Effect of Different Signal Peptides on the Expression of Glucoamylase from Aspergillus awamori in the Filamentous Fungus Penicillium verruculosum
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains, Media, and Buffers
2.1.1. Strains
2.1.2. Media
2.1.3. Buffers
2.2. Cloning of aaglaA Gene
2.3. Site-Directed Mutagenesis of aaglaA Gene
2.4. Creation of Plasmids with aaglaA* Linked to Different Signal Peptide Sequences
2.5. Transformation of the Penicillium verruculosum B1-537 Host Strain
2.6. Primary Screening of Recombinant Strains in Plates and Flasks
2.7. Glucoamylase Strains Cultivation in 1.5 L-Fermenters
2.8. Enzymatic Activities Assay and Protein Concentration
2.9. Real-Time PCR to Determine the Number of aaglaA* Gene Copies in the Genome of Recombinant Strains and Assessment of the Transcription Level of the aaglaA* Gene
2.10. Component Composition of Glucoamylase Enzyme Preparations
2.11. Mass Spectrometric Analysis
2.12. Statistical Analysis
3. Results
3.1. Bioinformatic Analysis of Signal Peptides and Obtaining of Plasmids with Signal Peptide Variants
3.2. Transformation of Penicillium verruculosum B1-537 Host Strain and Primary Screening of Recombinant Clones
3.2.1. Screening of Recombinant Clones in 24-Well Plates
3.2.2. Screening of Recombinant Clones in Flasks
3.3. Selected Strains Cultivation in 1.5 L-Fermenter
3.4. Content of Glucoamylase in Dry Enzymatic Preparations
3.5. Real-Time PCR and Determining the Number of glaA Gene Copies and Transcription
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mojzita, D.; Rantasalo, A.; Jäntti, J. Gene Expression Engineering in Fungi. Curr. Opin. Biotechnol. 2019, 59, 141–149. [Google Scholar] [CrossRef]
- Adrio, J.L.; Demain, A.L. Microbial Enzymes: Tools for Biotechnological Processes. Biomolecules 2014, 4, 117–139. [Google Scholar] [CrossRef]
- Liu, D.; Garrigues, S.; de Vries, R.P. Heterologous Protein Production in Filamentous Fungi. Appl. Microbiol. Biotechnol. 2023, 107, 5019–5033. [Google Scholar] [CrossRef] [PubMed]
- Sinitsyn, A.P.; Sinitsyna, O.A.; Rozhkova, A.M. Production of Industrial Enzymes Based on the Expression System of the Fungus Penicillium verruculosum. Appl. Biochem. Microbiol. 2021, 57, 851–865. [Google Scholar] [CrossRef]
- Sinitsyn, A.P.; Sinitsyna, O.A.; Zorov, I.N.; Rozhkova, A.M. Exploring the Capabilities of the Penicillium verruculosum Expression System for the Development of Producers of Enzymes for the Effective Degradation of Renewable Plant Biomass: A Review. Appl. Biochem. Microbiol. 2020, 56, 638–646. [Google Scholar] [CrossRef]
- Korotkova, O.G.; Rozhkova, A.M.; Kislitsin, V.Y.; Sinitsyna, O.A.; Denisenko, Y.A.; Marochkina, M.A.; Zorov, I.N.; Shashkov, I.A.; Satrutdinov, A.D.; Sinitsyn, A.P. New Feed Enzyme Preparations for The Destruction of Nonstarch Polysaccharides and Phytates. Mosc. Univ. Chem. Bull. 2023, 78, 63–68. [Google Scholar] [CrossRef]
- Dotsenko, G.S.; Gusakov, A.V.; Rozhkova, A.M.; Korotkova, O.G.; Sinitsyn, A.P. Heterologous β-Glucosidase in a Fungal Cellulase System: Comparison of Different Methods for Development of Multienzyme Cocktails. Process Biochem. 2015, 50, 1258–1263. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.-H.; Liu, T.-Q.; Zhang, H.; Zhang, H.; Li, J. The GlaA Signal Peptide Substantially Increases the Expression and Secretion of α-Galactosidase in Aspergillus niger. Biotechnol. Lett. 2018, 40, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Lin, X.; Yu, D.; Huang, L.; Wang, B.; Pan, L. High-Level Expression of Highly Active and Thermostable Trehalase from Myceliophthora thermophila in Aspergillus niger by Using the CRISPR/Cas9 Tool and Its Application in Ethanol Fermentation. J. Ind. Microbiol. Biotechnol. 2020, 47, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Volkov, P.V.; Rozhkova, A.M.; Gusakov, A.V.; Zorov, I.N.; Sinitsyn, A.P. Glucoamylases from Penicillium verruculosum and Myceliophthora thermophila: Analysis of Differences in Activity against Polymeric Substrates Based on 3D Model Structures of the Intact Enzymes. Biochimie 2015, 110, 45–51. [Google Scholar] [CrossRef]
- Su, X.; Schmitz, G.; Zhang, M.; Mackie, R.I.; Cann, I.K.O. Heterologous Gene Expression in Filamentous Fungi. Adv. Appl. Microbiol. 2012, 81, 1–61. [Google Scholar] [CrossRef]
- Xiong, A.-S.; Peng, R.-H.; Li, X.; Fan, H.-Q.; Yao, Q.-H.; Guo, M.-J.; Zhang, S.-L. Influence of signal peptide sequences on the expression of heterogeneous proteins in Pichia pastoris. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao Acta Biochim. Biophys. Sin. 2003, 35, 154–160. [Google Scholar] [PubMed]
- Dotsenko, G.S.; Semenova, M.V.; Sinitsyna, O.A.; Hinz, S.W.A.; Wery, J.; Zorov, I.N.; Kondratieva, E.G.; Sinitsyn, A.P. Cloning, Purification, and Characterization of Galactomannan-Degrading Enzymes from Myceliophthora thermophila. Biochem. Mosc. 2012, 77, 1303–1311. [Google Scholar] [CrossRef]
- Chen, H.M.; Ford, C.; Reilly, P.J. Substitution of Asparagine Residues in Aspergillus awamori Glucoamylase by Site-Directed Mutagenesis to Eliminate N-Glycosylation and Inactivation by Deamidation. Biochem. J. 1994, 301, 275–281. [Google Scholar] [CrossRef]
- Aslanidis, C.; de Jong, P.J. Ligation-Independent Cloning of PCR Products (LIC-PCR). Nucleic Acids Res. 1990, 18, 6069–6074. [Google Scholar] [CrossRef] [PubMed]
- Komarova, M.I.; Semenova, M.V.; Volkov, P.V.; Shashkov, I.A.; Rozhkova, A.M.; Zorov, I.N.; Kurzeev, S.A.; Satrutdinov, A.D.; Rubtsova, E.A.; Sinitsyn, A.P. Efficient Hydrolysis of Sugar Beet Pulp Using Novel Enzyme Complexes. Agronomy 2025, 15, 101. [Google Scholar] [CrossRef]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA Sequencing with Chain-Terminating Inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Chu, W.; Qi, Q.; Xun, L. New Insights into the QuikChangeTM Process Guide the Use of Phusion DNA Polymerase for Site-Directed Mutagenesis. Nucleic Acids Res. 2015, 43, e12. [Google Scholar] [CrossRef]
- Russell, D.W.; Sambrook, J. Molecular Cloning: A Laboratory Manual, 4th ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2012. [Google Scholar]
- Aleksenko, A.Y.; Makarova, N.A.; Nikolaev, I.V.; Clutterbuck, A.J. Integrative and Replicative Transformation of Penicillium Canescens with a Heterologous Nitrate-Reductase Gene. Curr. Genet. 1995, 28, 474–477. [Google Scholar] [CrossRef] [PubMed]
- Campbell, E.I.; Unkles, S.E.; Macro, J.A.; van den Hondel, C.; Contreras, R.; Kinghorn, J.R. Improved Transformation Efficiency of Aspergillus niger Using the Homologous niaD Gene for Nitrate Reductase. Curr. Genet. 1989, 16, 53–56. [Google Scholar] [CrossRef]
- Somogyi, M. Notes on Sugar Determination. J. Biol. Chem. 1952, 195, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Hartree, E.F. Determination of Protein: A Modification of the Lowry Method That Gives a Linear Photometric Response. Anal. Biochem. 1972, 48, 422–427. [Google Scholar] [CrossRef]
- Kislitsin, V.Y.; Chulkin, A.M.; Zorov, I.N.; Shashkov, I.A.; Satrutdinov, A.D.; Sinitsyn, A.P.; Rozhkova, A.M. Influence of Mono- and Oligosaccharides on cbh1 Gene Transcription in the Filamentous Fungus Penicillium verruculosum. Appl. Biochem. Microbiol. 2021, 57, 925–932. [Google Scholar] [CrossRef]
- Gusakov, A.V.; Semenova, M.V.; Sinitsyn, A.P. Mass Spectrometry in the Study of Extracellular Enzymes Produced by Filamentous Fungi. J. Anal. Chem. 2010, 65, 1446–1461. [Google Scholar] [CrossRef]
- Teufel, F.; Almagro Armenteros, J.J.; Johansen, A.R.; Gíslason, M.H.; Pihl, S.I.; Tsirigos, K.D.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 6.0 Predicts All Five Types of Signal Peptides Using Protein Language Models. Nat. Biotechnol. 2022, 40, 1023–1025. [Google Scholar] [CrossRef]
- Volkov, P.V.; Rozhkova, A.M.; Zorov, I.N.; Sinitsyn, A.P. Cloning, Purification and Study of Recombinant GH3 Family β-Glucosidase from Penicillium verruculosum. Biochimie 2020, 168, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Zong, X.; Wen, L.; Wang, Y.; Li, L. Research Progress of Glucoamylase with Industrial Potential. J. Food Biochem. 2022, 46, e14099. [Google Scholar] [CrossRef]
- Zhang, S.; He, Z.; Wang, H.; Zhai, J. Signal Peptides: From Molecular Mechanisms to Applications in Protein and Vaccine Engineering. Biomolecules 2025, 15, 897. [Google Scholar] [CrossRef] [PubMed]
- Sinitsyn, A.P.; Rubtsova, E.A.; Shashkov, I.A.; Rozhkova, A.M.; Sinitsyna, O.A.; Kondrat’eva, E.G.; Zorov, I.N.; Merzlov, D.A.; Osipov, D.O.; Matys, V.Y. Preparation and Properties of New Biocatalysts for the Degradation of Nonstarch Plant Polysaccharides. Catal. Ind. 2017, 9, 349–356. [Google Scholar] [CrossRef]
- Bushina, E.V.; Rubtsova, E.A.; Rozhkova, A.M.; Sinitsyna, O.A.; Koshelev, A.V.; Matys, V.Y.; Nemashkalov, V.A.; Sinitsyn, A.P. Developing the Producers of Cellulolytic and Pectinolytic Enzymes Based on the Fungus Penicillium verruculosum. Appl. Biochem. Microbiol. 2015, 51, 442–450. [Google Scholar] [CrossRef]
- Sánchez, F.; Lozano, M.; Rubio, V.; Peñalva, M.A. Transformation in Penicillium chrysogenum. Gene 1987, 51, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Bulakhov, A.G.; Volkov, P.V.; Rozhkova, A.M.; Gusakov, A.V.; Nemashkalov, V.A.; Satrutdinov, A.D.; Sinitsyn, A.P. Using an Inducible Promoter of a Gene Encoding Penicillium verruculosum Glucoamylase for Production of Enzyme Preparations with Enhanced Cellulase Performance. PLoS ONE 2017, 12, e0170404. [Google Scholar] [CrossRef]
- Lubertozzi, D.; Keasling, J.D. Developing Aspergillus as a Host for Heterologous Expression. Biotechnol. Adv. 2009, 27, 53–75. [Google Scholar] [CrossRef]
- Keränen, S.; Penttilä, M. Production of Recombinant Proteins in the Filamentous Fungus Trichoderma reesei. Curr. Opin. Biotechnol. 1995, 6, 534–537. [Google Scholar] [CrossRef]
- Punt, P.J.; van Biezen, N.; Conesa, A.; Albers, A.; Mangnus, J.; van den Hondel, C. Filamentous Fungi as Cell Factories for Heterologous Protein Production. Trends Biotechnol. 2002, 20, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Brewster, R.C.; Weinert, F.M.; Garcia, H.G.; Song, D.; Rydenfelt, M.; Phillips, R. The Transcrition Factor Titration Effect Dictates Level of Gene Expression. Cell 2014, 156, 1312–1323. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhao, S.; Chen, X.-X.; Deng, Q.-P.; Li, C.-X.; Feng, J.-X. Secretory Overproduction of a Raw Starch-Degrading Glucoamylase in Penicillium Oxalicum Using Strong Promoter and Signal Peptide. Appl. Microbiol. Biotechnol. 2018, 102, 9291–9301. [Google Scholar] [CrossRef]
- Noriega, T.R.; Tsai, A.; Elvekrog, M.M.; Petrov, A.; Neher, S.B.; Chen, J.; Bradshaw, N.; Puglisi, J.D.; Walter, P. Signal Recognition Particle-Ribosome Binding Is Sensitive to Nascent Chain Length. J. Biol. Chem. 2014, 289, 19294–19305. [Google Scholar] [CrossRef]
- Janda, C.Y.; Li, J.; Oubridge, C.; Hernández, H.; Robinson, C.V.; Nagai, K. Recognition of a signal peptide by the signal recognition particle. Nature 2010, 465, 507. [Google Scholar] [CrossRef]
- Egea, P.F.; Stroud, R.M.; Walter, P. Targeting proteins to membranes: Structure of the signal recognition particle. Curr. Opin. Struct. Biol. 2005, 15, 213–220. [Google Scholar] [CrossRef]
- Hegde, R.S.; Bernstein, H.D. The Surprising Complexity of Signal Sequences. Trends Biochem. Sci. 2006, 31, 563–571. [Google Scholar] [CrossRef]
- Cui, J.; Chen, W.; Sun, J.; Guo, H.; Madley, R.; Xiong, Y.; Pan, X.; Wang, H.; Tai, A.W.; Weiss, M.A.; et al. Competitive Inhibition of the Endoplasmic Reticulum Signal Peptidase by Non-Cleavable Mutant Preprotein Cargos. J. Biol. Chem. 2015, 290, 28131–28140. [Google Scholar] [CrossRef]
- Wang, Q.; Zhong, C.; Xiao, H. Genetic Engineering of Filamentous Fungi for Efficient Protein Expression and Secretion. Front. Bioeng. Biotechnol. 2020, 8, 293. [Google Scholar] [CrossRef] [PubMed]
- Ono, K. Signal Peptides and Their Fragments in Post-Translation: Novel Insights of Signal Peptides. Int. J. Mol. Sci. 2024, 25, 13534. [Google Scholar] [CrossRef] [PubMed]
- Barrero, J.J.; Casler, J.C.; Valero, F.; Ferrer, P.; Glick, B.S. An Improved Secretion Signal Enhances the Secretion of Model Proteins from Pichia Pastoris. Microb. Cell Factories 2018, 17, 161. [Google Scholar] [CrossRef]
- Xue, S.; Liu, X.; Pan, Y.; Xiao, C.; Feng, Y.; Zheng, L.; Zhao, M.; Huang, M. Comprehensive Analysis of Signal Peptides in Saccharomyces cerevisiae Reveals Features for Efficient Secretion. Adv. Sci. Weinh. Baden-Wurtt. Ger. 2023, 10, e2203433. [Google Scholar] [CrossRef]
- Peng, C.; Shi, C.; Cao, X.; Li, Y.; Liu, F.; Lu, F. Factors Influencing Recombinant Protein Secretion Efficiency in Gram-Positive Bacteria: Signal Peptide and Beyond. Front. Bioeng. Biotechnol. 2019, 7, 139. [Google Scholar] [CrossRef]



| SP | Enzyme | Microorganism | SP, Length, aa | Probability of Cleavage * [25] |
|---|---|---|---|---|
| aaGlaA | glucan1,4-α-glucosidase, GH15 EC number “3.2.1.3” | A. awamori | 24 | 0.598458 |
| CbhI | cellobiohydrolase I, GH7, EC number “3.2.1.176” | P. verruculosum | 25 | 0.942205 |
| pvGlaA | glucan1,4-α-glucosidase, GH15, EC number “3.2.1.3” | P. verruculosum | 18 | 0.979223 |
| BglI | β-glucosidase, GH3 EC number “3.2.1.21” | A. niger | 19 | 0.971743 |
| XylA | endo-1,4-β-xylanase GH10, EC number “3.2.1.8” | P. canescens | 25 | 0.894761 |
| Signal Peptide Contained in the Construct | Number of Clones |
|---|---|
| Bgl1 SP (β– glucosidase peptide from A. niger) | 37 |
| Cbh1 SP (cellobiohydrolase I peptide from P. verruculosum) | 26 |
| pvGlaA SP (glucoamylase A peptide from P. verruculosum) | 34 |
| XylA SP (xylanase A peptide from P. canescens) | 34 |
| aaGlaA SP (nature peptide glucoamylase A (from A. awamori) | 33 |
| № Clone | pvGlaA SP | № Clone | XylA SP | ||||
| Activity Glucoamilase (U/mL) | Concentration of Protein (mg/mL) | Specific Activity (U/mg) | Activity Glucoamilase (U/mL) | Concentration of Protein (mg/mL) | Specific Activity (U/mg) | ||
| 1 | 46 ± 3 b | 2.4 ± 0.1 c | 18.9 ± 1.3 | 1 | 36 ± 3 a | 3.9 ± 0.2 a | 9.4 ± 0.7 |
| 4 | 45 ± 3 b | 2.8 ± 0.2 c | 15.9 ± 1.0 | 2 | 79 ± 6 c | 4.5 ± 0.3 b | 17.4 ± 1.3 |
| 6 | 26 ± 2 c | 2.0 ± 0.1 c | 13.3 ± 1.0 | 3 | 24 ± 2 c | 2.1 ± 0.1 c | 11.5 ± 0.8 |
| 8 | 53 ± 4 a | 1.8 ± 0.1 c | 30.0 ± 2.2 | 6 | 115 ± 8 c | 5.3 ± 0.3 c | 5.0 ± 0.3 |
| 9 | 54 ± 4 a | 4.1 ± 0.3 b | 13.4 ± 1.0 | 7 | 89 ± 6 c | 5.9 ± 0.4 c | 15 ± 1 |
| 18 | 59 ± 4 a | 2.4 ± 0.2 c | 24.8 ± 1.8 | 8 | 32 ± 2 c | 3.1 ± 0.2 c | 10.3 ± 0.7 |
| 19 | 101 ± 7 c | 3.3 ± 0.2 b | 30.9 ± 2.0 | 9 | 32 ± 2 c | 2.3 ± 0.2 c | 13.7 ± 0.9 |
| 21 | 60 ± 4 b | 2.5 ± 0.2 c | 24.5 ± 1.6 | 10 | 20.0 ± 1.4 c | 2.8 ± 0.2 c | 7.1 ± 0.4 |
| 27 | 27 ± 2 c | 4.0 ± 0.2 b | 6.7 ± 0.4 | 11 | 27.2 ± 1.8 c | 7.3 ± 0.5 c | 3.7 ± 0.2 |
| 28 | 33 ± 2 c | 3.4 ± 0.2 b | 9.5 ± 0.7 | 13 | 17 ± 1 c | 11.2 ± 0.7 c | 1.5 ± 0.1 |
| 29 | 58 ± 3 a | 5.3 ± 0.4 c | 10.9 ± 0.8 | 14 | 31 ± 2.1 c | 1.5 ± 0.08 c | 21.0 ± 1.4 |
| 30 | 57 ± 4 a | 4.8 ± 0.3 c | 11.8 ± 0.7 | 19 | 11.1 ± 0.7 c | 3.7 ± 0.2 b | 3.0 ± 0.2 |
| 32 | 66 ± 4 b | 6.2 ± 0.4 c | 10.6 ± 0.8 | 21 | 26.5 ± 1.8 c | 2.3 ± 0.2 c | 11.5 ± 0.7 |
| 33 | 91 ± 6 c | 6.2 ± 0.5 c | 14.8 ± 1.1 | 28 | 41 ± 3 a | 2.7 ± 0.2 c | 15.4 ± 1.0 |
| № clone | Bgl1 SP | № clone | aaGlaA SP | ||||
| Activity glucoamilase (U/mL) | Concentration of protein (mg/mL) | Specific activity (U/mg) | Activity glucoamilase (U/mL) | Concentration of protein (mg/mL) | Specific activity (U/mg) | ||
| 2 | 29 ± 2 c | 3.9 ± 0.2 a | 7.7 ± 0.5 | 3 | 18 ± 1 c | 1.6 ± 0.1 c | 11.2 ± 0.9 |
| 3 | 10.5 ± 0.7 c | 2.1 ± 0.1 c | 5.1 ± 0.4 | 6 | 77 ± 7 c | 3.4 ± 0.3 b | 23.1 ± 1.7 |
| 4 | 13.6 ± 0.9 b | 4.0 ± 0.3 b | 3.4 ± 0.2 | 7 | 13 ± 1 c | 2.4 ± 0.2 a | 5.3 ± 0.3 |
| 5 | 14.5 ± 1.0 b | 3.6 ± 0.2 b | 4.0 ± 0.3 | 9 | 26 ± 2 c | 3.4 ± 0.3 b | 7.7 ± 0.7 |
| 6 | 14.5 ± 0.9 b | 5.9 ± 0.3 c | 2.5 ± 0.2 | 10 | 21 ± 2 c | 6.3 ± 0.5 c | 3.4 ± 0.2 |
| 7 | 40 ± 3 c | 5.0 ± 0.3 c | 8.1 ± 0.5 | 11 | 36 ± 2 a | 2.2 ± 0.2 c | 16.6 ± 1.4 |
| 9 | 11.0 ± 0.7 c | 1.4 ± 0.1 c | 7.8 ± 0.6 | 13 | 69 ± 5 c | 3.2 ± 0.2 a | 21 ± 2 |
| 10 | 12.0 ± 0.8 c | 4.7 ± 0.3 a | 2.5 ± 0.2 | 14 | 11.5 ± 0.6 c | 2.0 ± 0.1 c | 5.6 ± 0.4 |
| 12 | 29 ± 2 c | 7.1 ± 0.4 b | 4.1 ± 0.3 | 19 | 40 ± 3 b | 2.0 ± 0.1 c | 20 ± 2 |
| 13 | 11.8 ± 0.8 c | 2.1 ± 0.2 c | 5.7 ± 0.4 | 20 | 33 ± 2 a | 13 ± 1 c | 2.6 ± 0.2 |
| 14 | 13.9 ± 0.9 b | 2.5 ± 0.1 c | 5.7 ± 0.4 | 23 | 22 ± 2 b | 5.8 ± 0.5 b | 3.8 ± 0.3 |
| 18 | 10.7 ± 0.8 c | 2.5 ± 0.2 c | 4.3 ± 0.3 | 27 | 46 ± 4 c | 11.3 ± 0.8 a | 4.1 ± 0.3 |
| 25 | 32 ± 2 c | 10.1 ± 0.7 c | 3.2 ± 0.2 | 32 | 12 ± 1 c | 1.07 ± 0.07 c | 11.6 ± 0.9 |
| 30 | 12 ± 1 c | 8.2 ± 0.5 b | 1.5 ± 0.1 | ||||
| № clone | Cbh1 SP | ||||||
| Activity glucoamilase (U/mL) | Concentration of protein (mg/mL) | Specific activity (U/mg) | |||||
| 3 | 18.1 ± 1.3 b | 3.4 ± 0.3 a | 5.4 ± 0.4 | ||||
| 8 | 14.6 ± 1.1 a | 2.7 ± 0.2 b | 5.4 ± 0.4 | ||||
| 10 | 13.5 ± 1.0 b | 2.8 ± 0.2 b | 4.8 ± 0.3 | ||||
| 12 | 12.4 ± 0.9 b | 5.7 ± 0.4 c | 2.1 ± 0.1 | ||||
| 15 | 20.2 ± 1.4 b | 2.4 ± 0.2 b | 8.4 ± 0.6 | ||||
| 18 | 15 ± 1 a | 3.3 ± 0.2 a | 4.5 ± 0.3 | ||||
| 19 | 13.0 ± 0.8 b | 3.1 ± 0.2 a | 4.3 ± 0.2 |
| Time of Cultivation | pvGlaA SP21 | ||
| Activity of aaGlaA* (U/mL) | Protein Concentration (mg/mL) | Specific Activity (U/mg) | |
| 48 h | 91 ± 8.1 c | 3.3 ± 0.5 c | 28 ± 1.4 |
| 72 h | 330± 29 c | 9.7 ± 0.6 c | 34 ± 2.7 |
| 96 h | 820 ± 52 c | 17 ± 1.3 c | 49 ± 3.8 |
| 120 h | 1110 ± 76 c | 27 ± 2.3 a | 41 ± 2.3 |
| 144 h | 2400 ± 180 c | 26 ± 2.3 a | 92 ± 6.7 |
| XylA SP2 | |||
| Activity of aaGlaA* (U/mL) | Protein concentration (mg/mL) | Specific activity (U/mg) | |
| 48 h | 150 ± 10 c | 2.2 ± 0.13 c | 68 ± 5 |
| 72 h | 430 ± 35 c | 13.0 ± 0.8 c | 32 ± 2.2 |
| 96 h | 840 ± 60 c | 23 ± 1.5 b | 36 ± 2.4 |
| 120 h | 1330 ± 90 c | 29 ± 1.9 a | 45 ± 3.1 |
| 144 h | 1750 ± 120 b | 27 ± 1.8 a | 64 ± 5 |
| aaGlaA SP6 | |||
| Activity of aaGlaA* (U/mL) | Protein concentration (mg/mL) | Specific activity (U/mg) | |
| 48 h | 35 ± 3.2 c | 1.3 ± 0.2 c | 27 ± 4 |
| 72 h | 170 ± 15 c | 15 ± 1.0 c | 11.1± 0.7 |
| 96 h | 450 ± 27 c | 23 ± 1.6 c | 20 ± 2 |
| 120 h | 740 ± 47 c | 30 ± 2.1 b | 25 ± 2.1 |
| 144 h | 870 ± 62 b | 30 ± 2.0 a | 29 ± 2.9 |
| Bgl1 SP2 | |||
| Activity of aaGlaA* (U/mL) | Protein concentration (mg/mL) | Specific activity (U/mg) | |
| 48 h | 32 ± 3,1 c | 0.31 ± 0.02 c | 103 ± 12 |
| 72 h | 190 ± 14 c | 14.9 ± 0.96 c | 12.5 ± 0.7 |
| 96 h | 490 ± 36 c | 24 ± 1.5 c | 20.6 ± 1.7 |
| 120 h | 770 ± 56 c | 28 ± 2.3 b | 27 ± 2.2 |
| 144 h | 880 ± 59 b | 29 ± 2.2 a | 30 ± 2.6 |
| EP | Activity of aaGlaA* (U/g) | aaGlaA* Content (%) |
|---|---|---|
| aaGlaA SP 6 | 19,000 ± 1100 | 43.6 |
| pvGlaA SP 21 | 33,300 ± 900 | 77.4 |
| XylA SP 2 | 28,600 ± 800 | 74.1 |
| Bgl1 SP 2 | 23,500 ± 800 | 59.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Eroshenko, N.; Chulkin, A.; Volkov, P.; Zorov, I.; Dotsenko, A.; Shashkov, I.; Sinitsyn, A.; Rozhkova, A. Effect of Different Signal Peptides on the Expression of Glucoamylase from Aspergillus awamori in the Filamentous Fungus Penicillium verruculosum. J. Fungi 2026, 12, 85. https://doi.org/10.3390/jof12020085
Eroshenko N, Chulkin A, Volkov P, Zorov I, Dotsenko A, Shashkov I, Sinitsyn A, Rozhkova A. Effect of Different Signal Peptides on the Expression of Glucoamylase from Aspergillus awamori in the Filamentous Fungus Penicillium verruculosum. Journal of Fungi. 2026; 12(2):85. https://doi.org/10.3390/jof12020085
Chicago/Turabian StyleEroshenko, Nikita, Andrey Chulkin, Pavel Volkov, Ivan Zorov, Anna Dotsenko, Igor Shashkov, Arkady Sinitsyn, and Aleksandra Rozhkova. 2026. "Effect of Different Signal Peptides on the Expression of Glucoamylase from Aspergillus awamori in the Filamentous Fungus Penicillium verruculosum" Journal of Fungi 12, no. 2: 85. https://doi.org/10.3390/jof12020085
APA StyleEroshenko, N., Chulkin, A., Volkov, P., Zorov, I., Dotsenko, A., Shashkov, I., Sinitsyn, A., & Rozhkova, A. (2026). Effect of Different Signal Peptides on the Expression of Glucoamylase from Aspergillus awamori in the Filamentous Fungus Penicillium verruculosum. Journal of Fungi, 12(2), 85. https://doi.org/10.3390/jof12020085

