclic Poly(ethylene glycol) Nanoparticles as a Potential Drug Delivery System. Pharmaceutics 2023, 15, 1998. [Google Scholar] [CrossRef]
- Liu, J.X.; Hao, X.; Zhang, X.G. Structure and Property of Pesticide Intercalation into Laponite Assisted by Silane Coupling Agent. ChemistrySelect 2021, 6, 8689–8695. [Google Scholar] [CrossRef]
- Massaro, M.; Cinà, G.; Borrego-Sánchez, A.; Sainz-Díaz, C.I.; Viseras-Iborra, C.; Sánchez-Espejo, R.; de Melo Barbosa, R.; Leone, F.; Pibiri, I.; Noto, R.; et al. Thixotropic Hydrogels Based on Laponite® and Cucurbituril for Delivery of Lipophilic Drug Molecules. ChemPlusChem 2024, 89, e202300370. [Google Scholar] [CrossRef]
- Zhang, Z.; Tan, S.; Feng, S.S. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials 2012, 33, 4889–4906. [Google Scholar] [CrossRef]
- Yan, F.; Li, H.; Zhong, Z.; Zhou, M.; Lin, Y.; Tang, C.; Li, C. Co-Delivery of Prednisolone and Curcumin in Human Serum Albumin Nanoparticles for Effective Treatment of Rheumatoid Arthritis. Int. J. Nanomed. 2019, 14, 9113–9125. [Google Scholar] [CrossRef]
- Lin, L.; Luo, C.; Li, C.; Chen, X.; Cui, H. A Novel Biocompatible Ternary Nanoparticle with High Antibacterial Activity: Synthesis, Characterization, and Its Application in Beef Preservation. Foods 2022, 11, 438. [Google Scholar] [CrossRef]
- Khan, Z.U.; Razzaq, A.; Khan, A.; Rehman, N.U.; Khan, H.; Khan, T.; Khan, A.U.; Althobaiti, N.A.; Menaa, F.; Iqbal, H.; et al. Physicochemical Characterizations and Pharmacokinetic Evaluation of Pentazocine Solid Lipid Nanoparticles against Inflammatory Pain Model. Pharmaceutics 2022, 14, 409. [Google Scholar] [CrossRef]
- Lee, S.J.; Jeong, Y.I.; Park, H.K.; Kang, D.H.; Oh, J.S.; Lee, S.G.; Lee, H.C. Enzyme-responsive doxorubicin release from dendrimer nanoparticles for anticancer drug delivery. Int. J. Nanomed. 2015, 10, 5489–5503. [Google Scholar] [CrossRef]
- Miao, S.; Zhou, J.; Liu, B.; Lei, X.; Wang, T.; Hao, X.; Cheng, P.; Wu, H.; Song, Y.; Pei, G.; et al. A 3D bioprinted nano-laponite hydrogel construct promotes osteogenesis by activating PI3K/AKT signaling pathway. Mater. Today Bio 2022, 16, 100342. [Google Scholar] [CrossRef] [PubMed]
- Meera, K.M.S.; Sankar, R.M.; Murali, A.; Jaisankar, S.N.; Mandal, A.B. Sol-gel network silica/modified montmorillonite clay hybrid nanocomposites for hydrophobic surface coatings. Colloids Surf. B Biointerfaces 2011, 90, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Jiang, F.; Xing, Z.; Fan, L.; Li, Y.; Wang, S.; Ling, J.; Ouyang, X.K. Efficient Delivery of Curcumin by Alginate Oligosaccharide Coated Aminated Mesoporous Silica Nanoparticles and In Vitro Anticancer Activity against Colon Cancer Cells. Pharmaceutics 2022, 14, 1166. [Google Scholar] [CrossRef]
- Zuccari, G.; Baldassari, S.; Alfei, S.; Marengo, B.; Valenti, G.E.; Domenicotti, C.; Ailuno, G.; Villa, C.; Marchitto, L.; Caviglioli, G. D-α-Tocopherol-Based Micelles for Successful Encapsulation of Retinoic Acid. Pharmaceuticals 2021, 14, 212. [Google Scholar] [CrossRef]
- Tang, X.; Chen, L.; Li, A.; Cai, S.; Zhang, Y.; Liu, X.; Jiang, Z.; Liu, X.; Liang, Y.; Ma, D. Anti-GPC3 antibody-modified sorafenib-loaded nanoparticles significantly inhibited HepG2 hepatocellular carcinoma. Drug Deliv. 2018, 25, 1484–1494. [Google Scholar] [CrossRef]
- Ostheller, M.E.; Abdelgawad, A.M.; Balakrishnan, N.K.; Hassanin, A.H.; Groten, R.; Seide, G. Curcumin and Silver Doping Enhance the Spinnability and Antibacterial Activity of Melt-Electrospun Polybutylene Succinate Fibers. Nanomaterials 2022, 12, 283. [Google Scholar] [CrossRef]
- Prado, J.R.; Vyazovkin, S. Activation energies of water vaporization from the bulk and from laponite, montmorillonite, and chitosan powders. Thermochim. Acta 2011, 524, 197–201. [Google Scholar] [CrossRef]
- Haghighi, E.; Abolmaali, S.S.; Dehshahri, A.; Mousavi Shaegh, S.A.; Azarpira, N.; Tamaddon, A.M. Navigating the intricate in-vivo journey of lipid nanoparticles tailored for the targeted delivery of RNA therapeutics: A quality-by-design approach. J. Nanobiotechnol. 2024, 22, 710. [Google Scholar] [CrossRef]
- Jeong, J.H.; Yoon, T.H.; Ryu, S.W.; Kim, M.G.; Kim, G.H.; Oh, Y.J.; Lee, S.J.; Kwak, N.W.; Bang, K.H.; Kim, K.S. Quality by Design (QbD)-Based Development of a Self-Nanoemulsifying Drug Delivery System for the Ocular Delivery of Flurbiprofen. Pharmaceutics 2025, 17, 629. [Google Scholar] [CrossRef]
- Liu, G.; An, D.; Li, J.; Deng, S. Zein-based nanoparticles: Preparation, characterization, and pharmaceutical application. Front. Pharmacol. 2023, 14, 1120251. [Google Scholar] [CrossRef]
- Bushi, E.; Malaj, L.; Di Martino, P.; Mataj, G.; Myftari, B. Formulation of semi solid dosage forms for topical application utilizing quality by design (QbD) approach. Drug Dev. Ind. Pharm. 2025, 51, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Pielenhofer, J.; Meiser, S.L.; Gogoll, K.; Ciciliani, A.M.; Denny, M.; Klak, M.; Lang, B.M.; Staubach, P.; Grabbe, S.; Schild, H.; et al. Quality by Design (QbD) Approach for a Nanoparticulate Imiquimod Formulation as an Investigational Medicinal Product. Pharmaceutics 2023, 15, 514. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.; Lim, C.; Oh, K.T. Recent Advances in Intranasal Administration for Brain-Targeting Delivery: A Comprehensive Review of Lipid-Based Nanoparticles and Stimuli-Responsive Gel Formulations. Int. J. Nanomed. 2024, 19, 1767–1807. [Google Scholar] [CrossRef] [PubMed]
- Gurumukhi, V.C.; Bari, S.B. Development of ritonavir-loaded nanostructured lipid carriers employing quality by design (QbD) as a tool: Characterizations, permeability, and bioavailability studies. Drug Deliv. Transl. Res. 2022, 12, 1753–1773. [Google Scholar] [CrossRef]
- Dobó, D.G.; Németh, Z.; Sipos, B.; Cseh, M.; Pallagi, E.; Berkesi, D.; Kozma, G.; Kónya, Z.; Csóka, I. Pharmaceutical Development and Design of Thermosensitive Liposomes Based on the QbD Approach. Molecules 2022, 27, 1536. [Google Scholar] [CrossRef]
- Stealey, S.T.; Gaharwar, A.K.; Zustiak, S.P. Laponite-Based Nanocomposite Hydrogels for Drug Delivery Applications. Pharmaceuticals 2023, 16, 821. [Google Scholar] [CrossRef]
- Pawar, N.; Peña-Figueroa, M.; Verde-Sesto, E.; Maestro, A.; Alvarez-Fernandez, A. Exploring the Interaction of Lipid Bilayers with Curcumin-Laponite Nanoparticles: Implications for Drug Delivery and Therapeutic Applications. Small 2024, 20, e2406885. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, A.; Flora, S.J.S.; Shukla, R. Box-Behnken Design Optimized TPGS Coated Bovine Serum Albumin Nanoparticles Loaded with Anastrozole. Curr. Drug Deliv. 2021, 18, 1136–1147. [Google Scholar] [CrossRef]
- Waghule, T.; Swetha, K.L.; Roy, A.; Saha, R.N.; Singhvi, G. Quality by design assisted optimization of temozolomide loaded PEGylated lyotropic liquid crystals: Investigating various formulation and process variables along with in-vitro characterization. J. Mol. Liq. 2022, 352, 118724. [Google Scholar] [CrossRef]
Quality Attributes | Is It a Critical Quality Attribute? | Justification |
---|---|---|
Physical properties | No | Physical properties such as color, odor and appearance are not CQA, as these factors have no direct relationship with the efficacy of the formulation. |
Encapsulation efficiency (EE)/Drug Loading (DL) | Yes | A high encapsulation and drug loading are crucial for improving drug utilization, reducing waste, enhancing therapeutic efficacy, minimizing toxic side effects and lowering production costs. Therefore, they are regarded as CQA. |
Particle size (Ps/Particle size distribution index (PDI) | Yes | Nanoparticles can more effectively pass through biological membranes within the appropriate nanoscale range, thereby improving solubility and absorption properties and enhancing the bioavailability of drugs. Therefore, they are regarded as CQA. |
Stability | Yes | The stability of nanoparticles has a significant impact on the release of drugs and their efficacy. Therefore, it is regarded as a CQA |
Ingredient | State | DL (mg/g) | EE (%) | Ps (nm) | PDI |
---|---|---|---|---|---|
CUR | solution | 0.01 ± 0.00 | 12.87 ± 0.04 | 2670.00 ± 1565.22 | 0.45 ± 0.06 |
powder | 0.01 ± 0.00 | 14.99 ± 0.11 | 1220.33 ± 319.28 | 0.40 ± 0.05 | |
TPGS | − | 0.004 ± 0.00 | 15.03 ± 0.04 | 339.67 ± 11.73 | 0.35 ± 0.10 |
+ | 0.01 ± 0.00 | 22.83 ± 0.04 | 204.00 ± 6.16 | 0.26 ± 0.02 | |
LAP | solution | 0.01 ± 0.00 | 16.96 ± 0.07 | 138.33 ± 1.25 | 0.21 ± 0.01 |
powder | 0.02 ± 0.00 | 29.85 ± 0.14 | 118.67 ± 0.94 | 0.12 ± 0.01 |
Factors (mg) | Levels | ||
---|---|---|---|
−1 | 0 | 1 | |
X1 | 2.5 | 6.25 | 10 |
X2 | 2 | 6 | 10 |
X3 | 15 | 30 | 45 |
Run Order | Factors | ||||||
---|---|---|---|---|---|---|---|
X1 | X2 | X3 | Y1 | Y2 | Y3 | Y4 | |
1 | 6.25 | 10 | 45 | 0.14 | 13.57 | 128.0 | 0.041 |
2 | 2.50 | 2 | 30 | 0.06 | 30.75 | 223.0 | 0.023 |
3 | 10.00 | 6 | 15 | 0.03 | 4.23 | 206.0 | 0.059 |
4 | 2.50 | 6 | 45 | 0.06 | 10.58 | 48.4 | 0.032 |
5 | 6.25 | 2 | 45 | 0.17 | 85.90 | 46.6 | 0.028 |
6 | 10.00 | 2 | 30 | 0.09 | 44.37 | 121.0 | 0.336 |
7 | 6.25 | 6 | 30 | 0.06 | 9.97 | 169.0 | 0.035 |
8 | 6.25 | 6 | 30 | 0.06 | 9.92 | 141.0 | 0.043 |
9 | 6.25 | 2 | 15 | 0.15 | 75.56 | 107.0 | 0.151 |
10 | 10.00 | 6 | 45 | 0.05 | 8.88 | 103.0 | 0.045 |
11 | 6.25 | 6 | 30 | 0.06 | 9.92 | 143.0 | 0.025 |
12 | 2.50 | 6 | 15 | 0.05 | 8.94 | 167.0 | 0.037 |
13 | 6.25 | 10 | 15 | 0.05 | 5.16 | 76.5 | 0.03 |
14 | 10.00 | 10 | 30 | 0.10 | 9.83 | 202.0 | 0.318 |
15 | 2.50 | 10 | 30 | 0.12 | 11.47 | 172.0 | 0.034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Kong, X.; Chen, H.; Lu, M.; Liu, X.; Wang, L. Optimization of Laponite Nanogel with Curcumin Incorporation: A Quality by Design Approach. Gels 2025, 11, 677. https://doi.org/10.3390/gels11090677
Li J, Kong X, Chen H, Lu M, Liu X, Wang L. Optimization of Laponite Nanogel with Curcumin Incorporation: A Quality by Design Approach. Gels. 2025; 11(9):677. https://doi.org/10.3390/gels11090677
Chicago/Turabian StyleLi, Jing, Xiangfeng Kong, Hongxia Chen, Mengqiu Lu, Xiaochang Liu, and Lijie Wang. 2025. "Optimization of Laponite Nanogel with Curcumin Incorporation: A Quality by Design Approach" Gels 11, no. 9: 677. https://doi.org/10.3390/gels11090677
APA StyleLi, J., Kong, X., Chen, H., Lu, M., Liu, X., & Wang, L. (2025). Optimization of Laponite Nanogel with Curcumin Incorporation: A Quality by Design Approach. Gels, 11(9), 677. https://doi.org/10.3390/gels11090677