Head-to-Head Comparison of Etest, MICRONAUT-AM EUCAST and Reference Broth Microdilution-Based CLSI Results for Candida kefyr Antifungal Susceptibility Testing: Implications for Detection of Reduced Susceptibility to Amphotericin B
Abstract
1. Introduction
2. Materials and Methods
2.1. Reference Strains and Clinical C. kefyr Isolates
2.2. Antifungal Susceptibility Testing
2.3. Sequencing of ERG Genes and Total Cell Ergosterol Analyses
2.4. Sequencing of Hotspot-1 and Hotspot-2 Regions of FKS1 Gene
2.5. Fingerprinting of C. kefyr Isolates
2.6. Statistical Analysis
3. Results
3.1. Clinical Isolates and Distribution of MIC Values by CLSI, Etest and MCN-AM Tests
3.2. Performance Comparison of CLSI, Etest and MCN-AM AFST Results
3.3. Discordant AMB AFST Results, ERG Gene Sequences and Ergosterol/Fecosterol Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef]
- Bassetti, M.; Azoulay, E.; Kullberg, B.J.; Ruhnke, M.; Shoham, S.; Vazquez, J.; Giacobbe, D.R.; Calandra, T. EORTC/MSGERC Definitions of Invasive Fungal Diseases: Summary of Activities of the Intensive Care Unit Working Group. Clin. Infect. Dis. 2021, 72 (Suppl. S2), S121–S127. [Google Scholar] [CrossRef] [PubMed]
- McCarty, T.P.; White, C.M.; Pappas, P.G. Candidemia and invasive candidiasis. Infect. Dis. Clin. N. Am. 2021, 35, 389–413. [Google Scholar] [CrossRef]
- Basmaciyan, L.; Bon, F.; Paradis, T.; Lapaquette, P.; Dalle, F. Candida albicans interactions with the host: Crossing the intestinal epithelial barrier. Tissue Barriers 2019, 7, 1612661. [Google Scholar] [CrossRef]
- Du, H.; Bing, J.; Hu, T.; Ennis, C.L.; Nobile, C.J.; Huang, G. Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog. 2020, 16, e1008921. [Google Scholar] [CrossRef]
- Bayona, J.V.M.; Palop, N.T.; García, C.S.; Serrano, M.d.R.G.; Cardona, C.G. Candida auris from colonisation to candidemia: A four-year study. Mycoses 2023, 66, 882–890. [Google Scholar]
- Lamoth, F.; Lockhart, S.R.; Berkow, E.L.; Calandra, T. Changes in the epidemiological landscape of invasive candidiasis. J. Antimicrob. Chemother. 2018, 73, i4–i13. [Google Scholar] [CrossRef]
- Lass-Flörl, C.; Kanj, S.S.; Govender, N.P.; Thompson, G.R., 3rd; Ostrosky-Zeichner, L.; Govrins, M.A. Invasive candidiasis. Nat. Rev. Dis. Primers. 2024, 10, 20. [Google Scholar] [CrossRef]
- Wiederhold, N.P. Emerging fungal infections: New species, new names, and antifungal resistance. Clin. Chem. 2021, 68, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Al-Obaid, I.; Asadzadeh, M.; Ahmad, S.; Alobaid, K.; Alfouzan, W.; Bafna, R.; Emara, M.; Joseph, L. Fatal breakthrough candidemia in an immunocompromised patient in Kuwait due to Candida auris exhibiting reduced susceptibility to echinocandins and carrying a novel mutation in hotspot-1 of FKS1. J. Fungi 2022, 8, 267. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Asadzadeh, M. Strategies to prevent the transmission of Candida auris in health care facilities. Curr. Fung. Infect. Rep. 2023, 17, 36–48. [Google Scholar] [CrossRef]
- Sharma, M.; Chakrabarti, A. Candidiasis and other emerging yeasts. Curr. Fung. Infect. Rep. 2023, 17, 15–24. [Google Scholar] [CrossRef]
- Stavrou, A.A.; Lackner, M.; Lass-Flörl, C.; Boekhout, T. The changing spectrum of Saccharomycotina yeasts Ccausing candidemia: Phylogeny mirrors antifungal susceptibility patterns for azole drugs and amphothericin B. FEMS Yeast Res. 2019, 19, foz037. [Google Scholar] [CrossRef]
- Cornely, O.A.; Sprute, R.; Bassetti, M.; Chen, S.C.; Groll, A.H.; Kurzai, O.; Lass-Flörl, C.; Ostrosky-Zeichner, L.; Rautemaa-Richardson, R.; Revathi, G.; et al. Global guideline for the diagnosis and management of candidiasis: An initiative of the ECMM in cooperation with ISHAM and ASM. Lancet Infect. Dis. 2025, 25, e280–e293. [Google Scholar] [CrossRef]
- Sprute, R.; Cornely, O.A.; Chen, S.C.; Seidel, D.; Schuetz, A.N.; Zhang, S.X. All you need to know and more about the diagnosis and management of rare yeast infections. mBio 2021, 12, e0159421. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Asadzadeh, M.; Al-Sweih, N.; Khan, Z. Spectrum and management of rare Candida/yeast infections in Kuwait in the Middle East. Ther. Adv. Infect. Dis. 2024, 11, 20499361241263733. [Google Scholar] [CrossRef]
- Dufresne, S.F.; Marr, K.A.; Sydnor, E.; Staab, J.F.; Karp, J.E.; Lu, K.; Zhang, S.X.; Lavallée, C.; Perl, T.M.; Neofytos, D. Epidemiology of Candida kefyr in patients with hematologic malignancies. J. Clin. Microbiol. 2014, 52, 1830–1837. [Google Scholar] [CrossRef] [PubMed]
- Lortholary, O.; Renaudat, C.; Sitbon, K.; Desnos-Ollivier, M.; Bretagne, S.; Dromer, F.; French Mycosis Study Group. The risk and clinical outcome of candidemia depending on underlying malignancy. Intensive Care Med. 2017, 43, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J.; Turnidge, J.D.; Castanheira, M.; Jones, R.N. Twenty years of the SENTRY antifungal surveillance program: Results for Candida species from 1997–2016. Open Forum Infect. Dis. 2019, 6 (Suppl. S1), S79–S94. [Google Scholar] [CrossRef]
- Ahmad, S.; Khan, Z.; Al-Sweih, N.; Alfouzan, W.; Joseph, L.; Asadzadeh, M. Candida kefyr in Kuwait: Prevalence, antifungal drug susceptibility and genotypic heterogeneity. PLoS ONE 2020, 15, e0240426. [Google Scholar] [CrossRef]
- Asadzadeh, M.; Alfouzan, W.; Parker, J.E.; Meis, J.F.; Kelly, S.L.; Joseph, L.; Ahmad, S. Molecular characterization and sterol profiles identify nonsynonymous mutations in ERG2 as a major mechanism conferring reduced susceptibility to amphotericin B in Candida kefyr. Microbiol. Spectr. 2023, 11, e01474-23. [Google Scholar] [CrossRef]
- Ranque, S.; Lachaud, L.; Gari-Toussaint, M.; Michel-Nguyen, A.; Mallié, M.; Gaudart, J.; Bertout, S. Interlaboratory reproducibility of Etest amphotericin B and caspofungin yeast susceptibility testing and comparison with the CLSI method. J. Clin. Microbiol. 2012, 50, 2305–2309. [Google Scholar] [CrossRef]
- Shin, J.H.; Kim, M.N.; Jang, S.J.; Ju, M.Y.; Kim, S.H.; Shin, M.G.; Suh, S.P.; Ryang, D.W. Detection of amphotericin B resistance in Candida haemulonii and closely related species by use of the Etest, Vitek-2 yeast susceptibility system, and CLSI and EUCAST broth microdilution methods. J. Clin. Microbiol. 2012, 50, 1852–1855. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Joseph, L.; Parker, J.E.; Asadzadeh, M.; Kelly, S.L.; Meis, J.F.; Khan, Z. ERG6 and ERG2 are major targets conferring reduced susceptibility to amphotericin B in clinical Candida glabrata isolates in Kuwait. Antimicrob. Agents Chemother. 2019, 63, e01900–e01918. [Google Scholar] [CrossRef]
- Ceballos-Garzon, A.; Garcia-Effron, G.; Cordoba, S.; Rodriguez, J.Y.; Alvarez-Moreno, C.; Pape, P.L.; Parra-Giraldo, C.M.; Morales-López, S. Head-to-head comparison of CLSI, EUCAST, Etest and VITEK®2 results for Candida auris susceptibility testing. Int. J. Antimicrob. Agents. 2022, 59, 106558. [Google Scholar] [CrossRef]
- Siopi, M.; Peroukidou, I.; Beredaki, M.I.; Spruijtenburg, B.; de Groot, T.; Meis, J.F.; Vrioni, G.; Tsakris, A.; Pournaras, S.; Meletiadis, J. Overestimation of amphotericin B resistance in Candida auris with Sensititre YeastOne antifungal susceptibility testing: A need for adjustment for correct interpretation. Microbiol. Spectr. 2023, 11, e0443122. [Google Scholar] [CrossRef]
- Siopi, M.; Pachoulis, I.; Leventaki, S.; Spruijtenburg, B.; Meis, J.F.; Pournaras, S.; Vrioni, G.; Tsakris, A.; Meletiadis, J. Evaluation of the Vitek 2 system for antifungal susceptibility testing of Candida auris using a representative international panel of clinical isolates: Overestimation of amphotericin B resistance and underestimation of fluconazole resistance. J. Clin. Microbiol. 2024, 62, e0152823. [Google Scholar] [CrossRef] [PubMed]
- Arendrup, M.C.; Lockhart, S.R.; Wiederhold, N. Candida auris MIC testing by EUCAST and clinical and laboratory standards institute broth microdilution, and gradient diffusion strips; to be or not to be amphotericin B resistant? Clin. Microbiol. Infect. 2025, 31, 108–112. [Google Scholar] [CrossRef]
- Asadzadeh, M.; Ahmad, S.; Alfouzan, W.; Al-Obaid, I.; Spruijtenburg, B.; Meijer, E.F.J.; Meis, J.F.; Mokaddas, E. Evaluation of Etest and MICRONAUT-AM assay for antifungal susceptibility testing of Candida auris: Underestimation of fluconazole resistance by MICRONAUT-AM and overestimation of amphotericin B resistance by Etest. Antibiotics 2024, 13, 840. [Google Scholar] [CrossRef]
- Alobaid, K.; Ahmad, S.; Asadzadeh, M.; Mokaddas, E.; Al-Sweih, N.; Albenwan, K.; Alfouzan, W.; Al-Obaid, I.; Jeragh, A.; Al-Roomi, E.; et al. Epidemiology of candidemia in Kuwait: A nationwide, population-based study. J. Fungi 2021, 7, 673. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs for Antifungal Agents, Version 10.0. 2020. Available online: https://www.eucast.org/astoffungi/clinicalbreakpointsforantifungals (accessed on 5 May 2025).
- Alfouzan, W.; Ahmad, S.; Dhar, R.; Asadzadeh, M.; Almerdasi, N.; Abdo, N.M.; Joseph, L.; de Groot, T.; Alali, W.Q.; Khan, Z.; et al. Molecular epidemiology of Candida auris outbreak in a major secondary-care hospital in Kuwait. J. Fungi 2020, 6, 307. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast, 4th ed.; CLSI document M27-A4; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Espinel-Ingroff, A.; Alvarez-Fernandez, M.; Cantón, E.; Carver, P.L.; Chen, S.C.; Eschenauer, G.; Getsinger, D.L.; Gonzalez, G.M.; Govender, N.P.; Grancini, A.; et al. Multicenter study of epidemiological cutoff values and detection of resistance in Candida spp. to anidulafungin, caspofungin, and micafungin using the Sensititre YeastOne colorimetric method. Antimicrob. Agents Chemother. 2015, 59, 6725–6732. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A.; Sasso, M.; Turnidge, J.; Arendrup, M.; Botterel, F.; Bourgeois, N.; Bouteille, B.; Canton, E.; Cassaing, S.; Dannaoui, E.; et al. Etest ECVs/ECOFFs for detection of resistance in prevalent and three nonprevalent Candida spp. to triazoles and amphotericin B and Aspergillus spp. to caspofungin: Further assessment of modal variability. Antimicrob. Agents Chemother. 2021, 65, e0109321. [Google Scholar] [CrossRef] [PubMed]
- Vandeputte, P.; Tronchin, G.; Larcher, G.; Ernoult, E.; Bergès, T.; Chabasse, D.; Bouchara, J.P. A nonsense mutation in the ERG6 gene leads to reduced susceptibility to polyenes in a clinical isolate of Candida glabrata. Antimicrob. Agents Chemother. 2008, 52, 3701–3709. [Google Scholar] [CrossRef] [PubMed]
- Hull, C.M.; Bader, O.; Parker, J.E.; Weig, M.; Gross, U.; Warrilow, A.G.; Kelly, D.E.; Kelly, S.L. Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2. Antimicrob. Agents Chemother. 2012, 56, 6417–6421. [Google Scholar] [CrossRef]
- Kannan, A.; Asner, S.A.; Trachsel, E.; Kelly, S.; Parker, J.; Sanglard, D. Erratum for Kannan et al., “Comparative genomics for the elucidation of multidrug resistance in Candida lusitaniae”. mBio 2020, 11, e03403-19. [Google Scholar] [CrossRef]
- Rybak, J.M.; Barker, K.; Munoz, J.F.; Parker, J.E.; Ahmad, S.; Mokaddas, E.; Abdullah, A.; Elhagracy, R.; Cuomo, C.A.; Kelly, S.L.; et al. In vivo emergence of high-level resistance during treatment reveals the first identified mechanism of amphotericin B resistance in Candida auris. Clin. Microbiol. Infect. 2022, 28, 838–843. [Google Scholar] [CrossRef]
- Ben Abid, F.; Salah, H.; Sundararaju, S.; Dalil, L.; Abdelwahab, A.H.; Salameh, S.; Ibrahim, E.B.; Almaslmani, M.A.; Tang, P.; Perez-Lopez, A.; et al. Molecular characterization of Candida auris outbreak isolates in Qatar from patients with COVID-19 reveals the emergence of isolates resistant to three classes of antifungal drugs. Clin. Microbiol. Infect. 2023, 29, 1083.e1–1083.e7. [Google Scholar] [CrossRef]
- Massic, L.; Doorley, L.A.; Jones, S.J.; Richardson, I.; Siao, D.D.; Siao, L.; Dykema, P.; Hua, C.; Schneider, E.; Cuomo, C.A.; et al. Acquired amphotericin B resistance attributed to a mutated ERG3 in Candidozyma auris. bioRxiv [Preprint] 2025. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Andes, D.; Diekema, D.J.; Espinal-Ingroff, A.; Sheehan, D. The CLSI Subcommittee for Antifungal Susceptibility Testing. Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and Candida: Time for harmonization of CLSI and EUCAST broth microdilution methods. Drug Resist. Update 2010, 13, 180–195. [Google Scholar]
- Pfaller, M.A.; Castanheira, M.; Diekema, D.J.; Messer, S.A.; Moet, G.J.; Jones, R.N. Comparison of European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Etest methods with the CLSI broth microdilution method for echinocandin susceptibility testing of Candida species. J. Clin. Microbiol. 2010, 48, 1592–1599. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Boekhout, T.; Akova, M.; Meis, J.F.; Cornely, O.A.; Lortholary, O. European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group; European Confederation of Medical Mycology. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of rare invasive yeast infections. Clin. Microbiol. Infect. 2014, 20 (Suppl. S3), 76–98. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Friberg, N.; Mares, M.; Kahlmeter, G.; Meletiadis, J.; Guinea, J.; Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST). How to interpret MICs of antifungal compounds according to the revised clinical breakpoints v. 10.0 European committee on antimicrobial susceptibility testing (EUCAST). Clin. Microbiol. Infect. 2020, 26, 1464–1472. [Google Scholar] [CrossRef] [PubMed]
- Espinel-Ingroff, A.; Turnidge, J.; Alastruey-Izquierdo, A.; Botterel, F.; Canton, E.; Castro, C.; Chen, Y.C.; Chen, Y.; Chryssanthou, E.; Dannaoui, E.; et al. Method-dependent epidemiological cutoff values for detection of triazole resistance in Candida and Aspergillus species for the Sensititre YeastOne colorimetric broth and Etest agar diffusion methods. Antimicrob. Agents Chemother. 2019, 63, e01651-18. [Google Scholar] [CrossRef]
- Salsé, M.; Gangneux, J.P.; Cassaing, S.; Delhae, L.; Fekkar, A.; Dupont, D.; Botterel, F.; Costa, D.; Bourgeois, N.; Bouteille, B.; et al. Multicentre study to determine the Etest epidemiological cut-off values of antifungal drugs in Candida spp. and Aspergillus fumigatus species complex. Clin. Microbiol. Infect. 2019, 25, 1546–1552. [Google Scholar] [CrossRef]
- Kilburn, S.; Innes, G.; Quinn, M.; Southwick, K.; Ostrowsky, B.; Greenko, J.A.; Lutterloh, E.; Greeley, R.; Magleby, R.; Chaturvedi, V.; et al. Antifungal resistance trends of Candida auris clinical isolates in New York and New Jersey from 2016 to 2020. Antimicrob. Agents Chemother. 2022, 66, e0224221. [Google Scholar] [CrossRef]
- Humphries, R.M.; Ambler, J.; Mitchell, S.L.; Castanheira, M.; Dingle, T.; Hindler, J.A.; Koeth, L.; Sei, K.; CLSI Methods Development Standardization Working Group of the Subcommittee on Antimicrobial Susceptibility Testing. CLSI methods development standardization working group best practices for evaluation of antimicrobial susceptibility tests. J. Clin. Microbiol. 2018, 56, e01934-17. [Google Scholar] [CrossRef] [PubMed]
- Asadzadeh, M.; Mokaddas, E.; Ahmad, S.; Abdullah, A.A.; de Groot, T.; Meis, J.F.; Shetty, S.A. Molecular characterisation of Candida auris isolates from immunocompromised patients in a tertiary-care hospital in Kuwait reveals a novel mutation in FKS1 conferring reduced susceptibility to echinocandins. Mycoses 2022, 65, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.H.; Clancy, C.J.; Yu, V.L.; Yu, Y.C.; Morris, A.J.; Snydman, D.R.; Sutton, D.A.; Rinaldi, M.G. Do in vitro susceptibility data predict the microbiologic response to amphotericin B? Results of a prospective study of patients with Candida fungemia. J. Infect. Dis. 1998, 177, 425–430. [Google Scholar] [CrossRef]
- Muller, C.; Aldejohann, A.M.; Kurzai, O.; Martin, R. Sterol profiling as a prediction tool for the identification of antifungal drug resistance. Mycoses 2021, 65 (Suppl. S1), 24. [Google Scholar]
- Geber, A.; Hitchcock, C.A.; Swartz, J.E.; Pullen, F.S.; Marsden, K.E.; Kwon-Chung, K.J.; Bennett, J.E. Deletion of the Candida glabrata ERG3 and ERG11 genes: Effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Antimicrob. Agents Chemother. 1995, 39, 2708–2717. [Google Scholar] [CrossRef]
- Kelly, S.L.; Lamb, D.C.; Kelly, D.E.; Manning, N.J.; Loeffler, J.; Hebart, H.; Schumacher, U.; Einsele, H. Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta5,6-desaturation. FEBS Lett. 1997, 400, 80–82. [Google Scholar] [CrossRef] [PubMed]
- Morio, F.; Pagniez, F.; Lacroix, C.; Miegeville, M.; Le Pape, P. Amino acid substitutions in the Candida albicans sterol Δ5,6-desaturase (Erg3p) confer azole resistance: Characterization of two novel mutants with impaired virulence. J. Antimicrob. Chemother. 2012, 67, 2131–2138. [Google Scholar] [CrossRef] [PubMed]
Antifungal | AST | No. of Isolates with Minimum Inhibitory Concentration (MIC) (µg/mL) of | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Drug | Method | ≤0.01 | 0.02 | 0.03 | 0.05 | 0.06 | 0.09 | 0.13 | 0.19 | 0.25 | 0.38 | 0.5 | 0.75 | 1 | 2 | 3 | 4 | 8 | 16 | 32 | 64 | 128 | 256 |
FLU | CLSI | 4 | 10 | 26 * | 25 | 7 | 2 | ||||||||||||||||
Etest | 1 | 1 | 4 | 2 | 17 * | 11 | 10 | 16 | 6 | 4 | 1 | 1 | |||||||||||
MCN-AM | 62 * | 7 | 3 | 1 | 1 | ||||||||||||||||||
VOR | CLSI | 69 * | 5 | ||||||||||||||||||||
Etest | 43 * | 25 | 5 | 1 | |||||||||||||||||||
MCN-AM | 72 * | 1 | 1 | ||||||||||||||||||||
MFG | CLSI | 1 | 3 | 31 | 32 * | 5 | 2 | ||||||||||||||||
Etest | 3 | 21 * | 11 | 15 | 14 | 7 | 2 | 1 | 1 | ||||||||||||||
MCN-AM | 70 * | 3 | 1 | ||||||||||||||||||||
AMB | CLSI | 3 | 9 | 51 * | 5 | 2 | 4 | ||||||||||||||||
Etest | 3 | 6 | 1 | 2 | 6 | 10 | 19 * | 11 | 5 | 3 | 1 | 7 | |||||||||||
MCN-AM | 25 | 42 * | 3 | 2 | 2 |
Antifungal | AFST Methods | Modal (Range) MIC (µg/mL) Values | Ecoff Value | % CA (MaE, VmE) | % EA | |
---|---|---|---|---|---|---|
Drug | (µg/mL) | ±1 Two-Fold | ±2 Two-Fold | |||
FLU | CLSI vs. Etest | 0.25 (0.06–2) vs. 0.19 (0.03–256) | 1 | 97% (1, 1) | 72% | 89% |
CLSI vs. MCN-AM | 0.25 (0.06–2) vs. 0.25 (0.25–128) | 1 | 97% (1, 1) | 82% | 95% | |
Etest vs. MCN-AM | 0.25 (0.25–128) vs. 0.19 (0.03–256) | 1 | 100% (N/A) | 80% | 97% | |
VOR | CLSI vs. Etest | 0.02 (0.02–0.03) vs. 0.01 (0.01–32) | 0.03 | 99% (1, 0) | 91% | 99% |
CLSI vs. MCN-AM | 0.02 (0.02–0.03) vs. 0.01 (0.01–8) | 0.03 | 99% (1, 0) | 92% | 99% | |
Etest vs. MCN-AM | 0.01 (0.01–8) vs. 0.01 (0.01–32) | 0.03 | 100% (N/A) | 87% | 100% | |
MFG | CLSI vs. Etest | 0.06 (0.01–0.25) vs. 0.02 (0.01–1) | 0.5 | 99% (1, 0) | 76% | 99% |
CLSI vs. MCN-AM | 0.06 (0.01–0.25) vs. 0.02 (0.02–0.25) | 0.5 | 100% (0, 0) | 49% | 89% | |
Etest vs. MCN-AM | 0.02 (0.02–0.25) vs. 0.02 (0.01–1) | 0.5 | 99% (N/A) | 49% | 88% | |
AMB | CLSI vs. Etest | 0.25 (0.06–2) vs. 0.38 (0.03–32) | 1 | 95% (4, 0) | 69% | 85% |
CLSI vs. MCN-AM | 0.25 (0.06–2) vs. 1 (0.5–16) | 1 | 96% (3, 0) | 32% | 88% | |
Etest vs. MCN-AM | 1 (0.5–16) vs. 0.38 (0.03–32) | 1 | 99% (N/A) | 45% | 73% |
Patient | Source a | Isolate | CLSI MIC | Etest MIC | MCN-AM MIC | ERG2 | ERG3 | Total Cell Sterol Detected as (%) e | |||
---|---|---|---|---|---|---|---|---|---|---|---|
No. | No. | for AMB b | for AMB b | for AMB b | Sequence c | Sequence c | Ergosterol | Fecosterol | Fecosterol Plus f | Ergosta-7,22-dienol | |
N. A. | Human | ATCC28838 | 0.25 | 0.25 | 0.5 | WT | WT | 70.46 ± 7.37 | 4.47 ± 2.35 | 4.9 ± 2.42 | N. D. |
16 | Sputum | Kw197/13 | 0.063 | 0.06 | 0.5 | WT | WT | 64.04 ± 2.34 | 3.83 ± 0.95 | 1.8 ± 0.61 | N. D. |
22 | Urine | Kw3153/14 | 0.125 | 0.02 | 0.5 | S113A | WT | 85.92 ± 2.25 | 1.11 ± 0.29 | 4.5 ± 0.45 | N. D. |
49 | Blood | Kw3267/17 | 0.250 | 0.19 | 0.5 | WT | WT | 72.76 ± 5.73 | 2.01 ± 0.95 | 2.2 ± 1.00 | N. D. |
7 | Urine | Kw3352/11 | 1 | 32 | 4 | S113A + G121C | N313S | 0 | 9.11 ± 2.65 | 93.6 ± 8.44 | N. D. |
27 | Urine | Kw135/15 | 2 | 32 | 4 | E105K + S113A | WT | 0 | 14.63 ± 3.25 | 94.9 ± 7.35 | N. D. |
44 | BAL | Kw2327/17 | 2 | 32 | 2 | M93I + S113A | WT | 0 | 26.35 ± 1.88 | 93.0 ± 5.63 | N. D. |
51 | Ear | Kw1075/18 | 2 | 32 | 2 | S113A + H155R | WT | 0 | 5.50 ± 0.42 | 95.8 ± 6.91 | N. D. |
56 | ET | Kw2153/18 | 0.250 | 4 | 1 | S113A | S218P | 0 | 1.83 ± 0.97 | 14.6 ± 1.52 | 67.9 ± 2.3 |
64 | Sputum | Kw1661/19 | 1 | 32 | 2 | S113A + Δ617t, fsm d | WT | 77.93 ± 0.29 | 1.00 ± 0.46 | 1.7 ± 0.58 | N. D. |
72 | BAL | Kw196-11/20 | 0.25 | 32 | >16 | L107S + S113A | WT | 0 | 10.75 ± 5.18 | 98.1 ± 8.75 | N. D. |
73 | Urine | Kw20-12/20 | 2 | 32 | >16 | G90C + S113A | WT | 0 | 9.80 ± 2.86 | 96.2 ± 5.92 | N. D. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asadzadeh, M.; Ahmad, S.; Meis, J.F.; Parker, J.E.; Alfouzan, W. Head-to-Head Comparison of Etest, MICRONAUT-AM EUCAST and Reference Broth Microdilution-Based CLSI Results for Candida kefyr Antifungal Susceptibility Testing: Implications for Detection of Reduced Susceptibility to Amphotericin B. J. Fungi 2025, 11, 570. https://doi.org/10.3390/jof11080570
Asadzadeh M, Ahmad S, Meis JF, Parker JE, Alfouzan W. Head-to-Head Comparison of Etest, MICRONAUT-AM EUCAST and Reference Broth Microdilution-Based CLSI Results for Candida kefyr Antifungal Susceptibility Testing: Implications for Detection of Reduced Susceptibility to Amphotericin B. Journal of Fungi. 2025; 11(8):570. https://doi.org/10.3390/jof11080570
Chicago/Turabian StyleAsadzadeh, Mohammad, Suhail Ahmad, Jacques F. Meis, Josie E. Parker, and Wadha Alfouzan. 2025. "Head-to-Head Comparison of Etest, MICRONAUT-AM EUCAST and Reference Broth Microdilution-Based CLSI Results for Candida kefyr Antifungal Susceptibility Testing: Implications for Detection of Reduced Susceptibility to Amphotericin B" Journal of Fungi 11, no. 8: 570. https://doi.org/10.3390/jof11080570
APA StyleAsadzadeh, M., Ahmad, S., Meis, J. F., Parker, J. E., & Alfouzan, W. (2025). Head-to-Head Comparison of Etest, MICRONAUT-AM EUCAST and Reference Broth Microdilution-Based CLSI Results for Candida kefyr Antifungal Susceptibility Testing: Implications for Detection of Reduced Susceptibility to Amphotericin B. Journal of Fungi, 11(8), 570. https://doi.org/10.3390/jof11080570