The Biological Product Agricultural Jiaosu Enhances Tomato Resistance to Botrytis cinerea
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Agricultural Jiaosu (AJ) and Pathogen Cultivation
2.2. Characterization of AJ
2.3. In Vitro Antifungal Activity Assays
2.4. Mechanism Analysis of AJ Action
- Superoxide dismutase (SOD; Cat# A001-1-2)
- Catalase (CAT; Cat# A007-1-1)
- Peroxidase (POD; Cat# A084-3-1)
2.5. Plant Treatment Experiments
2.6. Data Analysis
3. Results
3.1. Compositional Characteristics of AJ
3.2. Antifungal Activity of AJ Against Botrytis cinerea In Vitro
Contribution of AJ Components Against Botrytis cinerea
3.3. Mechanism of Botrytis cinerea Inhibition by AJ In Vitro
3.3.1. Temporal Dynamics of the Interaction Between AJ and Botrytis cinerea
3.3.2. Effect of AJ on the Ultrastructure of Botrytis cinerea Mycelium
3.3.3. Effect of AJ on Antioxidant Enzyme Activity and MDA Content in Botrytis cinerea
3.4. Effect of Agricultural Jiaosu (AJ) on the Incidence of Botrytis cinerea in Tomato Plants
4. Discussion
4.1. Direct Inhibition: Targeted Suppression of Botrytis cinerea
4.2. Indirect Inhibition: AJ-Induced Systemic Resistance in Tomato
4.3. Implications for Sustainable Tomato Production
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/home/en/ (accessed on 28 October 2025).
- Borges, Á.V.; Saraiva, R.M.; Maffia, L.A. Biocontrol of gray mold in tomato plants by Clonostachys rosea. Trop. Plant Pathol. 2015, 40, 71–76. [Google Scholar] [CrossRef]
- Zhu, H.; Huang, C.-T.; Ji, M.-S. Baseline sensitivity and control efficacy of pyrisoxazole against Botrytis cinerea. Eur. J. Plant Pathol. 2016, 146, 315–323. [Google Scholar] [CrossRef]
- Meng, F.; Lv, R.; Cheng, M.; Mo, F.; Zhang, N.; Qi, H.; Liu, J.; Chen, X.; Liu, Y.; Ghanizadeh, H.; et al. Insights into the molecular basis of biocontrol of Botrytis cinerea by Clonostachys rosea in tomato. Sci. Hortic. 2022, 291, 110547. [Google Scholar] [CrossRef]
- Abbey, J.A.; Percival, D.; Abbey, L.; Asiedu, S.K.; Prithiviraj, B.; Schilder, A. Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea)—Prospects and challenges. Biocontrol Sci. Technol. 2019, 29, 207–228. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhang, Z.; Chen, Y.; Li, B.; Tian, S. Botrytis cinerea. Curr. Biol. 2023, 33, R460–R462. [Google Scholar] [CrossRef] [PubMed]
- Petrasch, S.; Knapp, S.J.; van Kan, J.A.L.; Blanco-Ulate, B. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Mol. Plant Pathol. 2019, 20, 877–892. [Google Scholar] [CrossRef] [PubMed]
- Bi, K.; Liang, Y.; Mengiste, T.; Sharon, A. Killing softly: A roadmap of Botrytis cinerea pathogenicity. Trends Plant Sci. 2023, 28, 211–222. [Google Scholar] [CrossRef]
- Zhang, X.; Li, D.; Luo, Z.; Xu, Y. (E)-2-hexenal fumigation control the gray mold on fruits via consuming glutathione of Botrytis cinerea. Food Chem. 2024, 432, 137146. [Google Scholar] [CrossRef]
- Sun, Z.; Yang, L.; Han, M.; Han, Z.; Yang, L.; Cheng, L.; Yang, X.; Lv, Z. Biological control ginseng grey mold and plant colonization by antagonistic bacteria isolated from rhizospheric soil of Panax ginseng Meyer. Biol. Control 2019, 138, 104048. [Google Scholar] [CrossRef]
- O’Brien, P.A. Biological control of plant diseases. Australas. Plant Pathol. 2017, 46, 293–304. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Z.; Xie, S.-Q.; Ling, P.; Zhu, J. Detection of Five Disease Resistance Genes in 234 Tomato Materials with Functional Markers. Chin. J. Trop. Crops 2021, 42, 1685–1693. [Google Scholar]
- Wang, W.; Wang, Z.; Yang, K.; Wang, P.; Wang, H.; Guo, L.; Zhu, S.; Zhu, Y.; He, X. Biochar Application Alleviated Negative Plant-Soil Feedback by Modifying Soil Microbiome. Front. Microbiol. 2020, 11, 799. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Guo, C.; Wang, L.; Zhang, J.; Deng, L.; Luo, K.; Huang, H.; Liu, Y.; Mei, X.; Zhu, S.; et al. Negative Plant-Soil Feedback Driven by Re-Assemblage of the Rhizosphere Microbiome with the Growth of Panax notoginseng. Front. Microbiol. 2019, 10, 1597. [Google Scholar] [CrossRef] [PubMed]
- Gajbhiye, M.H.; Kapadnis, B.P. Antifungal-activity-producing lactic acid bacteria as biocontrol agents in plants. Biocontrol Sci. Technol. 2016, 26, 1451–1470. [Google Scholar] [CrossRef]
- Dede, A.; Güven, K.; Şahiïn, N. Isolation, plant growth-promoting traits, antagonistic effects on clinical and plant pathogenic organisms and identification of actinomycetes from olive rhizosphere. Microb. Pathog. 2020, 143, 104134. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Y.; Zheng, Z.; Meng, X.; Cai, Y.; Liu, J.; Hu, Y.; Yan, S.; Wang, X. A microbial ecosystem: Agricultural Jiaosu achieves effective and lasting antifungal activity against Botrytis cinerea. AMB Expr. 2020, 10, 216. [Google Scholar] [CrossRef]
- Piper, P.; Calderon, C.O.; Hatzixanthis, K.; Mollapour, M. Weak acid adaptation: The stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 2001, 147, 2635–2642. [Google Scholar] [CrossRef]
- Krebs, H.A.; Wiggins, D.; Stubbs, M.; Sols, A.; Bedoya, F. Studies on the mechanism of the antifungal action of benzoate. Biochem. J. 1983, 214, 657–663. [Google Scholar] [CrossRef]
- Cherrington, C.A.; Hinton, M.; Mead, G.C.; Chopra, I. Organic Acids: Chemistry, Antibacterial Activity and Practical Applications. In Advances in Microbial Physiology; Rose, A.H., Tempest, D.W., Eds.; Academic Press: Cambridge, MA, USA, 1991; pp. 87–108. [Google Scholar]
- Fira, D.; Dimkić, I.; Berić, T.; Lozo, J.; Stanković, S. Biological control of plant pathogens by Bacillus species. J. Biotechnol. 2018, 285, 44–55. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Cheng, X.; Zheng, Z.; Wu, X.; Dong, X.; Hu, Y.; Wang, X. Agricultural Jiaosu: An Eco-Friendly and Cost-Effective Control Strategy for Suppressing Fusarium Root Rot Disease in Astragalus membranaceus. Front. Microbiol. 2022, 13, 823704. [Google Scholar] [CrossRef] [PubMed]
- Van Kan, J.A.L.; Stassen, J.H.M.; Mosbach, A.; Van Der Lee, T.A.J.; Faino, L.; Farmer, A.D.; Papasotiriou, D.G.; Zhou, S.; Seidl, M.F.; Cottam, E.; et al. A gapless genome sequence of the fungus Botrytis cinerea. Mol. Plant Pathol. 2017, 18, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Palomo, E.; Diaz-Maroto, M.; Perez-Coello, M. Rapid determination of volatile compounds in grapes by HS-SPME coupled with GC–MS. Talanta 2005, 66, 1152–1157. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, J.; Liu, J.; Yang, F.; Zhu, W.; Yuan, X.; Hu, Y.; Cui, Z.; Wang, X. Effect of ensiling and silage additives on biogas production and microbial community dynamics during anaerobic digestion of switchgrass. Bioresour. Technol. 2017, 241, 349–359. [Google Scholar] [CrossRef]
- Kõljalg, U.; Nilsson, R.H.; Abarenkov, K.; Tedersoo, L.; Taylor, A.F.S.; Bahram, M.; Bates, S.T.; Bruns, T.D.; Bengtsson-Palme, J.; Callaghan, T.M.; et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 2013, 22, 5271–5277. [Google Scholar] [CrossRef]
- Aeron, A.; Dubey, R.C.; Maheshwari, D.K.; Pandey, P.; Bajpai, V.K.; Kang, S.C. Multifarious activity of bioformulated Pseudomonas fluorescens PS1 and biocontrol of Sclerotinia sclerotiorum in Indian rapeseed (Brassica campestris L.). Eur. J. Plant Pathol. 2011, 131, 81–93. [Google Scholar] [CrossRef]
- Cai, Y.; Zheng, Z.; Zhao, Y.; Zhang, Y.; Guo, S.; Cui, Z.; Wang, X. Effects of molybdenum, selenium and manganese supplementation on the performance of anaerobic digestion and the characteristics of bacterial community in acidogenic stage. Bioresour. Technol. 2018, 266, 166–175. [Google Scholar] [CrossRef]
- Haarman, M.; Knol, J. Quantitative real-time PCR analysis of fecal Lactobacillus species in infants receiving a prebiotic infant formula. Appl. Environ. Microbiol. 2006, 72, 2359–2365. [Google Scholar] [CrossRef]
- Gil, N.-Y.; Gwon, H.-M.; Yeo, S.-H.; Kim, S.-Y. Metabolite Profile and Immunomodulatory Properties of Bellflower Root Vinegar Produced Using Acetobacter pasteurianus A11-2. Foods 2020, 9, 1063. [Google Scholar] [CrossRef]
- Cao, Y.-Y.; Qi, C.-D.; Li, S.; Wang, Z.; Wang, X.; Wang, J.; Ren, S.; Li, X.; Zhang, N.; Guo, Y.-D. Melatonin Alleviates Copper Toxicity via Improving Copper Sequestration and ROS Scavenging in Cucumber. Plant Cell Physiol. 2019, 60, 562–574. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, J.; Liu, F.; Liang, J.; Zhao, P.; Tsui, C.K.M.; Cai, L. Cross-kingdom synthetic microbiota supports tomato suppression of Fusarium wilt disease. Nat. Commun. 2022, 13, 7890. [Google Scholar] [CrossRef]
- Stratford, M.; Anslow, P.A. Evidence that sorbic acid does not inhibit yeast as a classic ‘weak acid preservative’. Lett. Appl. Microbiol. 1998, 27, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Dagnas, S.; Gauvry, E.; Onno, B.; Membré, J.-M. Quantifying Effect of Lactic, Acetic, and Propionic Acids on Growth of Molds Isolated from Spoilesd Bakery Products. J. Food Prot. 2015, 78, 1689–1698. [Google Scholar] [CrossRef] [PubMed]
- Woolford, M.K. The antimicrobial spectra of organic compounds with respect to their potential as hay preservatives. Grass Forage Sci. 1984, 39, 75–79. [Google Scholar] [CrossRef]
- Axe, D.D.; Bailey, J.E. Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli. Biotechnol. Bioeng. 1995, 47, 8–19. [Google Scholar] [CrossRef]
- Hunter, D.R.; Segel, I.H. Effect of Weak Acids on Amino Acid Transport by Penicillium chrysogenum: Evidence for a Proton or Charge Gradient as the Driving Force. J. Bacteriol. 1973, 113, 1184–1192. [Google Scholar] [CrossRef]
- Özcelik, S.; Kuley, E.; Özogul, F. Formation of lactic, acetic, succinic, propionic, formic and butyric acid by lactic acid bacteria. LWT 2016, 73, 536–542. [Google Scholar] [CrossRef]
- Ye, C.; Liu, Y.; Zhang, J.; Li, T.; Zhang, Y.; Guo, C.; Yang, M.; He, X.; Zhu, Y.; Huang, H.; et al. α-Terpineol fumigation alleviates negative plant-soil feedbacks of Panax notoginseng via suppressing Ascomycota and enriching antagonistic bacteria. Phytopathol. Res. 2021, 3, 13. [Google Scholar] [CrossRef]
- Zhang, Z.; Vriesekoop, F.; Yuan, Q.; Liang, H. Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion. Food Chem. 2014, 150, 307–312. [Google Scholar] [CrossRef]
- Sindhu, S.S.; Sehrawat, A.; Glick, B.R. The involvement of organic acids in soil fertility, plant health and environment sustainability. Arch. Microbiol. 2022, 204, 720. [Google Scholar] [CrossRef]
- Peng, Y.; Duan, Y.; Huo, W.; Zhang, Z.; Huang, D.; Xu, M.; Wang, X.; Yang, X.; Wang, B.; Kuzyakov, Y.; et al. C:P stoichiometric imbalance between soil and microorganisms drives microbial phosphorus turnover in the rhizosphere. Biol. Fertil. Soils 2022, 58, 421–433. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef]
- You, J.; Chan, Z. ROS Regulation During Abiotic Stress Responses in Crop Plants. Front. Plant Sci. 2015, 6, 1092. [Google Scholar] [CrossRef] [PubMed]
- Vanitha, S.C.; Niranjana, S.R.; Umesha, S. Role of Phenylalanine Ammonia Lyase and Polyphenol Oxidase in Host Resistance to Bacterial Wilt of Tomato. J. Phytopathol. 2009, 157, 552–557. [Google Scholar] [CrossRef]
- Mohammadi, M.; Kazemi, H. Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci. 2002, 162, 491–498. [Google Scholar] [CrossRef]
- Pršić, J.; Ongena, M. Elicitors of Plant Immunity Triggered by Beneficial Bacteria. Front. Plant Sci. 2020, 11, 594530. [Google Scholar] [CrossRef]
- Du, T.; Zhu, W.; Zhang, C.; Liang, X.; Shu, Y.; Zhou, J.; Zhang, M.; He, Y.; Tu, J.; Feng, Y. Bacteriostatic Activity and Resistance Mechanism of Artemisia annua Extract Against Ralstonia solanacearum in Pepper. Plants 2025, 14, 651. [Google Scholar] [CrossRef]
- Zhong, X.; Chen, N.; Li, H.; Wang, Y.; Guo, Z.; Shi, G.; Zhan, X.; Li, L. Advances in WRKY regulation of immune responses in medicinal plants. Front. Plant Sci. 2025, 16, 1659732. [Google Scholar] [CrossRef]
- Pagán, I.; García-Arenal, F. Tolerance to Plant Pathogens: Theory and Experimental Evidence. Int. J. Mol. Sci. 2018, 19, 810. [Google Scholar] [CrossRef]









| Primer | Sequence | Target |
|---|---|---|
| 16S-F | 5′-ACTCCTACGGGAGGCAGCA-3′ | Bacteria |
| 16S-R | 5′-GGACTACHVGGGTWTCTAAT-3′ | |
| ITS-F | 5′-GGAAGTAAAAGTCGTAACAAGG-3′ | Fungi |
| ITS-R | 5′-GCTGCGTTCTTCATCGATGC-3′ |
| Primer | Sequence | Target |
|---|---|---|
| F_alllact_IS | 5′-TGGATGCCTTGGCACTAGGA-3′ | Lactobacillus [30] |
| R_alllact_IS | 5′-AAATCTCCGGATCAAAGCTTACTTAT-3′ | |
| Ace-F | 5′-GCTGGCGGCATGCTTAACACAT-3′ | Acetobacter [31] |
| Ace-R | 5′-GCTGGCGGCATGCTTAACACAT-3′ | |
| Bc-F | 5′-CAGGAAACACTTTTGGGGATA-3′ | Botrytis cinerea [18] |
| Bc-R | 5′-CAGGAAACACTTTTGGGGATA-3′ |
| Target | Concentration g L−1 |
|---|---|
| Formic acid | 1.39 |
| Acetic acid | 27.31 |
| Propionic acid | 7.62 |
| Butyric acid | 15.69 |
| Lactic acid | 5.99 |
| No. | Retention Time (min) | Compound | Matching Degree | Area (%) |
|---|---|---|---|---|
| 1 | 1.39 | Acetic acid | 86 | 23.51 |
| 2 | 9.79 | L-alpha-Terpineol | 90 | 6.78 |
| 3 | 0.28 | Propanoic acid, ethyl ester | 86 | 4.60 |
| 4 | 10.95 | Cyclohexasiloxane, dodecamethyl- | 94 | 3.97 |
| 5 | 7.03 | Cyclotetrasiloxane, octamethyl- | 91 | 3.13 |
| 6 | 1.85 | Acetoin | 86 | 2.71 |
| 7 | 9.63 | 3-Cyclohexen-1-ol, 4-methyl-1-(1-methylethyl)-, (R)- | 96 | 2.36 |
| 8 | 10.49 | 2-phenylethyl ester | 80 | 2.01 |
| 9 | 9.97 | Creosol | 94 | 1.36 |
| 10 | 12.77 | bis(1,1-dimethylethyl)- | 90 | 0.84 |
| 11 | 9.09 | Phenylethyl Alcohol | 93 | 0.79 |
| 12 | 7.60 | D-Limonene | 95 | 0.49 |
| 13 | 9.63 | endo-Borneol | 90 | 0.43 |
| 14 | 10.88 | Phenol, 4-ethyl-2-methoxy- | 83 | 0.35 |
| 15 | 8.86 | Fenchol, exo- | 93 | 0.33 |
| 16 | 13.88 | 2-Naphthalenemethanol,1,2,3,4,4a,5,6,7-octahydro-.alpha.,.alpha.,4a,8-tetramethyl-, (2R-cis)- | 98 | 0.22 |
| 17 | 11.47 | Benzenepropanoic acid, ethyl ester | 91 | 0.18 |
| 18 | 6.36 | 4-Ethylbenzoic acid, heptyl ester | 83 | 0.15 |
| 19 | 14.99 | Cyclononasiloxane, octadecamethyl- | 83 | 0.08 |
| Treatment | Number of Plants | Disease Severity Scale | Disease Index | ||||
|---|---|---|---|---|---|---|---|
| Score 0 | Score 1 | Score 2 | Score 3 | Score 4 | |||
| CK | 20 | 0 | 0 | 0 | 4 | 16 | 95 |
| AJ | 20 | 3 | 8 | 4 | 2 | 3 | 47.5 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Huang, N.; Ai, J.; Fan, L.; Chen, L.; Meng, G.; Liu, J. The Biological Product Agricultural Jiaosu Enhances Tomato Resistance to Botrytis cinerea. J. Fungi 2025, 11, 873. https://doi.org/10.3390/jof11120873
Lu X, Huang N, Ai J, Fan L, Chen L, Meng G, Liu J. The Biological Product Agricultural Jiaosu Enhances Tomato Resistance to Botrytis cinerea. Journal of Fungi. 2025; 11(12):873. https://doi.org/10.3390/jof11120873
Chicago/Turabian StyleLu, Xue, Nan Huang, Jing Ai, Lifang Fan, Lili Chen, Geng Meng, and Jingna Liu. 2025. "The Biological Product Agricultural Jiaosu Enhances Tomato Resistance to Botrytis cinerea" Journal of Fungi 11, no. 12: 873. https://doi.org/10.3390/jof11120873
APA StyleLu, X., Huang, N., Ai, J., Fan, L., Chen, L., Meng, G., & Liu, J. (2025). The Biological Product Agricultural Jiaosu Enhances Tomato Resistance to Botrytis cinerea. Journal of Fungi, 11(12), 873. https://doi.org/10.3390/jof11120873

