Additions to Macgarvieomyces in Iran: Morphological and Phylogenetic Analyses Reveal Six New Species
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Isolation of Fungi
2.2. Morphological Examination
2.3. DNA Extraction, PCR Amplification, and Sequencing
2.4. Molecular Phylogeny
2.5. Genealogical Concordance Phylogenetic Species Recognition Analysis
3. Results
3.1. Phylogenetic Analyses
3.2. Taxonomy
3.2.1. Macgarvieomyces caspica A. Ahmadpour, Y. Ghosta, F. Alavi, Z. Alavi, and E. Hashemlou sp. nov. (Figure 3)
3.2.2. Macgarvieomyces cyperi A. Ahmadpour, Y. Ghosta, F. Alavi, Z. Alavi, and E. Hashemlou, sp. nov. (Figure 5)
3.2.3. Macgarvieomyces junci-acuti A. Ahmadpour, Y. Ghosta, F. Alavi, Z. Alavi, and E. Hashemlou, sp. nov. (Figure 6)
3.2.4. Macgarvieomyces juncigenus A. Ahmadpour, Y. Ghosta, F. Alavi, Z. Alavi, and E. Hashemlou, sp. nov. (Figure 7)
3.2.5. Macgarvieomyces salkadehensis A. Ahmadpour, Y. Ghosta, F. Alavi, Z. Alavi, and E. Hashemlou, sp. nov. (Figure 8)
3.2.6. Macgarvieomyces schoeni A. Ahmadpour, Y. Ghosta, F. Alavi, Z. Alavi, and E. Hashemlou, sp. nov. (Figure 9)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thongkantha, S.; Jeewon, R.; Vijaykrishna, D.; Lumyong, S.; McKenzie, E.H.C.; Hyde, K.D. Molecular phylogeny of Magnaporthaceae (Sordariomycetes) with a new species Ophioceras chiangdaoense from Dracaena loureiroi in Thailand. Fungal Divers. 2009, 34, 157–173. [Google Scholar]
- Klaubauf, S.; Tharreau, D.; Fournier, E.; Groenewald, J.Z.; Crous, P.W.; de Vries, R.P.; Lebrun, M.H. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Stud. Mycol. 2014, 79, 85–120. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Walsh, E.; Zhang, N. Four new species in Magnaporthaceae from grass roots in New Jersey Pine Barrens. Mycologia 2014, 106, 580–588. [Google Scholar] [CrossRef]
- Feng, J.W.; Liu, W.T.; Chen, J.J.; Zhang, C.L. Biogeography and ecology of Magnaporthales: A case study. Front. Microbiol. 2021, 12, 654380. [Google Scholar] [CrossRef]
- Feng, J.W.; Chen, X.Y.; Chen, K.Y.; Druzhinina, I.S.; Voglmayr, H.; Crous, P.W.; Kubicek, C.P.; Zhang, C.L. A reappraisal of families within the order Magnaporthales and description of new endophytic taxa associated with Poaceae plants in China. Mycosphere 2024, 15, 6240–6346. [Google Scholar] [CrossRef]
- Cannon, P.F. The newly recognized family Magnaporthaceae and its interrelationships. System. Ascomycet. 1994, 13, 25–42. [Google Scholar]
- Hongsanan, S.; Maharachchikumbura, S.S.; Hyde, K.D.; Samarakoon, M.C.; Jeewon, R.; Zhao, Q.; Al-Sadi, A.M.; Bahkali, A.H. An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Divers. 2017, 84, 25–41. [Google Scholar] [CrossRef]
- Luo, Z.L.; Hyde, K.D.; Liu, J.K.; Maharachchikumbura, S.S.; Jeewon, R.; Bao, D.F.; Bhat, D.J.; Lin, C.G.; Li, W.L.; Yang, J.; et al. Freshwater Sordariomycetes. Fungal Divers. 2019, 99, 451–660. [Google Scholar] [CrossRef]
- Marin-Felix, Y.; Hernández-Restrepo, M.; Wingfield, M.J.; Akulov, A.; Carnegie, A.J.; Cheewangkoon, R.; Gramaje, D.; Groenewald, J.Z.; Guarnaccia, V.; Halleen, F.; et al. Genera of phytopathogenic fungi: GOPHY 2. Stud. Mycol. 2019, 92, 47–133. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, N. The Rice Blast Fungus and Allied Species: A Monograph of the Fungal Order Magnaporthales; The American Phytopathological Society: St. Paul, MN, USA, 2022. [Google Scholar]
- Wong, P.T.W.; Tan, Y.P.; Weese, T.L.; Shivas, R.G. Magnaporthiopsis species associated with patch diseases of turfgrasses in Australia. Mycosphere 2022, 13, 602–611. [Google Scholar] [CrossRef]
- Hernández-Restrepo, M.; Groenewald, J.Z.; Crous, P.W. Neocordana gen. nov., the causal organism of Cordana leaf spot on banana. Phytotaxa 2015, 205, 229–238. [Google Scholar] [CrossRef]
- Skamnioti, P.; Gurr, S.J. Against the grain: Safeguarding rice from rice blast disease. Trends Biotechnol. 2009, 27, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Pedrozo, R.; Osakina, A.; Huang, Y.; Nicolli, C.P.; Wang, L.; Jia, Y. Status on genetic resistance to rice blast disease in the post-genomic era. Plants 2025, 14, 807. [Google Scholar] [CrossRef]
- Farr, D.F.; Rossman, A.Y.; Castlebury, L.A. United States National Fungus Collections Fungus-Host Dataset. Available online: https://fungi.ars.usda.gov/ (accessed on 20 April 2025).
- Rathnayaka, A.R.; Tennakoon, D.S.; Jones, G.E.; Wanasinghe, D.N.; Bhat, D.J.; Priyashantha, A.H.; Stephenson, S.L.; Tibpromma, S.; Karunarathna, S.C. Significance of precise documentation of hosts and geospatial data of fungal collections, with an emphasis on plant-associated fungi. N. Z. J. Bot. 2025, 63, 462–489. [Google Scholar] [CrossRef]
- Ahmadpour, A.; Ghosta, Y.; Poursafar, A. Novel species of Alternaria section Nimbya from Iran as revealed by morphological and molecular data. Mycologia 2021, 113, 1073–1088. [Google Scholar] [CrossRef]
- Ahmadpour, A.; Ghosta, Y.; Alavi, Z.; Alavi, F.; Poursafar, A.; Rampelotto, P.H. Diversity of Alternaria section Nimbya in Iran, with the description of eight new species. J. Fungi 2025, 11, 225. [Google Scholar] [CrossRef]
- Rayner, R.W. A Mycological Colour Chart; Commonwealth Mycological Institute: Kew, UK, 1970. [Google Scholar]
- Nirenberg, H.I. Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium-Section Liseola. Mitt. Biol. Bundesanst. Land-Und Forstwirtsch. Berl.-Dahl. 1976, 169, 1–117. [Google Scholar]
- Crous, P.W.; Gams, W.; Stalpers, J.A.; Robert, V.; Stegehuis, G. MycoBank: An online initiative to launch mycology into the 21st century. Stud. Mycol. 2004, 50, 19–22. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Shinsky, J.J., White, T.J., Eds.; Elsevier: Berlin/Heidelberg, Germany, 1990; pp. 315–322. [Google Scholar]
- Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999, 91, 553–556. [Google Scholar] [CrossRef]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2019, 108, 1160–1166. [Google Scholar] [CrossRef]
- Nylander, J.A.A. MrModeltest v2.0. Program Distributed by the Author; Evolutionary Biology Centre, Uppsala University: Uppsala, Sweden, 2004. [Google Scholar]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. The CIPRES Science Gateway: Enabling High-Impact Science for Phylogenetics Researchers with Limited Resources. In Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the Extreme to the Campus and Beyond (ACM), Chicago, IL, USA, 16–20 July 2012. [Google Scholar]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Swofford, D.L. Paup: Phylogenetic Analysis Using Parsimony (and Other Methods) 4.0. B5, Version 4.0b10; Sinauer Associates: Sunderland, MA, USA, 2002. [Google Scholar]
- Rambaut, A. FigTree, a Graphical Viewer of Phylogenetic Trees. 2019. Available online: http://tree.bio.ed.ac.uk/software/figtree (accessed on 20 February 2025).
- Quaedvlieg, W.; Binder, M.; Groenewald, J.Z.; Summerell, B.A.; Carnegie, A.J.; Burgess, T.I.; Crous, P.W. Introducing the consolidated species concept to resolve species in the Teratosphaeriaceae. Persoonia 2014, 33, 1–40. [Google Scholar] [CrossRef]
- Bruen, T.C.; Philippe, H.; Bryant, D. A simple and robust statistical test for detecting the presence of recombination. Genetics 2006, 172, 2665–2681. [Google Scholar] [CrossRef]
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef]
- Jayawardena, R.S.; Hyde, K.D.; Jeewon, R.; Ghobad-Nejhad, M.; Wanasinghe, D.N.; Liu, N.; Phillips, A.J.; Oliveira-Filho, J.R.C.; da Silva, G.A.; Gibertoni, T.B.; et al. One stop shop II: Taxonomic update with molecular phylogeny for important phytopathogenic genera: 26–50. Fungal Divers. 2019, 94, 41–129. [Google Scholar] [CrossRef]
- Ahmadpour, A. Alternaria caricicola, a new species of Alternaria in the section Nimbya from Iran. Phytotaxa 2019, 405, 65–73. [Google Scholar] [CrossRef]
- Ahmadpour, A.; Heidarian, Z.; Ghosta, Y.; Alavi, Z.; Alavi, F.; Manamgoda, D.S.; Kumla, J.; Karunarathna, S.C.; Rampelotto, P.H.; Suwannarach, N. Morphological and phylogenetic analyses of Bipolaris species associated with Poales and Asparagales host plants in Iran. Front. Cell Infect Microbiol. 2025, 15, 1520125. [Google Scholar] [CrossRef]
- Ahmadpour, A.; Heidarian, Z.; Ghosta, Y.; Alavi, Z.; Alavi, F.; Manamgoda, D.S.; Karunarathna, S.C.; Rampelotto, P.H. Morphological and molecular characterization of Curvularia species from Iran, with description of two novel species and two new records. Mycologia 2025, 117, 261–285. [Google Scholar] [CrossRef]
Species | Culture Collection Number | Host/Substrate | Location | GenBank Accession Numbers | |||
---|---|---|---|---|---|---|---|
ITS | RPB1 | ACT | CAL | ||||
Bambusicularia brunnea | CBS 133599 T | Sasa sp. | Japan | KM484830 | KM485043 | AB274449 | AB274482 |
Bambusicularia brunnea | CBS 133600 | Phyllostachys bambusoides | Japan | AB274436 | KM485044 | AB274450 | AB274483 |
Barretomyces calatheae | CBS 129274 | Calathea longifolia | Brazil | KM484831 | KM485045 | KM485162 | KM485231 |
Bipyricularia graminis | YNE01013 T | Poaceae sp. | China | MW479090 | MW482852 | OQ918100 | - |
Bipyricularia graminis | YNE01016 | Poaceae sp. | China | MW479091 | MW482853 | OQ918101 | - |
Macgarvieomyces borealis | CBS 461.65 T | Juncus effusus | Scotland | KM484854 | KM485070 | KM485170 | KM485239 |
Macgarvieomyces caspica | IRAN 5071C T | Juncus acutus | Iran | PQ453843 | PQ450660 | PQ450624 | PQ450642 |
Macgarvieomyces caspica | FCCUU 1956 | Juncus acutus | Iran | PQ453844 | PQ450661 | PQ450625 | PQ450643 |
Macgarvieomyces cyperi | IRAN 5070C T | Cyperussp. | Iran | PQ453841 | PQ450658 | PQ450622 | PQ450640 |
Macgarvieomyces cyperi | FCCUU1955 | Cyperussp. | Iran | PQ453842 | PQ450659 | PQ450623 | PQ450641 |
Macgarvieomyces junci-acuti | IRAN 4233C T | Juncus acutus | Iran | PQ453836 | PQ450653 | PQ450617 | PQ450635 |
Macgarvieomyces junci-acuti | FCCUU 1951 | Juncussp. | Iran | PQ453837 | PQ450654 | PQ450618 | PQ450636 |
Macgarvieomyces junci-acuti | FCCUU 1952 | Juncussp. | Iran | PQ453838 | PQ450655 | PQ450619 | PQ450637 |
Macgarvieomyces junci-acuti | FCCUU 1953 | Juncussp. | Iran | PQ453839 | PQ450656 | PQ450620 | PQ450638 |
Macgarvieomyces junci-acuti | FCCUU 1954 | Schoenussp. | Iran | PQ453840 | PQ450657 | PQ450621 | PQ450639 |
Macgarvieomyces juncicola | CBS 610.82 | Juncus effusus | Netherlands | KM484855 | KM485071 | KM485171 | KM485240 |
Macgarvieomyces juncigenus | IRAN 5073C T | Juncussp. | Iran | PQ453850 | PQ450667 | PQ450631 | PQ450649 |
Macgarvieomyces juncigenus | FCCUU 1961 | Juncussp. | Iran | PQ453851 | PQ450668 | PQ450632 | PQ450650 |
Macgarvieomyces luzulae | CBS 143401 T | Luzula sylvatica | Ukraine | MG934440 | MG934469 | MG934462 | MG934519 |
Macgarvieomyces luzulae | CPC 31555 | Luzula sylvatica | Ukraine | MG934441 | MG934470 | MG934463 | MG934520 |
Macgarvieomyces salkadehensis | IRAN 5072C T | Juncus inflexus | Iran | PQ453845 | PQ450662 | PQ450626 | PQ450644 |
Macgarvieomyces salkadehensis | FCCUU 1957 | Juncussp. | Iran | PQ453846 | PQ450663 | PQ450627 | PQ450645 |
Macgarvieomyces salkadehensis | FCCUU 1958 | Scirpoidessp. | Iran | PQ453847 | PQ450664 | PQ450628 | PQ450646 |
Macgarvieomyces salkadehensis | FCCUU 1959 | Juncussp. | Iran | PQ453848 | PQ450665 | PQ450629 | PQ450647 |
Macgarvieomyces salkadehensis | FCCUU 1960 | Juncussp. | Iran | PQ453849 | PQ450666 | PQ450630 | PQ450648 |
Macgarvieomyces schoeni | IRAN 5074C T | Schoenussp. | Iran | PQ453852 | PQ450669 | PQ450633 | PQ450651 |
Macgarvieomyces schoeni | FCCUU1962 | Schoenussp. | Iran | PQ453853 | PQ450670 | PQ450634 | PQ450652 |
Magnaporthiopsis incrustans | M35 | - | - | JF414843 | Genome | Genome | Genome |
Magnaporthiopsis poae | ATCC 64411 | Triticum sp. | USA | Genome | Genome | AF395973 | AF396032 |
Neocordana musarum | CBS 142116 T | Musa sp. | France | KY173425 | KY173577 | KY173568 | - |
Neocordana musigena | CBS 142624 T | Musa sp. | Morocco | KY979749 | KY979886 | KY979855 | - |
Neopyricularia commelinicola | CBS 128307 | Commelina communis | South Korea | FJ850125 | KM485086 | KM485174 | KM485243 |
Neopyricularia commelinicola | CBS 128308 T | Commelina communis | South Korea | FJ850122 | KM485087 | KM485175 | - |
Nothopyricularia junci | CBS 148308 T | Juncus effusus | Netherlands | OK664720 | OK651152 | OK651127 | OK651142 |
Proxipyricularia zingiberis | CBS 132195 | Zingiber mioga | Japan | KM484869 | KM485088 | AB274448 | KM485244 |
Proxipyricularia zingiberis | CBS 303.39 | Zingiber officinale | Japan | KM484871 | KM485092 | KM485177 | KM485247 |
Pseudopyricularia bothriochloae | CBS 136427 T | Bothriochloa bladhii | Thailand | KF777186 | KY905701 | KY905700 | - |
Pseudopyricularia caricicola | CBS 149674 T | Carex disticha | Netherlands | OQ628482 | - | OQ627932 | - |
Pseudopyricularia cyperi | CBS 133595 T | Cyperus iria | Japan | KM484872 | AB818013 | AB274453 | AB274485 |
Pseudopyricularia cyperi | Cr88383 | Cyperus rotundus | Philippines | KM484874 | KM485094 | KM485179 | KM485249 |
Pseudopyricularia festucae | CBS 146629 T | Festuca californica | USA | MW883447 | MW890057 | - | MW890044 |
Pseudopyricularia hagahagae | CPC 25635 T | Unidentified Cyperaceae | South Africa | KT950851 | KT950877 | KT950873 | - |
Pseudopyricularia higginsii | CBS 121934 | Typha orientalis | New Zealand | KM484875 | KM485095 | KM485180 | KM485250 |
Pseudopyricularia kyllingae | CBS 133597 T | Kyllinga brevifolia | Japan | KM484876 | KM485096 | AB274451 | AB274484 |
Pseudopyricularia kyllingae | PH0054 = Cb8959 | Cyperus brevifolius | Philippines | KM484877 | KM485097 | KM485181 | KM485251 |
Pyricularia grisea | CBS 138707 T | Digitaria sp. | USA | KM484885 | KM485105 | KM485187 | KM485258 |
Pyricularia oryzae | CBS 255.38 | - | Romania | KM484889 | KM485109 | KM485190 | KM485261 |
Pyricularia oryzae | CBS 657.66 | Oryza sativa | Egypt | KM484893 | KM485113 | KM485194 | KM485265 |
Pyricularia penniseticola | BF0017 | Pennisetum typhoides | Burkina Faso | KM484925 | KM485144 | DQ240878 | DQ240894 |
Pyricularia urashimae | CBS 142117 T | Urochloa brizantha | Brazil | KY173437 | KY173578 | KY173571 | KX524100 |
Pyricularia zingibericola | RN0001 T | Zingiber officinale | Réunion | KM484941 | KM485157 | KM485157 | KM485297 |
Pyriculariomyces asari | CPC 27442 | Asarum sp. | Malaysia | KX228290 | MG934472 | KX228360 | - |
Pyriculariomyces asari | CPC 27444 T | Asarum sp. | Malaysia | KX228291 | KX228368 | KX228361 | MG934541 |
Utrechtiana arundinacea | CPC 33994 T | Phragmites sp. | Netherlands | MG934461 | MG934473 | MG934468 | MG934542 |
Utrechtiana roumeguerei | CBS 128780 T | Phragmites australis | Netherlands | JF951153 | KM485047 | KM485163 | KM485232 |
Xenopyricularia zizaniicola | CBS 133593 T | Zizania latifolia | Japan | KM484947 | KM485161 | KM485230 | AB274479 |
Xenopyricularia zizaniicola | CBS 132356 | Zizania latifolia | Japan | KM484946 | KM485160 | AB274444 | AB274480 |
Parameter | Gene | ||||
---|---|---|---|---|---|
ITS | RPB1 | ACT | CAL | Combined | |
Number of taxa | 57 | 56 | 56 | 48 | 57 |
Total characters | 517 | 735 | 513 | 670 | 2435 |
Constant sites | 327 | 382 | 224 | 252 | 1185 |
Variable sites | 190 | 353 | 289 | 418 | 1250 |
Parsimony informative sites | 162 | 329 | 258 | 372 | 1121 |
Parsimony uninformative sites | 28 | 24 | 31 | 46 | 129 |
AIC substitution model * | GTR+I+G | GTR+I+G | HKY+I+G | HKY+I+G | GTR+I+G |
Lset nst, Rates | 6, invgamma | 6, invgamma | 2, invgamma | 2, invgamma | 6, invgamma |
−lnL | 4564.091206 | 6165.249261 | 5332.845681 | 7571.390091 | 23503.286101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadpour, A.; Ghosta, Y.; Alavi, F.; Alavi, Z.; Hashemlou, E.; Kumla, J.; Karunarathna, S.C.; Suwannarach, N. Additions to Macgarvieomyces in Iran: Morphological and Phylogenetic Analyses Reveal Six New Species. J. Fungi 2025, 11, 489. https://doi.org/10.3390/jof11070489
Ahmadpour A, Ghosta Y, Alavi F, Alavi Z, Hashemlou E, Kumla J, Karunarathna SC, Suwannarach N. Additions to Macgarvieomyces in Iran: Morphological and Phylogenetic Analyses Reveal Six New Species. Journal of Fungi. 2025; 11(7):489. https://doi.org/10.3390/jof11070489
Chicago/Turabian StyleAhmadpour, Abdollah, Youbert Ghosta, Fatemeh Alavi, Zahra Alavi, Esmaeil Hashemlou, Jaturong Kumla, Samantha C. Karunarathna, and Nakarin Suwannarach. 2025. "Additions to Macgarvieomyces in Iran: Morphological and Phylogenetic Analyses Reveal Six New Species" Journal of Fungi 11, no. 7: 489. https://doi.org/10.3390/jof11070489
APA StyleAhmadpour, A., Ghosta, Y., Alavi, F., Alavi, Z., Hashemlou, E., Kumla, J., Karunarathna, S. C., & Suwannarach, N. (2025). Additions to Macgarvieomyces in Iran: Morphological and Phylogenetic Analyses Reveal Six New Species. Journal of Fungi, 11(7), 489. https://doi.org/10.3390/jof11070489