Potato Elicitor Peptide StPep1 Enhances Resistance to Phytophthora infestans in Solanum tuberosum
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Pathogen Inoculation
2.3. Assessment of Disease Severity
2.4. Peptide Treatment
2.5. Environmental Conditions
2.6. Experimental Design
2.7. Peptide Synthesis and Characterization
2.8. Statistical Analyses and Graphical Representation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Han, H.; Zhao, J.; Liu, Z.; Deng, L.; Wu, L.; Niu, J.; Guo, Y.; Wang, G.; Gou, X.; et al. Peptide Hormones in Plants. Mol. Hortic. 2025, 5, 7. [Google Scholar] [CrossRef]
- Tavormina, P.; De Coninck, B.; Nikonorova, N.; De Smet, I.; Cammue, B.P.A. The Plant Peptidome: An Expanding Repertoire of Structural Features and Biological Functions. Plant Cell 2015, 27, 2095–2118. [Google Scholar] [CrossRef]
- Matsubayashi, Y. Exploring Peptide Hormones in Plants: Identification of Four Peptide Hormone-Receptor Pairs and Two Post-Translational Modification Enzymes. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2018, 94, 59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-M.; Ye, D.-X.; Liu, Y.; Zhang, X.-Y.; Zhou, Y.-L.; Zhang, L.; Yang, X.-L. Peptides, New Tools for Plant Protection in Eco-Agriculture. Adv. Agrochem 2023, 2, 58–78. [Google Scholar] [CrossRef]
- Yan, C.-L.; Guan, K.-X.; Lin, H.; Feng, T.; Meng, J.-G. Peptides in Plant Reproduction—Small yet Powerful. Front. Plant Sci. 2025, 16, 1506617. [Google Scholar] [CrossRef]
- Pearce, G.; Strydom, D.; Johnson, S.; Ryan, C.A. A Polypeptide from Tomato Leaves Induces Wound-Inducible Proteinase Inhibitor Proteins. Science 1991, 253, 895–897. [Google Scholar] [CrossRef]
- Huffaker, A.; Pearce, G.; Ryan, C.A. An Endogenous Peptide Signal in Arabidopsis Activates Components of the Innate Immune Response. Proc. Natl. Acad. Sci. USA 2006, 103, 10098–10103. [Google Scholar] [CrossRef]
- Huffaker, A.; Dafoe, N.J.; Schmelz, E.A. ZmPep1, an Ortholog of Arabidopsis Elicitor Peptide 1, Regulates Maize Innate Immunity and Enhances Disease Resistance. Plant Physiol. 2011, 155, 1325–1338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gleason, C. Enhancing Potato Resistance against Root-Knot Nematodes Using a Plant-Defence Elicitor Delivered by Bacteria. Nat. Plants 2020, 6, 625–629. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Huffaker, A.; Bryan, A.C.; Tax, F.E.; Ryan, C.A. PEPR2 Is a Second Receptor for the Pep1 and Pep2 Peptides and Contributes to Defense Responses in Arabidopsis. Plant Cell 2010, 22, 508–522. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, X.; Liu, J.; Tao, K.; Li, C.; Xiao, S.; Zhang, W.; Li, J.-F. Plant Elicitor Peptide Signalling Confers Rice Resistance to Piercing-Sucking Insect Herbivores and Pathogens. Plant Biotechnol. J. 2022, 20, 991–1005. [Google Scholar] [CrossRef]
- Kawicha, P.; Rattanapolsan, L.; Boonruangrod, R.; Yamaguchi, Y.; Sangdee, K.; Sangdee, A.; Thanyasiriwat, T. MaPep1 and MbPep1, as Plant Elicitor Peptides in Banana, Confer Resistance to Banana Blood Disease Caused by Ralstonia Syzygii Subsp. Celebesensis. Plant Prot. Sci. 2025, 61, 262. [Google Scholar] [CrossRef]
- Konovalov, A.I.; Ryzhkina, I.S.; Salakhutdinova, O.A.; Murtazina, L.I.; Shevelev, M.D.; Voeikov, V.L.; Buravleva, E.V.; Glybin, A.V.; Skripnikov, A.Y. Effect of Self-Organization and Properties of Aqueous Disperse Systems Based on the Moss Peptide PpCLE2 in a Low Concentration Range on the Growth of Arabidopsis thaliana Roots. Russ. Chem. Bull. 2017, 66, 1699–1705. [Google Scholar] [CrossRef]
- Skripnikov, A. Bioassays for Identifying and Characterizing Plant Regulatory Peptides. Biomolecules 2023, 13, 1795. [Google Scholar] [CrossRef]
- Fry, W.E.; Birch, P.R.J.; Judelson, H.S.; Grünwald, N.J.; Danies, G.; Everts, K.L.; Gevens, A.J.; Gugino, B.K.; Johnson, D.A.; Johnson, S.B.; et al. Five Reasons to Consider Phytophthora Infestans a Reemerging Pathogen. Phytopathology 2015, 105, 966–981. [Google Scholar] [CrossRef] [PubMed]
- van den Bosch, F.; Paveley, N.; van den Berg, F.; Hobbelen, P.; Oliver, R. Mixtures as a Fungicide Resistance Management Tactic. Phytopathology 2014, 104, 1264–1273. [Google Scholar] [CrossRef]
- Samarskaya, V.O.; Koblova, S.; Suprunova, T.; Rogozhin, E.A.; Spechenkova, N.; Yakunina, S.; Love, A.J.; Kalinina, N.O.; Taliansky, M. Poly ADP-Ribosylation in a Plant Pathogenic Oomycete Phytophthora Infestans: A Key Controller of Growth and Host Plant Colonisation. J. Fungi 2025, 11, 29. [Google Scholar] [CrossRef]
- Cruickshank, G.; Stewart, H.E.; Wastie, R.L. An Illustrated Assessment Key for Foliage Blight of Potatoes. Potato Res. 1982, 25, 213–214. [Google Scholar] [CrossRef]
- Huffaker, A.; Ryan, C.A. Endogenous Peptide Defense Signals in Arabidopsis Differentially Amplify Signaling for the Innate Immune Response. Proc. Natl. Acad. Sci. USA 2007, 104, 10732–10736. [Google Scholar] [CrossRef]
- Poretsky, E.; Dressano, K.; Weckwerth, P.; Ruiz, M.; Char, S.N.; Shi, D.; Abagyan, R.; Yang, B.; Huffaker, A. Differential Activities of Maize Plant Elicitor Peptides as Mediators of Immune Signaling and Herbivore Resistance. Plant J. 2020, 104, 1582–1602. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Pearce, G.; Ryan, C.A. The Cell Surface Leucine-Rich Repeat Receptor for AtPep1, an Endogenous Peptide Elicitor in Arabidopsis, Is Functional in Transgenic Tobacco Cells. Proc. Natl. Acad. Sci. USA 2006, 103, 10104–10109. [Google Scholar] [CrossRef] [PubMed]
- Huffaker, A.; Pearce, G.; Veyrat, N.; Erb, M.; Turlings, T.C.J.; Sartor, R.; Shen, Z.; Briggs, S.P.; Vaughan, M.M.; Alborn, H.T.; et al. Plant Elicitor Peptides Are Conserved Signals Regulating Direct and Indirect Antiherbivore Defense. Proc. Natl. Acad. Sci. USA 2013, 110, 5707–5712. [Google Scholar] [CrossRef]
- Tintor, N.; Ross, A.; Kanehara, K.; Yamada, K.; Fan, L.; Kemmerling, B.; Nürnberger, T.; Tsuda, K.; Saijo, Y. Layered Pattern Receptor Signaling via Ethylene and Endogenous Elicitor Peptides during Arabidopsis Immunity to Bacterial Infection. Proc. Natl. Acad. Sci. USA 2013, 110, 6211–6216. [Google Scholar] [CrossRef]
- Klauser, D.; Desurmont, G.A.; Glauser, G.; Vallat, A.; Flury, P.; Boller, T.; Turlings, T.C.J.; Bartels, S. The Arabidopsis Pep-PEPR System Is Induced by Herbivore Feeding and Contributes to JA-Mediated Plant Defence against Herbivory. J. Exp. Bot. 2015, 66, 5327–5336. [Google Scholar] [CrossRef]
- Nakaminami, K.; Okamoto, M.; Higuchi-Takeuchi, M.; Yoshizumi, T.; Yamaguchi, Y.; Fukao, Y.; Shimizu, M.; Ohashi, C.; Tanaka, M.; Matsui, M.; et al. AtPep3 Is a Hormone-like Peptide That Plays a Role in the Salinity Stress Tolerance of Plants. Proc. Natl. Acad. Sci. USA 2018, 115, 5810–5815. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Li, M.; Zhang, W.; Lu, Y.; Hua, K.; Ling, X.; Chen, T.; Guo, D.; Yang, Y.; et al. Translatome and Transcriptome Analyses Reveal the Mechanism That Underlies the Enhancement of Salt Stress by the Small Peptide Ospep5 in Plants. J. Agric. Food Chem. 2024, 72, 4277–4291. [Google Scholar] [CrossRef]
- Bartels, S.; Lori, M.; Mbengue, M.; van Verk, M.; Klauser, D.; Hander, T.; Böni, R.; Robatzek, S.; Boller, T. The Family of Peps and Their Precursors in Arabidopsis: Differential Expression and Localization but Similar Induction of Pattern-Triggered Immune Responses. J. Exp. Bot. 2013, 64, 5309–5321. [Google Scholar] [CrossRef] [PubMed]
- Bartels, S.; Boller, T. Quo Vadis, Pep? Plant Elicitor Peptides at the Crossroads of Immunity, Stress, and Development. J. Exp. Bot. 2015, 66, 5183–5193. [Google Scholar] [CrossRef] [PubMed]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skripnikov, A.; Suprunova, T.; Kalinina, N.O.; Taliansky, M. Potato Elicitor Peptide StPep1 Enhances Resistance to Phytophthora infestans in Solanum tuberosum. J. Fungi 2025, 11, 893. https://doi.org/10.3390/jof11120893
Skripnikov A, Suprunova T, Kalinina NO, Taliansky M. Potato Elicitor Peptide StPep1 Enhances Resistance to Phytophthora infestans in Solanum tuberosum. Journal of Fungi. 2025; 11(12):893. https://doi.org/10.3390/jof11120893
Chicago/Turabian StyleSkripnikov, Alexander, Tatiana Suprunova, Natalia O. Kalinina, and Michael Taliansky. 2025. "Potato Elicitor Peptide StPep1 Enhances Resistance to Phytophthora infestans in Solanum tuberosum" Journal of Fungi 11, no. 12: 893. https://doi.org/10.3390/jof11120893
APA StyleSkripnikov, A., Suprunova, T., Kalinina, N. O., & Taliansky, M. (2025). Potato Elicitor Peptide StPep1 Enhances Resistance to Phytophthora infestans in Solanum tuberosum. Journal of Fungi, 11(12), 893. https://doi.org/10.3390/jof11120893

