Three New Species of Mytilinidioid Fungi (Dothideomycetes, Ascomycota) from Mexico
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Zone
2.2. Morphological Examination
2.3. Drawing Techniques
2.4. Extraction, Amplification, and Sequencing of DNA
2.5. Phylogenetic Methods
Taxon | Culture Accession No. or Voucher Specimen | GenBank Accession No. | Country of Origin of the Sequence | Source |
---|---|---|---|---|
LSU | ||||
Dendrographa decolorans | Ertz 14063 | HQ454610 | Belgium | [26] |
Ericboehmia centramura | MFLUCC 12-0808 | KM272256 | Thailand | [27] |
Ericboehmia curtisii | CBS:198.34 | FJ161176 | USA | [2,4] |
Ericboehmia curtisii | CBS:198.34 | MH866967 | USA | [5] |
Ericboehmia doimaeensis | MFLUCC 16-0329 | MH535894 | Thailand | [28] |
Ericboehmia mexicana | T. Raymundo 7609 | PP575996 | Mexico | This study |
Ericboehmia saulensis | AG18089 | MN338581 | French Guiana | [5] |
Ericboehmia thailandica | MFLUCC 16-0338 | MH535895 | Thailand | [28] |
Gloniopsis calami | MFLUCC 15-0739 | NG_059715 | Thailand | [29] |
Gloniopsis fluctiformis | C419 | MK348005 | Thailand | [30] |
Gloniopsis leucaenae | C289 | MK347967 | Thailand | [30] |
Gloniopsis praelonga | CBS:123337 | FJ161195 | USA | [4] |
Hysterium angustatum | CMW:20409 | FJ161194 | USA | [2,4] |
Hysterium angustatum | MFLUCC 16-0623 | MH535893 | Italy | [28] |
Hysterium angustatum | GKM5211 | GQ221906 | New Zealand | [31] |
Hysterium barrianum | ANM1442 | GQ221884 | USA | [31] |
Hysterium barrianum | ANM1495 | GQ221885 | USA | [31] |
Hysterium pulicare | CBS:123377 | FJ161201 | USA | [4] |
Hysterium pulicare | CBS:240.34 | MH866998 | USA | [32] |
Hysterium vermiforme | GKM1234 | GQ221897 | Kenya | [31] |
Hysterobrevium constrictum | GKM426N | GQ221901 | Kenya | [31] |
Hysterobrevium mori | CBS:123564 | FJ161198 | USA | [4] |
Hysterobrevium mori | CBS:123335 | FJ161202 | USA | [4] |
Hysterobrevium mori | CBS:123563 | FJ161196 | USA | [4] |
Hysterobrevium rosae | MFUCC 14-0551 | MH535897 | Italy | [28] |
Hysterobrevium rosae | MFUCC 14-0552 | MH535898 | Italy | [28] |
Hysterobrevium smilacis | CBS:114601 | FJ161174 | Sweden | [2] |
Hysterobrevium smilacis | CBS:200.34 | MH866968 | USA | [2] |
Hysterodifractum partisporum | HUEFS:42865 | KF914916 | Brazil | [33] |
Hysterodifractum partisporum | HUEFS 42865 | NG_060652 | Brazil | [33] |
Ostreichnion sassafras | CBS:322.34 | FJ161188 | USA | [2] |
Ostreichnion sassafras | CBS:322.34 | MH867054 | USA | [32] |
Psiloglonium araucanum | CBS:112412 | FJ161172 | South Africa | [4] |
Psiloglonium araucanum | CMW:18760 | FJ161192 | South Africa | [4] |
Psiloglonium clavisporum | CBS:123338 | FJ161197 | USA | [4] |
Psiloglonium clavisporum | CBS:123341 | FJ161206 | USA | [4] |
Rhytidhysteron hysterinum | EB 0351 | GU397350 | France | [4] |
Rhytidhysteron neorufulum | MFLUCC 13-0221 | KU377567 | Thailand | [33] |
Rhytidhysteron rufulum | GKM361A | GQ221893 | Kenya | [31] |
Voucher | Country | Isolation Source | GenBank Accession No. | Source | ||
---|---|---|---|---|---|---|
ITS | LSU | |||||
Cenococcum geophilum | 1-17-2 | USA | ----- | ----- | JN860135 | [34] |
Glonium circumserpens | CBS 123343 | Australia | Saxicolous | ----- | FJ161200 | [2] |
Lophium arboricola | CBS 758.71 Type | United Kingdom | Larix decidua | NR153447 | NG064094 | [12] |
Lophium arboricola | NW-FVA 6260 | Germany | Acer pseudoplatanus | ON710911 | ----- | [12] |
Lophium arboricola | ZK52b/08 | Czech Republic | Picea abies | FR837917 | FR837917 | [12] |
Lophium arboricola | P98 | Poland | Picea abies | OR754901 | OR754923 | [12] |
Lophium arboricola | P99 | Poland | Abies alba | OR754902 | OR754924 | [12] |
Lophium arboricola | CBS 102826 | Spain | On dung | KU705825 | KU705842 | [12] |
Lophium mytilinum | CBS 123344 | USA | Pinus strobus | ----- | FJ161203 | [2] |
Lophium mytilinum | CBS 269.34 | USA | Pinus sp. | EF596817 | EF596817 | [35] |
Lophium mytilinum | CBS 114111 | Sweden | Pinus sylvestris | EF596819 | EF596819 | [2] |
Lophium pinicola | T. Raymundo 9516 Type | Mexico | Pinus patula | PQ149439 | PQ151434 | This study |
Lophium pinicola | T. Raymundo 6015 | Mexico | Pinus patula | PQ149440 | PQ151435 | This study |
Lophium pinicola | R. Valenzuela 18065 | Mexico | Pinus patula | PQ149441 | PQ151436 | This study |
Lophium pinicola | Mart.-Pineda 2300 | Mexico | Pinus patula | PQ149442 | PQ151437 | This study |
Lophium zalerioides | MFLUCC 14-0417 | Italy | ----- | MF621583 | MF621587 | [36] |
Mytilinidion mexicanum | T. Raymundo 9300 Type | Mexico | Acacia californica subsp. pringlei | PQ149443 | PQ151438 | This study |
Mytilinidion resinicola | CBS 304.34 Type | USA | Larix laricina | MH855535 | MH867038 | [2] |
Mytilinidion rhenanum | EB 0341 | France | ----- | ----- | GU323207 | [35] |
Mytilinidion scolecosporum | CBS 305.34 Type | USA | Pinus strobus | NR160069 | NG057808 | [2] |
Pseudocamaropycnis pini | CBS 115589 Type | China | Leaf of Pinus elliotii | KU728518 | KU728557 | [37] |
Slimacomyces isiolus | FP1465 | Japan | ----- | AB597207 | AB597217 | [12] |
Slimacomyces isiolus | P10436 | Japan | ----- | AB597213 | AB597220 | [12] |
3. Results
3.1. Phylogenetic Analyses
3.2. Taxonomy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duby, J.E. Memoire sur la tribu des Hysterinees de la famille des Hypoxylees (Pyrenomycetes). Mem. Soc. Phys. Hist. Nat. Genève. 1862, 16, 15–70. [Google Scholar]
- Boehm, E.W.A.; Schoch, C.L.; Spatafora, J.W. On the evolution of the Hysteriaceae and Mytilinidiaceae (Pleosporomycetidae, Dothideomycetes, Ascomycota) using four nuclear genes. Mycol. Res. 2009, 113, 461–479. [Google Scholar] [CrossRef] [PubMed]
- Marmolejo Monciváis, J.G. Distribución vertical de hongos en hojas de tres especies de pinos en Nuevo León, México. Rev. Mex. Cienc. For. 2018, 9, 379–399. [Google Scholar] [CrossRef]
- Boehm, E.W.A.; Mugambi, G.; Miller, A.N.; Huhndorf, S.; Marincowitz, S.; Schoch, C.L.; Spatafora, J.W. A molecular phylogenetic reappraisal of the Hysteriaceae, Mytilinidiaceae and Gloniaceae with keys to world species. Stud. Mycol. 2009, 64, 49–83. [Google Scholar] [CrossRef]
- Gardiennet, A.; Lechat, C.; Fournier, J. Ericboehmia, a new genus segregated from Ostreichnion in the Hysteriaceae, with the new species E. saulensis. Ascomycete.org. 2019, 11, 171–176. [Google Scholar] [CrossRef]
- Ulloa, M.; Hanlin, R.T. Illustrated Dictionary of Mycology, 2nd ed.; APS Press: St. Paul, MN, USA, 2012; p. 761. [Google Scholar]
- Martínez-González, C.R.; Ramírez-Mendoza, R.; Jiménez-Ramírez, J.; Gallegos-Vázquez, C.; Luna-Vega, I. Improved method for genomic DNA extraction for Opuntia Mill. (Cactaceae). Plant Methods 2017, 13, 82. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.D.; Lee, S.B.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 135–322. [Google Scholar] [CrossRef]
- Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Zhang, Z.; Schwarts, S.; Wagner, L.; Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000, 7, 203–214. [Google Scholar] [CrossRef]
- Czachura, P.; Janik, P. Lophium arboricola (Mytilinidiales, Ascomycota) from conifer resins. Plant Fungal Syst. 2023, 69, 1–6. [Google Scholar] [CrossRef]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2017, 20, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Muller, K.; Quandt, D.; Muller, J.; Neinhuis, C. PhyDER-Phylogenetic Data Editor. Program Distributed by the Authors, ver. 10.0. 2005. Available online: https://www.phyde.de (accessed on 18 July 2024).
- Maddison, W.P.; Maddison, D.R. Mesquite: A modular System for Evolutionary Analysis. Version 3.31. 2017. Available online: http://mesquiteproject.org (accessed on 22 July 2024).
- Swofford, D.L. PAUP* Phylogenetic Analysis Using Parsimony (and Other Methods); Version 4.0b10; Sinauer Associates: Sunderland, MA, USA, 2002. [Google Scholar]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Ronquist, F. MrBayes: Bayesian inference of phylogeny. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [PubMed]
- Frandsen, P.B.; Calcott, B.; Mayer, C.; Lanfear, R. Automatic selection of partitioning schemes for phylogenetic analyses using iterative k-means clustering of site rates. BMC Evol. Biol. 2015, 15, 13. [Google Scholar] [CrossRef]
- Lanfear, R.; Calcott, B.; Kainer, D.; Mayer, C.; Stamatakis, A. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol. Biol. 2014, 14, 82. [Google Scholar] [CrossRef]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. Partition Finder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2017, 34, 772–773. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree v.1.4.2. A Graphical Viewer of Phylogenetic Trees. 2014. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 24 July 2024).
- Ertz, D.; Tehler, A. The phylogeny of Arthoniales (Pezizomycotina) inferred from nucLSU and RPB2 sequences. Fungal Divers. 2011, 49, 47–71. [Google Scholar] [CrossRef]
- Tibpromma, S.; Hyde, K.D.; Jeewon, R.; Maharachchikumbura, S.S.N.; Liu, J.-K.; Bhat, D.J.; Jones, E.B.G.; McKenzi, E.H.C.; Camporesi, E.; Bulgakov, T.S.; et al. Fungal diversity notes 491–602: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2017, 83, 1–261. [Google Scholar] [CrossRef]
- Jayasiri, S.C.; Hyde, K.D.; Jones, E.B.G.; Peršoh, D.; Camporesi, E.; Kang, J.C. Taxonomic novelties of hysteriform Dothideomycetes. Mycosphere 2018, 9, 803–837. [Google Scholar] [CrossRef]
- Hyde, K.D.; Hongsanan, S.; Jeewon, R.; Bhat, D.J.; McKenzie, E.H.C.; Jones, E.B.G.; Phookamsak, R.; Ariyawansa, H.A.; Boonmee, S.; Zhao, Q.; et al. Fungal diversity notes 367–490: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016, 80, 1–270. [Google Scholar] [CrossRef]
- Jayasiri, S.C.; Hyde, K.D.; Jones, E.B.G.; McKenzie, E.H.C.; Jeewon, R.; Phillips, A.J.L.; Bhat, D.J.; Wanasinghe, D.N.; Liu, J.K.; Lu, Y.Z.; et al. Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. Mycosphere 2019, 10, 1–186. [Google Scholar] [CrossRef]
- Mugambi, G.K.; Huhndorf, S.M. Parallel evolution of hysterothecial ascomata in ascolocularous fungi (Ascomycota, Fungi). Syst. Biodivers. 2009, 7, 453–464. [Google Scholar] [CrossRef]
- Vu, D.; Groenewald, M.; de Vries, M.; Gehrmann, T.; Stielow, B.; Eberhardt, U.; Al-Hatmi, A.; Groenewald, J.Z.; Cardinali, G.; Houbraken, J.; et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 2019, 92, 135–154. [Google Scholar] [CrossRef]
- Almeida, D.A.C.; Gusmão, L.F.P.; Miller, A.N. Brazilian Semi-Arid Ascomycetes I: New and interesting records of hysteriaceous ascomycetes. Mycosphere 2014, 5, 379–391. [Google Scholar] [CrossRef]
- Spatafora, J.W.; Owensby, C.A.; Douhan, G.W.; Boehm, E.W.; Schoch, C.L. Phylogenetic placement of the ectomycorrhizal genus Cenococcum in Gloniaceae (Dothideomycetes). Mycologia 2012, 104, 758–765. [Google Scholar] [CrossRef]
- Schoch, C.L.; Shoemaker, R.A.; Seitfert, K.A.; Hambleton, S.; Spatafora, J.W.; Crous, P.W. A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 2006, 98, 1041–1052. [Google Scholar] [CrossRef]
- Hyde, K.D.; Norphanphoun, C.; Abreu, V.P.; Bazzicalupo, A.; Thilini Chethana, K.W.; Clericuzio, M.; Dayarathne, M.C.; Dissanayake, A.J.; Ekanayaka, A.H.; He, M.-Q.; et al. Fungal diversity notes 603–708: Taxonomic and phylogenetic notes on genera and species. Fungal Divers. 2017, 87, 1–235. [Google Scholar] [CrossRef]
- Crous, P.W.; Groenewald, J.Z. They seldom occur alone. Fungal Biol. 2016, 120, 1392–1415. [Google Scholar] [CrossRef] [PubMed]
- Niranjan, M.; Sarma, V.V. Twelve new species of Ascomycetous fungi from Andaman Islands, India. Curr. Res. Environ. Appl. Mycol. 2018, 8, 351–359. [Google Scholar] [CrossRef]
- Sánchez, R.M.; Carmarán, C.C.; Bianchinottim, V. Ostreichnion (Dothideomycetes, Ascomycota) from andean patagonian forests (Argentina). Darwiniana Nueva Ser. 2018, 6, 47–57. [Google Scholar] [CrossRef]
- Hernández-Restrepo, M.; Schumacher, R.K.; Wingfield, M.J.; Ahmad, I.; Cai, L.; Duong, T.A.; Edwards, J.; Gené, J.; Groenewald, J.Z.; Jabeen, S.; et al. Fungal Systematics and Evolution: FUSE 2. Sydowia 2016, 68, 193–230. [Google Scholar] [CrossRef]
- Koukol, O.; Kolařík, M.; Kolářová, Z.; Baldrian, P. Diversity of foliar endophytes in wind-fallen Picea abies trees. Fungal Divers. 2012, 54, 69–77. [Google Scholar] [CrossRef]
- Bills, G.F.; Platas, G.; Peláez, F.; Masurekar, P. Reclassification of a pneumocandin-producing anamorph, Glarea lozoyensis gen. et sp. nov., previously identified as Zalerion arboricola. Mycol. Res. 1999, 103, 179–192. [Google Scholar] [CrossRef]
- Schlößer, R.; Bien, S.; Langer, G.J.; Langer, E.J. Fungi associated with woody tissues of Acer pseudoplatanus in forest stands with different health status concerning sooty bark disease (Cryptostroma corticale). Mycol. Prog. 2023, 22, 13. [Google Scholar] [CrossRef]
- Nordén, B.; Andreasen, M. Key to hysterioid fungi on bark and wood in Scandinavia. Agarica 2021, 42, 113–132. [Google Scholar] [CrossRef]
- Lohman, M.L. Three new species of Mytilidion in the proposed subgenera Lophiopsis. Mycologia 1932, 24, 477–484. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raymundo, T.; Martínez-González, C.R.; Martínez-Pineda, M.; Cobos-Villagrán, A.; Ramírez-Rosales, I.; Valenzuela, R. Three New Species of Mytilinidioid Fungi (Dothideomycetes, Ascomycota) from Mexico. J. Fungi 2024, 10, 725. https://doi.org/10.3390/jof10100725
Raymundo T, Martínez-González CR, Martínez-Pineda M, Cobos-Villagrán A, Ramírez-Rosales I, Valenzuela R. Three New Species of Mytilinidioid Fungi (Dothideomycetes, Ascomycota) from Mexico. Journal of Fungi. 2024; 10(10):725. https://doi.org/10.3390/jof10100725
Chicago/Turabian StyleRaymundo, Tania, César R. Martínez-González, Michelle Martínez-Pineda, Aurora Cobos-Villagrán, Isabel Ramírez-Rosales, and Ricardo Valenzuela. 2024. "Three New Species of Mytilinidioid Fungi (Dothideomycetes, Ascomycota) from Mexico" Journal of Fungi 10, no. 10: 725. https://doi.org/10.3390/jof10100725
APA StyleRaymundo, T., Martínez-González, C. R., Martínez-Pineda, M., Cobos-Villagrán, A., Ramírez-Rosales, I., & Valenzuela, R. (2024). Three New Species of Mytilinidioid Fungi (Dothideomycetes, Ascomycota) from Mexico. Journal of Fungi, 10(10), 725. https://doi.org/10.3390/jof10100725